151
|
Fukuto JM. The Biological/Physiological Utility of Hydropersulfides (RSSH) and Related Species: What Is Old Is New Again. Antioxid Redox Signal 2022; 36:244-255. [PMID: 33985355 DOI: 10.1089/ars.2021.0096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is reported to be an important mediator involved in numerous physiological processes. H2S and hydropersulfides (RSSH) species are intimately linked biochemically. Therefore, interest in the mechanisms of the biological activity of H2S has led to investigations of the chemical biology of RSSH since they are likely to coexist in a biological system. Currently it is hypothesized that RSSH may be responsible for a least part of the observed H2S-mediated biology/physiology. Recent Advances: It has been recently touted that thiols (RSH) and RSSH have some important differences in terms of their chemical biology and that the generation of RSSH from RSH is purposeful to exploit these chemical differences as a response to a physiological or biological stress. This transformation may represent an unappreciated/unrecognized biological mechanism for dealing with cellular stresses. Critical Issues: Although recent studies indicate a diverse and potentially important chemical biology associated with RSSH species, these ideas have their foundations in early studies (some over 60 years old). It is vital to recognize the nature of this early work to fully appreciate the current ideas regarding RSSH biology. Importantly, these early studies were performed before the realization of purposeful H2S biosynthesis (before 1996). Future Directions: Taking clues from the past studies of RSSH chemistry and biology, progress in delineating the chemical biology of RSSH will continue. Determination of the possible relevance of RSSH chemical biology to signaling and cellular physiology will be a primary focus of many future studies. Antioxid. Redox Signal. 36, 244-255.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Chemistry, Sonoma State University, Rohnert Park, California, USA
| |
Collapse
|
152
|
Arif HM, Qian Z, Wang R. Signaling Integration of Hydrogen Sulfide and Iron on Cellular Functions. Antioxid Redox Signal 2022; 36:275-293. [PMID: 34498949 DOI: 10.1089/ars.2021.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous signaling molecule, regulating numerous physiological functions from vasorelaxation to neuromodulation. Iron is a well-known bioactive metal ion, being the central component of hemoglobin for oxygen transportation and participating in biomolecule degradation, redox balance, and enzymatic actions. The interplay between H2S and iron metabolisms and functions impacts significantly on the fate and wellness of different types of cells. Recent Advances: Iron level in vivo affects the production of H2S via nonenzymatic reactions. On the contrary, H2S quenches excessive iron inside the cells and regulates the redox status of iron. Critical Issues: Abnormal metabolisms of both iron and H2S are associated with various conditions and diseases such as iron overload, anemia, oxidative stress, and cardiovascular and neurodegenerative diseases. The molecular mechanisms for the interactions between H2S and iron are unsettled yet. Here we review signaling links of the production, metabolism, and their respective and integrative functions of H2S and iron in normalcy and diseases. Future Directions: Physiological and pathophysiological importance of H2S and iron as well as their therapeutic applications should be evaluated jointly, not separately. Future investigation should expand from iron-rich cells and tissues to the others, in which H2S and iron interaction has not received due attention. Antioxid. Redox Signal. 36, 275-293.
Collapse
Affiliation(s)
| | - Zhongming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
153
|
Cho C, Zeigler M, Mizuno S, Morrison RS, Totah RA, Barker-Haliski M. Reductions in Hydrogen Sulfide and Changes in Mitochondrial Quality Control Proteins Are Evident in the Early Phases of the Corneally Kindled Mouse Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23031434. [PMID: 35163358 PMCID: PMC8835945 DOI: 10.3390/ijms23031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.
