151
|
Abstract
Recent research suggests that minor changes in the primary sequence of the conserved histones may become major determinants for the chromatin structure regulating gene expression and other DNA-related processes. An analysis of the involvement of different core histone variants in different nuclear processes and the structure of different variant nucleosome cores shows that this may indeed be so. Histone variants may also be involved in demarcating functional regions of the chromatin. We discuss in this review why two of the four core histones show higher variation. A comparison of the status of variants in yeast with those from higher eukaryotes suggests that histone variants have evolved in synchrony with functional requirement of the cell.
Collapse
|
152
|
Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 2005; 3:e384. [PMID: 16248679 PMCID: PMC1275524 DOI: 10.1371/journal.pbio.0030384] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions--typically one or two nucleosomes wide--decorated with H2A.Z. Those "Z loci" are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Benoît Guillemette
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain R Bataille
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Nicolas Gévry
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maryse Adam
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mathieu Blanchette
- 3 McGill Center for Bioinformatics, Lyman Duff Medical Building, Montréal, Québec, Canada
| | - François Robert
- 2 Laboratoire de Chromatine et Expression du Génome, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Gaudreau
- 1 Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
153
|
Santoro R, De Lucia F. Many players, one goal: how chromatin states are inherited during cell division. Biochem Cell Biol 2005; 83:332-43. [PMID: 15959559 DOI: 10.1139/o05-021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Replication of genomic material is a process that requires not only high fidelity in the duplication of DNA sequences but also inheritance of the chromatin states. In the last few years enormous effort has been put into elucidating the mechanisms involved in the correct propagation of chromatin states. From all these studies it emerges that an epigenetic network is at the base of this process. A coordinated interplay between histone modifications and histone variants, DNA methylation, RNA components, ATP-dependent chromatin remodeling, and histone-specific assembly factors regulates establishment of the replication timing program, initiation of replication, and propagation of chromatin domains. The aim of this review is to examine, in light of recent findings, how so many players can be coordinated with each other to achieve the same goal, a correct inheritance of the chromatin state.
Collapse
Affiliation(s)
- Raffaella Santoro
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
154
|
Zhang H, Roberts DN, Cairns BR. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 2005; 123:219-31. [PMID: 16239141 PMCID: PMC2788555 DOI: 10.1016/j.cell.2005.08.036] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/22/2005] [Accepted: 08/25/2005] [Indexed: 11/22/2022]
Abstract
Histone variants help specialize chromatin regions; however, their impact on transcriptional regulation is largely unknown. Here, we determined the genome-wide localization and dynamics of Htz1, the yeast histone H2A variant. Htz1 localizes to hundreds of repressed/basal Pol II promoters and prefers TATA-less promoters. Specific Htz1 deposition requires the SWR1 complex, which largely colocalizes with Htz1. Htz1 occupancy correlates with particular histone modifications, and Htz1 deposition is partially reliant on Gcn5 (a histone acetyltransferase) and Bdf1, an SWR1 complex member that binds acetylated histones. Changes in growth conditions cause a striking redistribution of Htz1 from activated to repressed/basal promoters. Furthermore, Htz1 promotes full gene activation but does not generally impact repression. Importantly, Htz1 releases from purified chromatin in vitro under conditions where H2A and H3 remain associated. We suggest that Htz1-bearing nucleosomes are deposited at repressed/basal promoters but facilitate activation through their susceptibility to loss, thereby helping to expose promoter DNA.
Collapse
Affiliation(s)
- Haiying Zhang
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
155
|
Mellor J. The dynamics of chromatin remodeling at promoters. Mol Cell 2005; 19:147-57. [PMID: 16039585 DOI: 10.1016/j.molcel.2005.06.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 04/01/2005] [Accepted: 06/13/2005] [Indexed: 01/08/2023]
Abstract
The nucleosome, the structural unit of chromatin, is known to play a central role in regulating gene transcription from promoters. The last seven years have spawned a vast amount of data on the enzymes that remodel and modify nucleosomes and the rules governing how transcription factors interact with the epigenetic code on histones. Yet despite this effort, there has yet to emerge a unifying mechanism by which nucleosomes are remodeled during gene regulation. Recent advances have allowed nucleosome dynamics on promoters to be studied in real time, dramatically changing how we think about gene regulation on chromatin templates.
