151
|
Al Subeh ZY, Raja HA, Monro S, Flores-Bocanegra L, El-Elimat T, Pearce CJ, McFarland SA, Oberlies NH. Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. JOURNAL OF NATURAL PRODUCTS 2020; 83:2490-2500. [PMID: 32786877 PMCID: PMC7493285 DOI: 10.1021/acs.jnatprod.0c00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hypocrellins and hypomycins are naturally occurring fungal perylenequinones with potential photodynamic activity against cancer and microbial diseases. This project pursued three lines of research. First, the production of perylenequinones was enhanced by investigating the effect of culture medium and light exposure on their biosynthesis. Solid-fermentation cultures on rice medium allowed for enhanced production of hypocrellins as compared to Cheerios or oatmeal medium. Alternatively, increased production of hypomycins, which are structurally related to the hypocrellins, was observed on oatmeal medium. In both cases, light exposure was an essential factor for the enhanced biosynthesis. In addition, this led to the discovery of two new perylenequinones, ent-shiraiachrome A (5) and hypomycin E (8), which were elucidated based on spectroscopic data. Finally, the photocytotoxic effects of both classes of compounds were evaluated against human skin melanoma, with EC50 values at nanomolar levels for hypocrellins and micromolar levels for hypomycins. In contrast, both classes of compounds showed reduced dark toxicity (EC50 values >100 μM), demonstrating promising phototherapeutic indices.
Collapse
Affiliation(s)
- Zeinab Y. Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Susan Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
152
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
153
|
Detection of Chaetomium globosum, Ch. cochliodes and Ch. rectangulare during the Diversity Tracking of Mycotoxin-Producing Chaetomium-Like Isolates Obtained in Buildings in Finland. Toxins (Basel) 2020; 12:toxins12070443. [PMID: 32650391 PMCID: PMC7405012 DOI: 10.3390/toxins12070443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023] Open
Abstract
The diversity of Chaetomium-like isolates in buildings in Finland is poorly documented. This paper describes a set of methods for rapid diversity tracking of 42 indoor Chaetomium-like isolates. These isolates were categorized based on their fluorescence emission, ascomatal hair morphology, responses in three bioassays and resistance/sensitivity to the wetting agent Genapol X-080. Thirty-nine toxigenic isolates were identified [Ch. globosum (n = 35), Ch. cochliodes (n = 2) and Ch. rectangulare (n = 2)]. These isolates were identified down to the species level by tef1α gene sequencing. The major toxic substances in the ethanol extracts of the Ch. globosum and Ch. cochliodes strains were chaetoglobosin, chaetoviridin A and C, chaetomugilin D and chaetomin, identified based on HPLC-UV and mass spectrometry data (MS and MS/MS). Ethanol extracts from pure Ch. globosum cultures exhibited a toxicological profile in the boar sperm motility inhibition assay (BSMI), sperm membrane integrity damage assay (SMID) and inhibition of cell proliferation (ICP) assay, similar to that exhibited by pure chaetoglobosin A. Overall, differences in fluorescence, morphology, toxicity profile, mycotoxin production and sensitivity to chemicals were consistent with those in tef1α sequencing results for species identification. The results indicate the presence of Ch. cochliodes and Ch. rectangulare in Finnish buildings, representing a new finding.
Collapse
|
154
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
155
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
156
|
Li Y, Yan P, Lu X, Qiu Y, Liang S, Liu G, Li S, Mou L, Xie N. Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Front Microbiol 2020; 11:1038. [PMID: 32587577 PMCID: PMC7299030 DOI: 10.3389/fmicb.2020.01038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 02/05/2023] Open
Abstract
The sucrose non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) is a central regulator of carbon metabolism and energy production in the eukaryotes. In this study, the functions of the Podospora anserina SNF1 (PaSNF1) ortholog were investigated. The ΔPaSNF1 mutant displays a delayed development of mycelium and fruiting bodies and fails to form ascospores. The expression of the PaSNF1 gene in the strain providing female organs in a cross is sufficient to ensure fertility, indicating a maternal effect. Results of environmental stress showed that ΔPaSNF1 was hypersensitive to stress, such as osmotic pressure and heat shock, and resistant to fluconazole. Interestingly, the knockout of PaSNF1 significantly promoted sterigmatocystin (ST) synthesis but suppressed cellulase [filter paperase (FPA), endoglucanase (EG), and β-glucosidase (BG)] activity. Further, transcriptome analysis indicated that PaSNF1 made positive regulatory effects on the expression of genes encoding cellulolytic enzymes. These results suggested that PaSNF1 may function in balancing the operation of primary and secondary metabolism. This study suggested that SNF1 was a key regulator concerting vegetative growth, sexual development, and stress tolerance. Our study provided the first genetic evidence that SNF1 was involved in the ST biosynthesis and that it may also be a major actor of lignocellulose degradation in P. anserina.
Collapse
Affiliation(s)
- Yuanjing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xiaojie Lu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yanling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shang Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lin Mou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
157
|
Noumeur SR, Teponno RB, Helaly SE, Wang XW, Harzallah D, Houbraken J, Crous PW, Stadler M. Diketopiperazines from Batnamyces globulariicola, gen. & sp. nov. (Chaetomiaceae), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01581-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractEight diketopiperazines including five previously unreported derivatives were isolated from an endophytic fungus cultured from the medicinal plant Globularia alypum collected in Algeria. The strain was characterised by means of morphological studies and molecular phylogenetic methods and was found to represent a species of a new genus in the Chaetomiaceae, for which we propose the name Batnamyces globulariicola. The taxonomic position of the new genus, which appears phylogenetically related to Stolonocarpus and Madurella, was evaluated by a multi-locus genealogy and by morphological studies in comparison to DNA sequence data reported in the recent monographs of the family. The culture remained sterile on several culture media despite repeated attempts to induce sporulation, and only some chlamydospores were formed. After fermentation in submerged culture and extraction of the cultures with organic solvents, the major secondary metabolites of B. globulariicola were isolated and their chemical structures were elucidated by extensive spectral analysis including nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionisation mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) measurements. The isolated compounds were tested for their biological activities against various bacteria, fungi, and two mammalian cell lines, but only three of them exhibited weak cytotoxicity against KB3.1 cells, but no antimicrobial effects were observed.