Collapse
Affiliation(s)
- Jane Mellor
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, UK.
| |
Collapse
|
156
|
Cairns BR. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr Opin Genet Dev 2005; 15:185-90. [PMID: 15797201 DOI: 10.1016/j.gde.2005.01.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chromatin remodeling complexes all have an ATPase subunit important for nucleosome remodeling, but are diversified and specialized by additional associated proteins. Remodelers have well-established roles in a wide range of chromosomal processes, including transcriptional regulation and chromatin assembly. Recent work, however, has revealed remarkable new functions for remodelers, such as histone variant deposition, cohesin function, and RNA transcript elongation and termination. Remodeler complexes are tailored both compositionally and mechanistically to perform particular chromatin functions.
Collapse
Affiliation(s)
- Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
157
|
Prather DM, Larschan E, Winston F. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:2650-9. [PMID: 15767671 PMCID: PMC1061654 DOI: 10.1128/mcb.25.7.2650-2659.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIS is a transcription elongation factor that has been extensively studied biochemically. Although the in vitro mechanisms by which TFIIS stimulates RNA transcript cleavage and polymerase read-through have been well characterized, its in vivo roles remain unclear. To better understand TFIIS function in vivo, we have examined its role during Gal4-mediated activation of the Saccharomyces cerevisiae GAL1 gene. Surprisingly, TFIIS is strongly associated with the GAL1 upstream activating sequence. In addition, TFIIS recruitment to Gal4-binding sites is dependent on Gal4, SAGA, and Mediator but not on RNA polymerase II (Pol II). The association of TFIIS is also necessary for the optimal recruitment of TATA-binding protein and Pol II to the GAL1 promoter. These results provide strong evidence that TFIIS plays an important role in the initiation of transcription at GAL1 in addition to its well-characterized roles in transcription elongation.
Collapse
Affiliation(s)
- Donald M Prather
- Department of Genetics, Harvard Medical School, 77 Louis Pasteur Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
158
|
Abbott DW, Chadwick BP, Thambirajah AA, Ausió J. Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system. J Biol Chem 2005; 280:16437-45. [PMID: 15718235 DOI: 10.1074/jbc.m500170200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MacroH2A (mH2A) is a histone variant that is enriched in the inactivated X-chromosomes of mammalian females. To characterize the role of this protein in other nuclear processes we isolated chromatin particles from chicken liver, a vertebrate system that does not undergo X-inactivation. Chromatin digestion and fractionation studies determined that mH2A is evenly distributed at several levels of chromatin structure and stabilizes the nucleosome core particle in solution. However, at the level of the chromatosome, selective salt precipitation showed the existence of a mutually exclusive relationship between mH2A and H1, which may reveal functional redundancy between these proteins. Two-dimensional gel electrophoresis demonstrated the presence of one major population of mH2A containing nucleosomes, which may become ADP-ribosylated. This report provides new clues into how mH2A distribution and a previously unidentified post-translational modification may help regulate the repression of autosomal chromatin.
Collapse
Affiliation(s)
- D Wade Abbott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | |
Collapse
|
159
|
Abstract
Histones are a major component of chromatin, the protein-DNA complex fundamental to genome packaging, function, and regulation. A fraction of histones are nonallelic variants that have specific expression, localization, and species-distribution patterns. Here we discuss recent progress in understanding how histone variants lead to changes in chromatin structure and dynamics to carry out specific functions. In addition, we review histone variant assembly into chromatin, the structure of the variant chromatin, and post-translational modifications that occur on the variants.