Collapse
|
158
|
Mapook A, Macabeo APG, Thongbai B, Hyde KD, Stadler M. Polyketide-Derived Secondary Metabolites from a Dothideomycetes Fungus, Pseudopalawania siamensisgen. et sp. nov., (Muyocopronales) with Antimicrobial and Cytotoxic Activities. Biomolecules 2020; 10:E569. [PMID: 32276418 PMCID: PMC7226469 DOI: 10.3390/biom10040569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Pseudopalawania siamensisgen. et sp. nov., from northern Thailand, is introduced based on multi-gene analyses and morphological comparison. An isolate was fermented in yeast malt culture broth and explored for its secondary metabolite production. Chromatographic purification of the crude ethyl acetate (broth) extract yielded four tetrahydroxanthones comprised of a new heterodimeric bistetrahydroxanthone, pseudopalawanone (1), two known dimeric derivatives, 4,4'-secalonic acid D (2) and penicillixanthone A (3), the corresponding monomeric tetrahydroxanthone paecilin B (4), and the known benzophenone, cephalanone F (5). Compounds 1-3 showed potent inhibitory activity against Gram-positive bacteria. Compounds 2 and 3 were inhibitory against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 1.0 and 4.2 μg/mL, respectively. Only compound 2 showed activity against Mycobacterium smegmatis. In addition, the dimeric compounds 1-3 also showed moderate cytotoxic effects on HeLa and mouse fibroblast cell lines, which makes them less attractive as candidates for development of selectively acting antibiotics.
Collapse
Affiliation(s)
- Ausana Mapook
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| | - Allan Patrick G. Macabeo
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1015 Manila, Philippines
| | - Benjarong Thongbai
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| | - Kevin D. Hyde
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany; (A.P.G.M.); (B.T.)
| |
Collapse
|
159
|
Frawley D, Greco C, Oakley B, Alhussain MM, Fleming AB, Keller NP, Bayram Ö. The tetrameric pheromone module SteC-MkkB-MpkB-SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus. Cell Microbiol 2020; 22:e13192. [PMID: 32068947 PMCID: PMC7202998 DOI: 10.1111/cmi.13192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen‐activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
160
|
Knowles SL, Raja HA, Isawi IH, Flores-Bocanegra L, Reggio PH, Pearce CJ, Burdette JE, Rokas A, Oberlies NH. Wheldone: Characterization of a Unique Scaffold from the Coculture of Aspergillus fischeri and Xylaria flabelliformis. Org Lett 2020; 22:1878-1882. [PMID: 32096649 PMCID: PMC7153779 DOI: 10.1021/acs.orglett.0c00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Wheldone (1) was isolated and elucidated from a coculture of Aspergillus
fischeri (NRRL 181) and Xylaria flabelliformis (G536), where secondary metabolite biosynthesis was stimulated by
antagonism between these fungi. First observed via in situ analysis between these competing fungal cultures, the conditions
were scaled to reproducibly generate 1, whose novel structure
was elucidated by one- and two-dimensional NMR and mass spectrometry.
Compound 1 displayed cytotoxic activity against breast,
ovarian, and melanoma cancer cell lines.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Israa H Isawi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
161
|
Hagestad OC, Andersen JH, Altermark B, Hansen E, Rämä T. Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology 2019; 11:230-242. [PMID: 33062384 PMCID: PMC7534220 DOI: 10.1080/21501203.2019.1708492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/01/2019] [Indexed: 11/01/2022] Open
Abstract
During a research cruise in 2016, we isolated fungi from sediments, seawater, driftwood, fruiting bodies, and macroalgae using three different media to assess species richness and potential bioactivity of cultivable marine fungi in the High Arctic region. Ten stations from the Svalbard archipelago (73-80 °N, 18-31 °E) were investigated and 33 fungal isolates were obtained. These grouped into 22 operational taxonomic units (OTUs) using nuc rDNA internal transcribed spacer regions (ITS1-5.8S-ITS2 = ITS) with acut-off set at 98% similarity. The taxonomic analysis showed that 17 OTUs belonged to Ascomycota, one to Basidiomycota, two to Mucoromycota and two were fungal-like organisms. The nuc rDNA V1-V5 regions of 18S (18S) and D1-D3 regions of 28S (28S) were sequenced from representative isolates of each OTU for comparison to GenBank sequences. Isolates of Lulworthiales and Eurotiales were the most abundant, with seven isolates each. Among the 22 OTUs, nine represent potentially undescribed species based on low similarity to GenBank sequences and 10 isolates showed inhibitory activity against Gram-positive bacteria in an agar diffusion plug assay. These results show promise for the Arctic region as asource of novel marine fungi with the ability to produce bioactive secondary metabolites with antibacterial properties.
Collapse
Affiliation(s)
- Ole Christian Hagestad
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Espen Hansen
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Teppo Rämä
- Marbio, The Norwegian College of Fishery Science, Department at Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
162
|
Peng L, Li L, Liu X, Chen J, Shi C, Guo W, Xu Q, Fan G, Liu X, Li D. Chromosome-Level Comprehensive Genome of Mangrove Sediment-Derived Fungus Penicillium variabile HXQ-H-1. J Fungi (Basel) 2019; 6:jof6010007. [PMID: 31878043 PMCID: PMC7151134 DOI: 10.3390/jof6010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Penicillium is an ascomycetous genus widely distributed in the natural environment and is one of the dominant fungi involved in the decomposition of mangroves, which can produce a variety of antitumor compounds and bioactive substances. However, in mangrove ecosystems there is no complete genome in this genus. In this study, we isolated a fungus strain named Penicillium variabile HXQ-H-1 from coast mangrove (Fujian Province, China). We generated a chromosome-level genome with total size of 33.32 Mb, scaffold N50 of 5.23 Mb and contig N50 of 96.74 kb. Additionally, we anchored about 95.91% assembly sequences into the longest seven scaffolds, and predicted 10,622 protein-coding genes, in which 99.66% could be annotated by eight protein databases. The secondary metabolites analysis reveals the strain has various gene clusters involving polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and terpene synthase that may have a largely capacity of biotechnological potential. Comparison genome analysis between Penicillium variabile and Talaromyces islandicus reveals a small difference in the total number of genes, whereas HXQ-H-1 has a higher gene number with COG functional annotation. Evolutionary relationship of Penicillum based on genome-wide data was carried out for the first time, showing the strain HXQ-H-1 is closely related to Talaromyces islandicus. This genomic resource may provide a new resource for development of novel bioactive antibiotics, drug candidates and precursors in Penicillium variabile.
Collapse
Affiliation(s)
- Ling Peng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Liangwei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Xiaochuan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Chengcheng Shi
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Wenjie Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- Correspondence: (X.L.); (D.L.); Tel.: +86-532-5571-1134 (X.L.); +86-532-8203-1619 (D.L.)
| | - Dehai Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Correspondence: (X.L.); (D.L.); Tel.: +86-532-5571-1134 (X.L.); +86-532-8203-1619 (D.L.)
| |
Collapse
|
163
|
Phukhamsakda C, Macabeo APG, Huch V, Cheng T, Hyde KD, Stadler M. Sparticolins A-G, Biologically Active Oxidized Spirodioxynaphthalene Derivatives from the Ascomycete Sparticola junci. JOURNAL OF NATURAL PRODUCTS 2019; 82:2878-2885. [PMID: 31599583 DOI: 10.1021/acs.jnatprod.9b00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To explore the chemical diversity of metabolites from new species of Dothideomycetes, the ex-type strain of Sparticola junci was investigated. Seven highly oxygenated and functionalized spirodioxynaphthalene natural products incorporating carboxyalkylidene-cyclopentanoid (1-4), carboxyl-functionalized oxabicyclo[3.3.0]octane (5-6), and annelated 2-cyclopentenone/δ-lactone (7) units, sparticolins A-G, were isolated from submerged cultures of the fungus. Their chemical structures including their relative (and absolute) configurations were established through spectroscopic and X-ray crystallographic analyses. Sparticolin B (2) exhibited inhibitory activity against the Gram-positive bacteria Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus, while sparticolin G (7) showed antifungal activities against Schizosaccharomyces pombe and Mucor hiemalis. All other sparticolins were only weakly active against S. aureus and also showed weak activities against the nematode Caenorhabditis elegans. Compounds 2 and 7 also showed moderate cytotoxic activities against seven mammalian cell lines.
Collapse
Affiliation(s)
- Chayanard Phukhamsakda
- Center of Excellence in Fungal Research , Mae Fah Luang University , Chiang Rai 57100 , Thailand
| | - Allan Patrick G Macabeo
- Department of Microbial Drugs , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7 , 38124 Braunschweig , Germany
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences , University of Santo Tomas , 1015 Manila , Philippines
| | - Volker Huch
- Institut für Anorganische Chemie , Universität des Saarlandes , Campus, Gebäude C 4.1, 66123 Saarbrücken , Germany
| | - Tian Cheng
- Department of Microbial Drugs , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Kevin D Hyde
- Center of Excellence in Fungal Research , Mae Fah Luang University , Chiang Rai 57100 , Thailand
| | - Marc Stadler
- Department of Microbial Drugs , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| |
Collapse
|
164
|
Steele AD, Teijaro CN, Yang D, Shen B. Leveraging a large microbial strain collection for natural product discovery. J Biol Chem 2019; 294:16567-16576. [PMID: 31570525 DOI: 10.1074/jbc.rev119.006514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Throughout history, natural products have significantly contributed to the discovery of novel chemistry, drug leads, and tool molecules to probe and address complex challenges in biology and medicine. Recent microbial genome sequencing efforts have uncovered many microbial biosynthetic gene clusters without an associated natural product. This means that the natural products isolated to date do not fully reflect the biosynthetic potential of microbial strains. This observation has rejuvenated the natural product community and inspired a return to microbial strain collections. Mining large microbial strain collections with the most current technologies in genome sequencing, bioinformatics, and high-throughput screening techniques presents new opportunities in natural product discovery. In this review, we report on the newly expanded microbial strain collection at The Scripps Research Institute, which represents one of the largest and most diverse strain collections in the world. Two complementary approaches, i.e. structure-centric and function-centric, are presented here to showcase how to leverage a large microbial strain collection for natural product discovery and to address challenges and harness opportunities for future efforts. Highlighted examples include the discovery of alternative producers of known natural products with superior growth characteristics and high titers, novel analogs of privileged scaffolds, novel natural products, and new activities of known and new natural products. We anticipate that this large microbial strain collection will facilitate the discovery of new natural products for many applications.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| | | | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458.,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, Florida 33458
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458 .,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, Florida 33458.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
165
|
Yu H, Sperlich J, Höfert SP, Janiak C, Teusch N, Stuhldreier F, Wesselborg S, Wang C, Kassack MU, Dai H, Liu Z, Proksch P. Azaphilone pigments and macrodiolides from the coprophilous fungus Coniella fragariae. Fitoterapia 2019; 137:104249. [DOI: 10.1016/j.fitote.2019.104249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
|
166
|
ERDEN Y, TEKIN S, BETUL CEYLAN K, TEKIN C, KIRBAG S. Antioxidant, Antimicrobial and Anticancer Activities of the Aspergillin PZ and Terphenyllin Secondary Metabolites: An in vitro Study. GAZI UNIVERSITY JOURNAL OF SCIENCE 2019. [DOI: 10.35378/gujs.467166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
167
|
Darma R, Lutz A, Elliott CE, Idnurm A. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans. Fungal Genet Biol 2019; 130:62-71. [DOI: 10.1016/j.fgb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
168
|
Hautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 2019; 35:147-173. [PMID: 29384544 DOI: 10.1039/c7np00032d] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungal secondary metabolites are defined by bioactive properties that ensure adaptation of the fungus to its environment. Although some of these natural products are promising sources of new lead compounds especially for the pharmaceutical industry, others pose risks to human and animal health. The identification of secondary metabolites is critical to assessing both the utility and risks of these compounds. Since fungi present biological specificities different from other microorganisms, this review covers the different strategies specifically used in fungal studies to perform this critical identification. Strategies focused on the direct detection of the secondary metabolites are firstly reported. Particularly, advances in high-throughput untargeted metabolomics have led to the generation of large datasets whose exploitation and interpretation generally require bioinformatics tools. Then, the genome-based methods used to study the entire fungal metabolic potential are reported. Transcriptomic and proteomic tools used in the discovery of fungal secondary metabolites are presented as links between genomic methods and metabolomic experiments. Finally, the influence of the culture environment on the synthesis of secondary metabolites by fungi is highlighted as a major factor to consider in research on fungal secondary metabolites. Through this review, we seek to emphasize that the discovery of natural products should integrate all of these valuable tools. Attention is also drawn to emerging technologies that will certainly revolutionize fungal research and to the use of computational tools that are necessary but whose results should be interpreted carefully.