Collapse
|
160
|
Malagon F, Tong AH, Shafer BK, Strathern JN. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 2004; 166:1215-27. [PMID: 15082542 PMCID: PMC1470799 DOI: 10.1534/genetics.166.3.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
161
|
Lemieux K, Gaudreau L. Targeting of Swi/Snf to the yeast GAL1 UAS G requires the Mediator, TAF IIs, and RNA polymerase II. EMBO J 2004; 23:4040-50. [PMID: 15385957 PMCID: PMC524348 DOI: 10.1038/sj.emboj.7600416] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 08/25/2004] [Indexed: 11/08/2022] Open
Abstract
The chromatin remodeling activity of the Swi/Snf complex is essential for the expression of several yeast genes. Previous studies have suggested that recruitment of Swi/Snf requires the action of transcriptional activators. However, reports in metazoans and in yeast have provided evidence of interactions between Swi/Snf and the RNA polymerase II holoenzyme/Mediator complex. Here we show that recruitment of Swi/Snf to the galactose-inducible gene GAL1 cannot be fully achieved without the integrity of the Mediator complex, TAF IIs, and RNA polymerase II. Moreover, artificial recruitment of Mediator is sufficient to tether both Swi/Snf and SAGA to the GAL1 UAS G. We further demonstrate that Swi/Snf recruitment at GAL1 does not require acetylation of chromatin by Gcn5 nor the presence of SAGA. Based on these results, we conclude that interactions between the Gal4 activator and Swi/Snf are not sufficient to recruit the latter to the GAL1 UAS G, since interactions with the Mediator, TAF IIs, and RNA polymerase II are also important.
Collapse
Affiliation(s)
- Karine Lemieux
- Département de Biologie, Faculté des Sciences, Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luc Gaudreau
- Département de Biologie, Faculté des Sciences, Centre de Recherche sur les Mécanismes du Fonctionnement Cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada. Tel.: +1 819 821 8000 x 2081; Fax: +1 819 821 8049; E-mail:
| |
Collapse
|
162
|
Dryhurst D, Thambirajah AA, Ausió J. New twists on H2A.Z: a histone variant with a controversial structural and functional past. Biochem Cell Biol 2004; 82:490-7. [PMID: 15284902 DOI: 10.1139/o04-043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Integration of histone variants into chromatin organization allows for functional specification of chromatin regions. Recent functional analyses of H2A.Z have ascribed to it a multiplicity of complex and often opposing roles in developmental and homeostatic regulation. However, although the manner in which this essential histone variant is able to mediate its effects is not entirely well understood, current work has sought to investigate its mode of action. It is becoming increasingly clear that H2A.Z does not necessarily act independently, but rather, in conjunction with trans-acting factors to elicit chromatin changes. The nature of these structural changes has remained somewhat controversial but nevertheless exemplifies the seemingly multifaceted nature of H2A.Z.Key words: histone H2A.Z, chromatin structure, transcription, heterochromatin.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | |
Collapse
|
163
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Perche PY, Robert-Nicoud M, Khochbin S, Vourc'h C. [Nucleosome differentiation: role of histone H2A variants]. Med Sci (Paris) 2004; 19:1137-45. [PMID: 14648485 DOI: 10.1051/medsci/200319111137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The histones H2A, H2B, H3 and H4 are very conserved basic proteins that wrap almost two turns of DNA to form the nucleosome core. Conventional histones can be replaced with histone variants that are found in all eukaryotic organisms. Together with other nucleosome modification pathways, histone variants participate in the functional specialization of chromatin. In this review, we focus on three major H2A histone variants: H2A.X, H2A.Z and macroH2A. Recent discoveries highlight their involvement in crucial events such as DNA repair and transcriptional regulation.