Collapse
Affiliation(s)
- T Hautbergue
- Toxalim (Research Centre in Food Toxicology) Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
| | | | | | | | | |
Collapse
|
169
|
Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2019; 11:1-21. [PMID: 32128278 PMCID: PMC7033707 DOI: 10.1080/21501203.2019.1645053] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi became an attractive source for the discovery of new leads, because of the complexity and the structural diversity of their secondary metabolites. The genus Fusarium comprising about 70 species is extremely variable in terms of genetics, biology, ecology, and consequently, secondary metabolism and have been isolated from countless plants genera from diverse habitats. These endophytic microbes may provide protection and survival strategies in their host plants with production of a repertoire of chemically diverse and structurally unprecedented secondary metabolites reported to exhibit an incredible array of biological activities including antimicrobial, anticancer, antiviral, antioxidants, antiparasitics, immunosuppressants, immunomodulatory, antithrombotic, and biocontrol ability against plants pathogens and nematodes. This review comprehensively highlights over the period 1981-2019, the bioactive potential of metabolites produced by endophytes from Fusarium genus. Abbreviations: AIDS: Acquired immune deficiency syndrome; BAPT: C-13 phenylpropanoid side chain-CoA acyltransferase; CaBr2: Calcium bromide; DBAT: 10-deacetylbaccatin III-10-O-acetyl transferase; DNA: Deoxyribonucleic acid; EI-MS: Electron ionization mass spectrometer; EN: Enniatin; ERK: Extracellular regulated protein kinase; EtOAc: Ethyl acetate; FDA: Food and Drug Administration; GAE/g: Gallic acid equivalent per gram; GC-MS: Gas chromatography-mass spectrometry; HA: Hyperactivation; HCV: Hepatitis C Virus; HCVPR: Hepatitis C Virus protease; HeLa: Human cervical cancer cell line; HIV: Human immunodeficiency viruses; HPLC: High Performance Liquid Chromatography; IAA: Indole-3-acetic acid; IARC: International Agency for Research on Cancer; IC50: Half maximal inhibitory concentration; LC50: Concentration of the compound that is lethal for 50% of exposed population; LC-MS: Liquid chromatography-mass spectrometry; MCF-7: Human breast cancer cell line; MDR: Multidrug-resistant; MDRSA: Multidrug-resistant S. aureus; MFC: Minimum fungicidal concentration; MIC: Minimum inhibitory concentration; MRSA: Multidrug-resistant S. aureus; MTCC: Microbial type culture collection; PBMCs: Peripheral blood mononuclear cells; PCR: Polymerase chain reaction; TB: Tuberculosis; TLC: Thin layer chromatography; TNF: Tumor necrosis factor; WHO: World Health Organization http://www.zoobank.org/urn:lsid:zoobank.org:pub:D0A7B2D8-5952-436D-85C8-C79EAAD1013C.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
170
|
Investigation of Antioxidant and Antimicrobial Activities of Different Extracts of Auricularia and Termitomyces Species of Mushrooms. ScientificWorldJournal 2019; 2019:7357048. [PMID: 31427902 PMCID: PMC6681584 DOI: 10.1155/2019/7357048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023] Open
Abstract
Mushrooms produce a variety of bioactive compounds that are known to have a potential source of antioxidant and antimicrobial properties. Natural antioxidants can protect against free radicals without any side effects. The purpose of this study was to evaluate the antioxidant and antimicrobial activities of Auricularia and Termitomyces extracts. Specimens of Auricularia and Termitomyces spp. were collected from Kakamega National Reserve Forest in Kenya. Specimens were identified, extracted, and screened for their antioxidant and antimicrobial activities using stable free radical DPPH and colorimetric bioassay methods, respectively. The antimicrobial activity of the extracts was tested against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Candida albicans, and Candida parapsilosis. The maximum scavenging activity of hot water extract of Auricularia spp. was observed at 70.4% with the IC50 value of 40 μg/mL. Of the three extracts of Termitomyces spp., 70% ethanol extract has shown the highest scavenging activity (63%) with the IC50 value of 50 μg/mL. Chloroform and hot water extracts of Auricularia have shown statistically significantly different antifungal activities against C. parapsilosis (df = 2, F = 22.49, p ≤ 0.05). Of all the organisms, S. aureus was highly susceptible to 70% ethanol and hot water extracts of Termitomyces spp. with minimum inhibitory concentration values of 0.67±0.29 mg/mL. S. aureus and E. coli were the most susceptible and resistant bacteria to the hot water extract, respectively. In conclusion, the extracts of Auricularia spp. and Termitomyces spp. have shown promising antimicrobial and antioxidant activities.
Collapse
|
171
|
|
172
|
Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 2019; 36:944-959. [PMID: 31112181 PMCID: PMC6640111 DOI: 10.1039/c9np00019d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.
Collapse
Affiliation(s)
- Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Sonja L Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
173
|
Kindinger F, Nies J, Becker A, Zhu T, Li SM. Genomic Locus of a Penicillium crustosum Pigment as an Integration Site for Secondary Metabolite Gene Expression. ACS Chem Biol 2019; 14:1227-1234. [PMID: 31141338 DOI: 10.1021/acschembio.9b00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterologous expression of secondary metabolite genes and gene clusters has been proven to be a successful strategy for identification of new natural products of cryptic or silent genes hidden in the genome sequences. It is also a useful tool to produce designed compounds by synthetic biology approaches. In this study, we demonstrate the potential usage of the gene locus pcr4401 in the fast-growing filamentous fungus Penicillium crustosum as an integration site for heterologous gene expression. The deduced polyketide synthase (PKS) Pcr4401 is involved in the dihydroxynaphthalene (DHN)-melanin pigment formation, and its deletion in P. crustosum PRB-2 led to an albino phenotype. Heterologous expression of pcr4401 in Aspergillus nidulans proved its function as the melanin precursor YWA1 synthase. To ensure gene expression after genomic integration and to easily identify the potential transformants by visualization, the gene locus of pcr4401 was chosen as an integration site. For heterologous expression in P. crustosum, the expression constructs were created by ligation-independent homologous recombination in Escherichia coli or Saccharomyces cerevisiae. A pyrG deficient strain was also created, so that both the pyrG and hph resistance gene can be used as selection markers. Successful expression in P. crustosum was demonstrated by using one uncharacterized PKS gene from Aspergillus and two from Penicillium strains. All three genes were successfully introduced, heterologously expressed, and their biosynthetic products elucidated. The results presented in this study demonstrated that P. crustosum can be used as a suitable host for heterologous expression of secondary metabolite genes.
Collapse
Affiliation(s)
- Florian Kindinger
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jonas Nies
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Anke Becker
- LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Tianjiao Zhu
- Ocean University of China, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Yushan Road 5, 266003 Qingdao, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
174
|
Shen L, Porée FH, Gaslonde T, Lalucque H, Chapeland-Leclerc F, Ruprich-Robert G. Functional characterization of the sterigmatocystin secondary metabolite gene cluster in the filamentous fungus Podospora anserina: involvement in oxidative stress response, sexual development, pigmentation and interspecific competitions. Environ Microbiol 2019; 21:3011-3026. [PMID: 31136075 DOI: 10.1111/1462-2920.14698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are known as prolific untapped reservoirs of diverse secondary metabolites, where genes required for their synthesis are organized in clusters. The bioactive properties of these compounds are closely related to their functions in fungal biology, which are not well understood. In this study, we focused on the Podospora anserina gene cluster responsible for the biosynthesis of sterigmatocystin (ST). Deletion of the PaStcA gene encoding the polyketide synthase and overexpression (OE) of the PaAflR gene encoding the ST-specific transcription factor in P. anserina were performed. We showed that growth of PaStcAΔ was inhibited in the presence of methylglyoxal, while OE-PaAflR showed a little inhibition, indicating that ST production may enhance oxidative stress tolerance in P. anserina. We also showed that the OE-PaAflR strain displayed an overpigmented thallus mediated by the melanin pathway. Overexpression of PaAflR also led to sterility. Interspecific confrontation assays showed that ST-overexpressed strains produced a high level of peroxides and possessed a higher competitiveness against other fungi. Comparative metabolite profiling demonstrated that PaStcAΔ strain was unable to produce ST, while OE-PaAflR displayed a ST overproduction. This study contributes to a better understanding of ST in P. anserina, especially with regard to its involvement in fungal physiology.
Collapse
Affiliation(s)
- Ling Shen
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Diderot, UMR 8236, 75205, Paris, France
| | - François-Hugues Porée
- Laboratoire de Pharmacognosie, Faculté de Pharmacie de Paris, Université de Paris, Université Paris Descartes, UMR CNRS CITCOM 8038, 75006, Paris, France
| | - Thomas Gaslonde
- Laboratoire de Pharmacognosie, Faculté de Pharmacie de Paris, Université de Paris, Université Paris Descartes, UMR CNRS CITCOM 8038, 75006, Paris, France
| | - Hervé Lalucque
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Diderot, UMR 8236, 75205, Paris, France
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Descartes, UMR 8236, 75205, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, Université Paris Descartes, UMR 8236, 75205, Paris, France
| |
Collapse
|
175
|
Morishita Y, Zhang H, Taniguchi T, Mori K, Asai T. The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi. Org Lett 2019; 21:4788-4792. [PMID: 31180682 DOI: 10.1021/acs.orglett.9b01674] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heterologous expression of a unique biosynthetic gene cluster (BGC) comprising a highly reducing polyketide synthase and stand-alone thioesterase genes in Aspergillus oryzae enabled us to isolate a novel 34-membered polyene macrolide, phaeospelide A (1). This is the first isolation of a fungal polyene macrolide and the first demonstration of fungal aliphatic macrolide biosynthetic machinery. In addition, sequence similarity network analysis demonstrated the existence of a large number of BGCs for novel fungal macrolides.
Collapse
Affiliation(s)
- Yohei Morishita
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Huiping Zhang
- NMR Science and Development Division , RIKEN Spring-8 Center , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology , Hokkaido University , Kita 21 Nishi 11 , Sapporo 001-0021 , Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei, Tokyo 184-8588 , Japan
| | - Teigo Asai
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| |
Collapse
|
176
|
Jasbi P, Mitchell NM, Shi X, Grys TE, Wei Y, Liu L, Lake DF, Gu H. Coccidioidomycosis Detection Using Targeted Plasma and Urine Metabolic Profiling. J Proteome Res 2019; 18:2791-2802. [DOI: 10.1021/acs.jproteome.9b00100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Natalie M. Mitchell
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Yiping Wei
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Li Liu
- Department of Biomedical Informatics, Arizona State University, Tempe, Arizona 85259, United States
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Douglas F. Lake
- School of Life Sciences, Mayo Clinic Collaborative Research Building, Arizona State University, Scottsdale, Arizona 85259, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259, United States
| |
Collapse
|
177
|
Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics. Appl Microbiol Biotechnol 2019; 103:5567-5581. [PMID: 31147756 DOI: 10.1007/s00253-019-09893-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
178
|
Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. ACTA ACUST UNITED AC 2019; 46:281-299. [DOI: 10.1007/s10295-018-2115-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach—microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.
Collapse
|
179
|
Narmani A, Teponno RB, Arzanlou M, Surup F, Helaly SE, Wittstein K, Praditya DF, Babai-Ahari A, Steinmann E, Stadler M. Cytotoxic, antimicrobial and antiviral secondary metabolites produced by the plant pathogenic fungus Cytospora sp. CCTU A309. Fitoterapia 2019; 134:314-322. [PMID: 30807789 DOI: 10.1016/j.fitote.2019.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
Abstract
Chemical analysis of extracts from cultures of the plant pathogenic fungus Cytospora sp. strain CCTU A309 collected in Iran led to the isolation of two previously unreported heptanedioic acid derivatives namely (2R,3S) 2-hydroxy-3-phenyl-4-oxoheptanedioic acid (1) and (2S,3S) 2-hydroxy-3-phenyl-4-oxoheptanedioic acid (2) as diastereomers, four previously undescribed prenylated p-terphenyl quinones 3-6 in addition to five known metabolites. Their structures were elucidated on the basis of extensive spectroscopic analysis and high-resolution mass spectrometry. For metabolites 1 and 2, the absolute configurations at C-2 were deduced from comparison of the 1H NMR difference of their (S)- and (R)-phenylglycine methyl ester derivatives while the relative configurations were tentatively assigned by a J-based analysis and confirmed by comparison of 13C chemical shifts to literature data. The isolated compounds were tested for their cytotoxic, antimicrobial (including biofilm inhibition), antiviral, and nematicidal activities. While only moderate antimicrobial effects were observed, the terphenyl quinone derivatives 3-6 and leucomelone (10) exhibited significant cytotoxicity against the mouse fibroblast L929 and cervix carcinoma KB-3-1 cell lines with IC50 values ranging from 2.4 to 26 μg/mL. Furthermore, metabolites 4-6 showed interesting antiviral activity against hepatitis C virus (HCV).
Collapse
Affiliation(s)
- Abolfazl Narmani
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Rémy Bertrand Teponno
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Department of Chemistry, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Kathrin Wittstein
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dimas F Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany; Research Center for Biotechnology, Indonesian Institute of Science, Jl. Raya Bogor KM 46, Cibinong, Indonesia
| | - Asadollah Babai-Ahari
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
180
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|
181
|
Hühner E, Öqvist K, Li SM. Design of α-Keto Carboxylic Acid Dimers by Domain Recombination of Nonribosomal Peptide Synthetase (NRPS)-Like Enzymes. Org Lett 2019; 21:498-502. [DOI: 10.1021/acs.orglett.8b03793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elisabeth Hühner
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| | - Kristin Öqvist
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| |
Collapse
|
182
|
Masuya T, Tsunematsu Y, Hirayama Y, Sato M, Noguchi H, Nakazawa T, Watanabe K. Biosynthesis of lagopodins in mushroom involves a complex network of oxidation reactions. Org Biomol Chem 2019; 17:234-239. [DOI: 10.1039/c8ob02814a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted gene knockout in Coprinopsis cinerea, yeast in vivo bioconversion and in vitro assays elucidated the lagopodin biosynthetic pathway, including a complexity-generating network of oxidation steps.