Collapse
Affiliation(s)
- Pierre-Yves Perche
- UMR s-309, Université Joseph Fourier, Inserm, Institut Albert-Bonniot, 38706 La Tronche.
| | | | | | | |
Collapse
|
165
|
Ausió J, Abbott D. The role of histone variability in chromatin stability and folding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
166
|
Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF. A Snf2 Family ATPase Complex Required for Recruitment of the Histone H2A Variant Htz1. Mol Cell 2003; 12:1565-76. [PMID: 14690608 DOI: 10.1016/s1097-2765(03)00497-0] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three encoded components of a novel 13 protein complex, SWR-C, containing the Snf2 family ATPase, Swr1. The SWR-C also copurified with Htz1 and Bdf1, a TFIID-interacting protein that recognizes acetylated histone tails. Deletions of the genes encoding Htz1 and seven nonessential SWR-C components caused a similar spectrum of synthetic growth defects when combined with deletions of 384 genes involved in transcription, suggesting that Htz1 and SWR-C belong to the same pathway. We show that recruitment of Htz1 to chromatin requires the SWR-C. Moreover, like Htz1 and Bdf1, the SWR-C promotes gene expression near silent heterochromatin.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Larochelle M, Gaudreau L. H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA. EMBO J 2003; 22:4512-22. [PMID: 12941702 PMCID: PMC202369 DOI: 10.1093/emboj/cdg427] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
H2A.Z has been shown to regulate transcription in yeast, and that function resides in its C-terminal region as the reciprocal portion of H2A cannot substitute for the latter. We show that fusion of a transcriptional activating region to the C-terminal region of H2A, which is substituted for that of H2A.Z, can allow the chimera to fulfil the special role of H2A.Z in positive gene regulation, as well as complement growth deficiencies of htz1delta cells. We further show that the 'transcription' function of H2A.Z is linked to its ability to preferentially localize to certain intergenic DNA regions. Our results suggest that H2A.Z modulates functional interactions with transcription regulatory components, and thus increases its localization to promoters where it helps poise chromatin for gene activation.
Collapse
Affiliation(s)
- Marc Larochelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | |
Collapse
|
168
|
Hanlon SE, Norris DN, Vershon AK. Depletion of H2A-H2B dimers in Saccharomyces cerevisiae triggers meiotic arrest by reducing IME1 expression and activating the BUB2-dependent branch of the spindle checkpoint. Genetics 2003; 164:1333-44. [PMID: 12930743 PMCID: PMC1462647 DOI: 10.1093/genetics/164.4.1333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.
Collapse
Affiliation(s)
- Sean E Hanlon
- Waksman Institute of Microbiology and The Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
169
|
Rangasamy D, Berven L, Ridgway P, Tremethick DJ. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 2003; 22:1599-607. [PMID: 12660166 PMCID: PMC152904 DOI: 10.1093/emboj/cdg160] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining how chromatin is remodelled during early development, when totipotent cells begin to differentiate into specific cell types, is essential to understand how epigenetic states are established. An important mechanism by which chromatin can be remodelled is the replacement of major histones with specific histone variants. During early mammalian development H2A.Z plays an essential, but unknown, function(s). We show here that undifferentiated mouse cells of the inner cell mass lack H2A.Z, but upon differentiation H2A.Z expression is switched on. Strikingly, H2A.Z is first targeted to pericentric hetero chromatin and then to other regions of the nucleus, but is excluded from the inactive X chromosome and the nucleolus. This targeted incorporation of H2A.Z could provide a critical signal to distinguish constitutive from facultative heterochromatin. In support of this model, we demonstrate that H2A.Z can directly interact with the pericentric heterochromatin binding protein INCENP. We propose that H2A.Z functions to establish a specialized pericentric domain by assembling an architecturally distinct chromatin structure and by recruiting specific nuclear proteins.