Collapse
Affiliation(s)
- Takahiro Masuya
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
- Nihon Pharmaceutical University
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| |
Collapse
|
183
|
Yu H, Sperlich J, Mándi A, Kurtán T, Dai H, Teusch N, Guo ZY, Zou K, Liu Z, Proksch P. Azaphilone Derivatives from the Fungus Coniella fragariae Inhibit NF-κB Activation and Reduce Tumor Cell Migration. JOURNAL OF NATURAL PRODUCTS 2018; 81:2493-2500. [PMID: 30354103 DOI: 10.1021/acs.jnatprod.8b00540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seven new azaphilones, coniellins A-G (1-7), were obtained from the fungus Coniella fragariae that had been isolated from goose dung. Their structures were elucidated by analysis of 1D and 2D NMR as well as HRESIMS data. TDDFT-ECD calculation was used to determine the absolute configuration of 1, while Mosher's method was applied to determine the absolute configuration of 5. While displaying only moderate cytotoxicity, compound 1 exhibited significant inhibition of NF-κB activation in the triple negative breast cancer cell line MDA-MB-231 with an IC50 value of 4.4 μM. Moreover, compounds 1, 4, and 5 clearly reduced tumor cell migration. Compound 1 was the most active derivative tested in this assay and displayed 60% inhibition of tumor cell migration at a dose of 5 μM and 98% inhibition at 10 μM after 24 h.
Collapse
Affiliation(s)
- Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Julia Sperlich
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences , Technische Hochschule Köln , Chempark, 51368 Leverkusen , Germany
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , P.O. Box 400, H-4002 Debrecen , Hungary
| | - Haofu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , People's Republic of China
| | - Nicole Teusch
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences , Technische Hochschule Köln , Chempark, 51368 Leverkusen , Germany
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Product Research and Development, College of Biological and Pharmaceutical Sciences , China Three Gorges University , Yichang 443002 , People's Republic of China
| | - Kun Zou
- Hubei Key Laboratory of Natural Product Research and Development, College of Biological and Pharmaceutical Sciences , China Three Gorges University , Yichang 443002 , People's Republic of China
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
184
|
Sandargo B, Thongbai B, Praditya D, Steinmann E, Stadler M, Surup F. Antiviral 4-Hydroxypleurogrisein and Antimicrobial Pleurotin Derivatives from Cultures of the Nematophagous Basidiomycete Hohenbuehelia grisea. Molecules 2018; 23:molecules23102697. [PMID: 30347707 PMCID: PMC6222660 DOI: 10.3390/molecules23102697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022] Open
Abstract
4-Hydroxypleurogrisein, a congener of the anticancer-lead compound pleurotin, as well as six further derivatives were isolated from the basidiomycete Hohenbuehelia grisea, strain MFLUCC 12-0451. The structures were elucidated utilizing high resolution electron spray ionization mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectral data and evaluated for their biological activities; for leucopleurotin, we provide Xray data. While most congeners showed moderate antimicrobial and cytotoxic activity, 4-hydroxypleurogrisein emerged as an inhibitor of hepatitis C virus infectivity in mammalian liver cells.
Collapse
Affiliation(s)
- Birthe Sandargo
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Benjarong Thongbai
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Dimas Praditya
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany.
- Research Center for Biotechnology, Indonesian Institute of Science, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia.
| | - Eike Steinmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany.
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
185
|
Strategies for Engineering Natural Product Biosynthesis in Fungi. Trends Biotechnol 2018; 37:416-427. [PMID: 30316556 DOI: 10.1016/j.tibtech.2018.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023]
Abstract
Fungi are a prolific source of bioactive compounds, some of which have been developed as essential medicines and life-enhancing drugs. Genome sequencing has revealed that fungi have the potential to produce considerably more natural products (NPs) than are typically observed in the laboratory. Recently, there have been significant advances in the identification, understanding, and engineering of fungal biosynthetic gene clusters (BGCs). This review briefly describes examples of the engineering of fungal NP biosynthesis at the global, pathway, and enzyme level using in vivo and in vitro approaches and refers to the range and scale of heterologous expression systems available, developments in combinatorial biosynthesis, progress in understanding how fungal BGCs are regulated, and the applications of these novel biosynthetic enzymes as biocatalysts.
Collapse
|
186
|
|
187
|
Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 2018; 45:1053-1065. [PMID: 30259213 PMCID: PMC6251749 DOI: 10.1007/s10295-018-2083-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/20/2018] [Indexed: 01/21/2023]
Abstract
Abstract Verticillins are a group of epipolythiodioxopiperazine alkaloids that have displayed potent cytotoxicity. To evaluate their potential further, a larger supply of these compounds was needed for both in vivo studies and analogue development via semisynthesis. To optimize the biosynthesis of these secondary metabolites, their production was analyzed in two different fungal strains (MSX59553 and MSX79542) under a suite of fermentation conditions. These studies were facilitated by the use of the droplet-liquid microjunction-surface sampling probe (droplet probe), which enables chemical analysis in situ directly from the surface of the cultures. These experiments showed that the production of verticillins was greatly affected by growth conditions; a significantly higher quantity of these alkaloids was noted when the fungal strains were grown on an oatmeal-based medium. Using these technologies to select the best among the tested growth conditions, the production of the verticillin analogues was increased while concomitantly decreasing the time required for fermentations from 5 weeks to about 11 days. Importantly, where we could previously supply 5–10 mg every 6 weeks, we are now able to supply 50–150 mg quantities of key analogues per month via laboratory scale fermentation. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s10295-018-2083-8) contains supplementary material, which is available to authorized users.
Collapse
|
188
|
Engelberg R, Danielson A, Wang S, Singh M, Wai A, Sorensen J, Duan K, Hausner G, Kumar A. Creation of a drug-sensitive reporter strain of Pseudomonas aeruginosa as a tool for the rapid screening of antimicrobial products. J Microbiol Methods 2018; 152:1-6. [DOI: 10.1016/j.mimet.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
189
|
Abstract
Ingestion of wild and potentially toxic mushrooms is common in the United States and many other parts of the world. US poison centers have been logging cases of mushroom exposure in The National Poison Data System (NPDS) annual publications for over 30 years. This study compiles and analyzes US mushroom exposures as reported by the NPDS from 1999 to 2016. Over the last 18 years, 133 700 cases (7428/year) of mushroom exposure, mostly by ingestion, have been reported. Cases are most frequently unintentional (83%, P < 0.001); cause no or only minor harm (86%, P < 0.001); and in children <6 years old (62%, P < 0.001). Approximately 704 (39/year) exposures have resulted in major harm. Fifty-two (2.9/year) fatalities have been reported, mostly from cyclopeptide (68-89%)-producing mushrooms ingested by older adults unintentionally. The vast majority of reported ingestions resulted in no or minor harm, although some groups of mushroom toxins or irritants, such as cyclopepides, ibotenic acid, and monomethylhydrazine, have been deadly. Misidentification of edible mushroom species appears to be the most common cause and may be preventable through education.
Collapse
Affiliation(s)
- William E Brandenburg
- a Family Medicine Residency of Idaho , RTT Caldwell, 777 N. Raymond Street, Boise , Idaho 83704-9251.,b West Valley Medical Center , 1717 Arlington Avenue, Caldwell , Idaho 83605
| | - Karlee J Ward
- c Pediatric Intensive Care Unit, Saint Luke's Hospital , 190 E Bannock Street, Boise , Idaho 83712
| |
Collapse
|
190
|
Prabhu KS, Siveen KS, Kuttikrishnan S, Iskandarani AN, Khan AQ, Merhi M, Omri HE, Dermime S, El-Elimat T, Oberlies NH, Alali FQ, Uddin S. Greensporone C, a Freshwater Fungal Secondary Metabolite Induces Mitochondrial-Mediated Apoptotic Cell Death in Leukemic Cell Lines. Front Pharmacol 2018; 9:720. [PMID: 30061828 PMCID: PMC6054921 DOI: 10.3389/fphar.2018.00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Therapeutic agents used in the treatment of cancer are known to develop resistance against cancer cells. Hence, there is a continuing need to investigate novel agents for the treatment and management of cancer. Antitumor activity of greensporone C (GC), a new resorcylic acid lactone isolated from an organic extract of a culture of a Halenospora sp. freshwater fungus, was subjected for screening against a panel of leukemic cell lines (K562, U937, and AR320). In all the three cell lines, cell proliferation was inhibited in dose-dependent fashion. GC further arrested the cells in SubG0 phase in dose-dependent manner. Annexin V/PI dual staining data confirmed apoptotic death of treated K562 and U937 leukemic cells. Treatment with GC suppressed constitutively phosphorylated AKT and downregulated expression of inhibitor of apoptotic proteins XIAP, cIAP-1, and cIAP-2. In summation to this, GC-treated leukemic cells upregulated protein expression of pro-apoptotic proteins, Bax with concomitant decrease in expression of anti-apoptotic proteins including Bcl-2 and Bcl-xL. Upregulation of Bax was associated with cytochrome c release which was confirmed from the collapse of mitochondrial membrane. Released cytochrome c further activated caspase cascade which in turn initiated apoptosis process. Anticancer activity of this isolated fungal compound GC was potentiated via stimulating production of reactive oxygen species (ROS) along with depletion of reduced glutathione (GSH) levels in K562 and U937 leukemic cells. Pretreatment of these cells with N-acetyl cysteine prevented GC-induced depletion of reduced GSH level and mitochondrial-caspase-induced apoptosis. Altogether, our data show that GC modulates the apoptotic response of human leukemic cells and raises the possibility of its use as a novel therapeutic strategy for hematological malignancies.
Collapse
Affiliation(s)
- Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad N. Iskandarani
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Halima E. Omri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
191
|
Chepkirui C, Yuyama KT, Wanga LA, Decock C, Matasyoh JC, Abraham WR, Stadler M. Microporenic Acids A-G, Biofilm Inhibitors, and Antimicrobial Agents from the Basidiomycete Microporus Species. JOURNAL OF NATURAL PRODUCTS 2018; 81:778-784. [PMID: 29489350 DOI: 10.1021/acs.jnatprod.7b00764] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The need for effective compounds to combat antimicrobial resistance and biofilms which play important roles in human infections continues to pose a major health challenge. Seven previously undescribed acyclic diterpenes linked to isocitric acid by an ether linkage, microporenic acids A-G (1-7), were isolated from the cultures of a hitherto undescribed species of the genus Microporus (Polyporales, Basidiomycota) originating from Kenya's Kakamega forest. Microporenic acids D and E (4 and 5) showed antimicrobial activity against a panel of Gram positive bacteria and a yeast, Candida tenuis. Moreover, microporenic acids A and B (1 and 2) demonstrated dose-dependent inhibition of biofilm formation by Staphylococcus aureus. Compound 1 further showed significant activity against Candida albicans and Staphylococcus aureus preformed biofilms.
Collapse
Affiliation(s)
- Clara Chepkirui
- Department of Microbial Drugs , Helmholtz Centre for Infection Research; and German Centre for Infection Research (DZIF) , Partner Site Hannover/Braunschweig, Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Kamila T Yuyama
- Department of Chemical Microbiology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Lucy A Wanga
- Department of Biochemistry, Faculty of Sciences , Egerton University , P.O. Box 536, 20115 , Njoro , Kenya
| | - Cony Decock
- Mycothéque de l' Universite Catholique de Louvain (BCCM/MUCL) , Place Croix du Sud 3 , B-1348 Louvain-la-Neuve , Belgium
| | - Josphat C Matasyoh
- Department of Chemistry, Faculty of Sciences , Egerton University , P.O. Box 536, 20115 , Njoro , Kenya
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Marc Stadler
- Department of Microbial Drugs , Helmholtz Centre for Infection Research; and German Centre for Infection Research (DZIF) , Partner Site Hannover/Braunschweig, Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| |
Collapse
|
192
|
Rupcic Z, Chepkirui C, Hernández-Restrepo M, Crous PW, Luangsa-Ard JJ, Stadler M. New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, Pseudobambusicola thailandica. MycoKeys 2018:1-23. [PMID: 29681740 PMCID: PMC5904430 DOI: 10.3897/mycokeys.33.23341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/14/2018] [Indexed: 11/13/2022] Open
Abstract
During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled Neobambusicolastrelitziae in having pycnidial conidiomata with phialidic conidiogenous cells that produce both fusoid-ellipsoid macroconidia and subcylindrical microconidia. However, the new fungus, for which the name Pseudobambusicolathailandica is proposed, differs from N.strelitziae in having conidiomata with well-defined necks, the presence of globose to subglobose thick-walled cells adjacent to conidiomata and the production of chlamydospores in culture. When cultures of P.thailandica, growing on water agar, were confronted with Caenorhabditiselegans nematodes, worms approaching the fungal mycelia were killed. This observation gave rise to a study of its secondary metabolites and six novel and two known compounds were isolated from submerged cultures of P.thailandica. The structures of metabolites 1–6, for which the trivial names thailanones A–F are proposed, were elucidated using a combination of spectral methods, including extensive 1 and 2D NMR analysis and high resolution mass spectrometry. Compounds 4 and 8 showed strong nematicidal and weak antifungal activity, whereas all other tested compounds showed moderate to weak nematicidal activity but no significant effects in the serial dilution assay against various fungi and bacteria. Compounds 1 and 8 also inhibited growth of the pathogenic basidiomycete Phellinustremulae in a plate diffusion assay.