Collapse
Affiliation(s)
- Danny Rangasamy
- The John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
170
|
Ren Q, Gorovsky MA. The nonessential H2A N-terminal tail can function as an essential charge patch on the H2A.Z variant N-terminal tail. Mol Cell Biol 2003; 23:2778-89. [PMID: 12665578 PMCID: PMC152558 DOI: 10.1128/mcb.23.8.2778-2789.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tetrahymena thermophila cells contain three forms of H2A: major H2A.1 and H2A.2, which make up approximately 80% of total H2A, and a conserved variant, H2A.Z. We showed previously that acetylation of H2A.Z was essential (Q. Ren and M. A. Gorovsky, Mol. Cell 7:1329-1335, 2001). Here we used in vitro mutagenesis of lysine residues, coupled with gene replacement, to identify the sites of acetylation of the N-terminal tail of the major H2A and to analyze its function in vivo. Tetrahymena cells survived with all five acetylatable lysines replaced by arginines plus a mutation that abolished acetylation of the N-terminal serine normally found in the wild-type protein. Thus, neither posttranslational nor cotranslational acetylation of major H2A is essential. Surprisingly, the nonacetylatable N-terminal tail of the major H2A was able to replace the essential function of the acetylation of the H2A.Z N-terminal tail. Tail-swapping experiments between H2A.1 and H2A.Z revealed that the nonessential acetylation of the major H2A N-terminal tail can be made to function as an essential charge patch in place of the H2A.Z N-terminal tail and that while the pattern of acetylation of an H2A N-terminal tail is determined by the tail sequence, the effects of acetylation on viability are determined by properties of the H2A core and not those of the N-terminal tail itself.
Collapse
Affiliation(s)
- Qinghu Ren
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
171
|
Zheng L, Dominski Z, Yang XC, Elms P, Raska CS, Borchers CH, Marzluff WF. Phosphorylation of stem-loop binding protein (SLBP) on two threonines triggers degradation of SLBP, the sole cell cycle-regulated factor required for regulation of histone mRNA processing, at the end of S phase. Mol Cell Biol 2003; 23:1590-601. [PMID: 12588979 PMCID: PMC151715 DOI: 10.1128/mcb.23.5.1590-1601.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication-dependent histone mRNAs, the only eukaryotic mRNAs that do not have poly(A) tails, are present only in S-phase cells. Coordinate posttranscriptional regulation of histone mRNAs is mediated by the stem-loop at the 3' end of histone mRNAs. The protein that binds the 3' end of histone mRNA, stem-loop binding protein (SLBP), is required for histone pre-mRNA processing and is involved in multiple aspects of histone mRNA metabolism. SLBP is also regulated during the cell cycle, accumulating as cells enter S phase and being rapidly degraded as cells exit S phase. Mutation of any residues in a TTP sequence (amino acids 60 to 62) or mutation of a consensus cyclin binding site (amino acids 99 to 104) stabilizes SLBP in G2 and mitosis. These two threonines are phosphorylated in late S phase, as determined by mass spectrometry (MS) of purified SLBP from late S-phase cells, triggering SLBP degradation. Cells that express a stable SLBP still degrade histone mRNA at the end of S phase, demonstrating that degradation of SLBP is not required for histone mRNA degradation. Nuclear extracts from G1 and G2 cells are deficient in histone pre-mRNA processing, which is restored by addition of recombinant SLBP, indicating that SLBP is the only cell cycle-regulated factor required for histone pre-mRNA processing.
Collapse
Affiliation(s)
- Lianxing Zheng
- Department of Biochemistry and Biophysics. Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Jagoe RT, Lecker SH, Gomes M, Goldberg AL. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J 2002; 16:1697-712. [PMID: 12409312 DOI: 10.1096/fj.02-0312com] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.
Collapse
Affiliation(s)
- R Thomas Jagoe
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
173
|
Abstract
Eukaryotic genomes are organized into condensed, heterogeneous chromatin fibers throughout much of the cell cycle. Here we describe recent studies indicating that even transcriptionally active loci may be encompassed within 80- to 100-nanometer-thick chromonema fibers. These studies suggest that chromatin higher order folding may be a key feature of eukaryotic transcriptional control. We also discuss evidence suggesting that adenosine-5'-triphosphate-dependent chromatin-remodeling enzymes and histone-modifying enzymes may regulate transcription by controlling the extent and dynamics of chromatin higher order folding.