Collapse
Affiliation(s)
- Zeljka Rupcic
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Clara Chepkirui
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | | | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | | | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
193
|
Maciá-Vicente JG, Shi YN, Cheikh-Ali Z, Grün P, Glynou K, Kia SH, Piepenbring M, Bode HB. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol 2018; 20:1253-1270. [DOI: 10.1111/1462-2920.14072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/09/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Jose G. Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Yan-Ni Shi
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Zakaria Cheikh-Ali
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Peter Grün
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Meike Piepenbring
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Helge B. Bode
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| |
Collapse
|
194
|
Production of α-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus. Appl Microbiol Biotechnol 2018; 102:1663-1672. [PMID: 29305695 DOI: 10.1007/s00253-017-8719-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically active natural products. The monomodular NRPS-like enzymes comprise often an adenylation (A), a thiolation (T), and a thioesterase (TE) domain. In contrast to the NRPSs, they do not contain any condensation domain and usually catalyze a dimerization of α-keto carboxylic acids and thereby provide diverse scaffolds for further modifications. In this study, we established an expression system for NRPS-like genes in Saccharomyces cerevisiae. By expression of four known genes from Aspergillus terreus, their predicted function was confirmed and product yields of up to 35 mg per liter culture were achieved. Furthermore, expression of ATEG_03090 from the same fungus, encoding for the last uncharacterized NRPS-like enzyme with an A-T-TE domain structure, led to the formation of the benzoquinone derivative atromentin. All the accumulated products were isolated and their structures were elucidated by NMR and MS analyses. This study provides a convenient system for proof of gene function as well as a basis for synthetic biology, since additional genes encoding modification enzymes can be introduced.
Collapse
|
195
|
Monasnicotinic acid, a novel pyridine alkaloid of the fungus Aspergillus cavernicola : isolation and structure elucidation. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
196
|
Mai P, Zocher G, Stehle T, Li SM. Structure-based protein engineering enables prenyl donor switching of a fungal aromatic prenyltransferase. Org Biomol Chem 2018; 16:7461-7469. [DOI: 10.1039/c8ob02037j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structure-guided molecular modelling and site-directed mutagenesis of the tryptophan dimethylallyl transferase FgaPT2 led to creation of mutants with strongly enhanced activities towards geranyl and farnesyl diphosphates.
Collapse
Affiliation(s)
- Peter Mai
- Institut für Pharmazeutische Biologie und Biotechnologie
- Philipps-Universität Marburg
- 35037 Marburg
- Germany
| | - Georg Zocher
- Interfakultäres Institut für Biochemie
- Eberhard Karls Universität Tübingen
- Tübingen 72076
- Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie
- Eberhard Karls Universität Tübingen
- Tübingen 72076
- Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie
- Philipps-Universität Marburg
- 35037 Marburg
- Germany
| |
Collapse
|
197
|
Soares RRG, Ricelli A, Fanelli C, Caputo D, de Cesare G, Chu V, Aires-Barros MR, Conde JP. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018; 143:1015-1035. [DOI: 10.1039/c7an01762f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in analytical methods for mycotoxin screening in foods and feeds are reviewed, focusing on point-of-need detection using integrated devices.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
| | | | - Corrado Fanelli
- Department of Environmental Biology
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Domenico Caputo
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Giampiero de Cesare
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
| | - M. Raquel Aires-Barros
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - João P. Conde
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
- Universidade de Lisboa
| |
Collapse
|
198
|
Jahn L, Schafhauser T, Wibberg D, Rückert C, Winkler A, Kulik A, Weber T, Flor L, van Pée KH, Kalinowski J, Ludwig-Müller J, Wohlleben W. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin. J Biotechnol 2017. [PMID: 28647529 DOI: 10.1016/j.jbiotec.2017.06.410] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.
Collapse
Affiliation(s)
- Linda Jahn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Schafhauser
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Daniel Wibberg
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Anika Winkler
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Andreas Kulik
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Tilmann Weber
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Liane Flor
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Wolfgang Wohlleben
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner site Tübingen, IMIT, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
199
|
Noumeur SR, Helaly SE, Jansen R, Gereke M, Stradal TEB, Harzallah D, Stadler M. Preussilides A-F, Bicyclic Polyketides from the Endophytic Fungus Preussia similis with Antiproliferative Activity. JOURNAL OF NATURAL PRODUCTS 2017; 80:1531-1540. [PMID: 28398049 DOI: 10.1021/acs.jnatprod.7b00064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Six novel bioactive bicyclic polyketides (1-6) were isolated from cultures of an endophytic fungus of the medicinal plant Globularia alypum collected in Batna, Algeria. The producer organism was identified as Preussia similis using morphological and molecular phylogenetic methods. The structures of metabolites 1-6, for which the trivial names preussilides A-F are proposed, were elucidated using a combination of spectral methods, including extensive 2D NMR spectroscopy, high-resolution mass spectrometry, and CD spectroscopy. Preussilides were tested for antimicrobial and antiproliferative effects, and, in particular, compounds 1 and 3 showed selective activities against eukaryotes. Subsequent studies on the influence of 1 and 3 on the morphology of human osteosarcoma cells (U2OS) suggest that these two polyketides might target an enzyme involved in coordination of the cell division cycle. Hence, they might, for instance, affect timing or spindle assembly mechanisms, leading to defects in chromosome segregation and/or spindle geometry.
Collapse
Affiliation(s)
- Sara R Noumeur
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
- Department of Microbiology-Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2 , 05000 Batna, Algeria
| | - Soleiman E Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Chemistry, Faculty of Science, Aswan University , 81528 Aswan, Egypt
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marcus Gereke
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Daoud Harzallah
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, University Sétif 1 Ferhat Abbas , 19000 Sétif, Algeria
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , partner site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
200
|
Yang H, Liu X, Li X, Shi X, Yang F, Jiao X, Xie P. Enantioselective total synthesis of colomitides and their absolute configuration determination and structural revision. Org Biomol Chem 2017; 15:3728-3735. [DOI: 10.1039/c7ob00539c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient stereoselective synthetic approach to colomitides, 2,7-dioxabicyclo[3.2.1]octane-type natural products, is reported.
Collapse
Affiliation(s)
- Hongguang Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Xiaoyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Xiang Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Feilong Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Ping Xie
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- Institute of Materia Medica
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| |
Collapse
|