Collapse
Affiliation(s)
- Peter J Horn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
174
|
Madigan JP, Chotkowski HL, Glaser RL. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 2002; 30:3698-705. [PMID: 12202754 PMCID: PMC137418 DOI: 10.1093/nar/gkf496] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The response of eukaryotic cells to the formation of a double-strand break (DSB) in chromosomal DNA is highly conserved. One of the earliest responses to DSB formation is phosphorylation of the C-terminal tail of H2A histones located in nucleosomes near the break. Histone variant H2AX and core histone H2A are phosphorylated in mammals and budding yeast, respectively. We demonstrate the DSB-induced phosphorylation of histone variant H2Av in Drosophila melanogaster. H2Av is a member of the H2AZ family of histone variants. Ser137 within an SQ motif located near the C- terminus of H2Av was phosphorylated in response to gamma-irradiation in both tissue culture cells and larvae. Phosphorylation was detected within 1 min of irradiation and detectable after only 0.3 Gy of radiation exposure. Photochemically induced DSBs, but not general oxidative damage or UV-induced nicking of DNA, caused H2Av phosphorylation, suggesting that phosphorylation is DSB specific. Imaginal disc cells from Drosophila expressing a mutant allele of H2Av with its C-terminal tail deleted, and therefore unable to be phosphorylated, were more sensitive to radiation-induced apoptosis than were wildtype controls, suggesting that phosphorylation of H2Av is important for repair of radiation-induced DSBs. These observations suggest that in addition to providing the function of an H2AZ histone, H2Av is also the functional homolog in Drosophila of H2AX.
Collapse
Affiliation(s)
- James P Madigan
- Wadsworth Center, New York State Department of Health, State University of New York, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
175
|
Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 2002; 12:162-9. [PMID: 11893489 DOI: 10.1016/s0959-437x(02)00282-4] [Citation(s) in RCA: 549] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the nucleosomal histone families, H3 and H2A, have highly conserved variants with specialized functions. Recent studies have begun to elucidate the roles of two of the H2A variants, H2AX and H2AZ. H2AX is phosphorylated on a serine four residues from the carboxyl terminus in response to the introduction of DNA double-strand breaks, whether these breaks are a result of environmental insult, metabolic mistake, or programmed process. H2AZ appears to alter nucleosome stability, is partially redundant with nucleosome remodeling complexes, and is involved in transcriptional control.
Collapse
Affiliation(s)
- Christophe Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
176
|
Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausió J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 2001; 276:41945-9. [PMID: 11551971 DOI: 10.1074/jbc.m108217200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H2A.Z and H2A.1 nucleosome core particles and oligonucleosome arrays were obtained using recombinant versions of these histones and a native histone H2B/H3/H4 complement reconstituted onto appropriate DNA templates. Analysis of the reconstituted nucleosome core particles using native polyacrylamide gel electrophoresis and DNase I footprinting showed that H2A.Z nucleosome core particles were almost structurally indistinguishable from its H2A.1 or native chicken erythrocyte counterparts. While this result is in good agreement with the recently published crystallographic structure of the H2A.Z nucleosome core particle (Suto, R. K., Clarkson, M J., Tremethick, D. J., and Luger, K. (2000) Nat. Struct. Biol. 7, 1121-1124), the ionic strength dependence of the sedimentation coefficient of these particles exhibits a substantial destabilization, which is most likely the result of the histone H2A.Z-H2B dimer binding less tightly to the nucleosome. Analytical ultracentrifuge analysis of the H2A.Z 208-12, a DNA template consisting of 12 tandem repeats of a 208-base pair sequence derived from the sea urchin Lytechinus variegatus 5 S rRNA gene, reconstituted oligonucleosome complexes in the absence of histone H1 shows that their NaCl-dependent folding ability is significantly reduced. These results support the notion that the histone H2A.Z variant may play a chromatin-destabilizing role, which may be important for transcriptional activation.
Collapse
Affiliation(s)
- D W Abbott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | |
Collapse
|