Collapse
Affiliation(s)
- Christi Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Maxwell Zeigler
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Stephanie Mizuno
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | | | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +1-206-685-1783
| |
Collapse
|
154
|
Du Y, Wang H, Zhang T, Wen W, Li Z, Bi M, Liu J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120390. [PMID: 34536889 DOI: 10.1016/j.saa.2021.120390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has recently received considerable attention due to its dual fluorescent changes and large Stokes shift. Hydrogen sulfide (H2S) is a gas signal molecule that plays important roles in modulating the functions of different systems. Herein, by modifying 2-(2́-hydroxyphenyl) benzothiazole (HBT) scaffold, a novel near-infrared mitochondria-targeted fluorescent probe HBTP-H2S has been rationally designed based on excited-state intramolecular proton transfer (ESIPT) effect. The nucleophilic addition reaction of the H2S with probe HBTP-H2S caused the break of the conjugated skeleton, resulting the shifting of maximum emission peak from 658 nm to 470 nm. HBTP-H2S showed fast-response response time, good selectivity and a large Stokes shift (188 nm) toward H2S. Most importantly, inspired by the inherent advantages of the probe, HBTP-H2S was successfully employed to monitor mitochondrial H2S in HepG2 cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ting Zhang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Wei Wen
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Minjie Bi
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Juan Liu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
155
|
Liu TZ, Cui XL, Sun WL, Miao JY, Zhao BX, Lin ZM. Two simple but effective turn-on benzothiazole-based fluorescent probes for detecting hydrogen sulfide in real water samples and HeLa cells. Anal Chim Acta 2022; 1189:339225. [PMID: 34815049 DOI: 10.1016/j.aca.2021.339225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 11/01/2022]
Abstract
Two simple turn-on fluorescent probes, containing a benzothiazole and the 2,4-dinitrobenzenesulfonyl group, were designed for detecting H2S. Two probes exhibited good selectivity and high sensitivity, which were applied to detect the H2S in real water samples. Probe P2 with a positive charge had better solubility than probe P1 in water; therefore, probe P2 was successfully applied to detect both the endogenous and exogenous H2S in lysosomes of living HeLa cells.
Collapse
Affiliation(s)
- Tian-Zhen Liu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Xiao-Ling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, PR China
| | - Wen-Long Sun
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, PR China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| | - Zhao-Min Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, 250033, PR China.
| |
Collapse
|
156
|
Popović T, Amidžić L, Čeko M, Marković S, Škrbić R. Effect of hydrogen sulphide containing mineral water on experimental osteoporosis in rats. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-41462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background/Aim: Sulphur mineral water is widely used in the treatment of musculoskeletal diseases. Hydrogen sulphide is an important regulator of bone metabolism and its application in the treatment of osteoporosis is intensively researched. The aim of this study was to analyse biochemical and histological effects of H2S containing mineral water of "Mlječanica" spring on ovariectomy-induced experimental osteoporosis in rats. Methods: In this experiment a 14-week-old Wistar female rats were used. The animals undergone bilateral ovariectomy (OVX groups) as an experimental model for oestrogen-deficient osteoporosis. After six weeks, animals were divided into control and the experimental group. Rats from the experimental group treated with H2S (SW group) containing mineral water ad libitum during five weeks. Biochemical parameters for monitoring sulphur water effects were concentration in serum of osteocalcin, alkaline phosphatase, calcium and phosphorus. Histological analyses of the left tibia coloured with haematoxylin-eosin were carried out. Results: Regarding the biochemical parameters, a statistically significant increase was observed in the OVX group for osteocalcin, alkaline phosphatase calcium and phosphorus compared to the sham-operated (CNT) group (p < 0.01). In SW + OVX, alkaline phosphatase was statistically significantly decreased (p < 0.01) and serum osteocalcin and phosphorus increased (p < 0.01). Calcium values were increased without significance. In the OVX + SW group, histological analyses showed numerous osteoblasts along the trabecular endosteum and the growth of young chondrocytes in the central bone zone and their migration to the peripheral parts. Conclusion: Drinking the H2S containing "Mlječanica" mineral water has led to decreased alkaline phosphatase, increased osteocalcin and phosphorus concentration in serum and stimulated the bone reparation in osteoporotic rats.
Collapse
|
157
|
Zhu C, Liu Q, Li X, Wei R, Ge T, Zheng X, Li B, Liu K, Cui R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne) 2022; 13:934231. [PMID: 36034427 PMCID: PMC9399516 DOI: 10.3389/fendo.2022.934231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S modulates many physiological and pathological processes such as inflammation, oxidative stress and cell apoptosis that play a critical role in vascular function. Recently, solid evidence show that H2S is closely associated to various vascular diseases. However, specific function of H2S remains unclear. Therefore, in this review we systemically summarized the role of H2S in vascular diseases, including hypertension, atherosclerosis, inflammation and angiogenesis. In addition, this review also outlined a novel therapeutic perspective comprising crosstalk between H2S and smooth muscle cell function. Therefore, this review may provide new insight inH2S application clinically.
Collapse
Affiliation(s)
- Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Wei
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Surgery, Western University, London, ON, Canada
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| |
Collapse
|
158
|
Jiao Y, Ye H, Huang H, Yi L, Sun L. Thiobenzophenones: tunable hydrolysis-based donors for intracellular H2S delivery. NEW J CHEM 2022. [DOI: 10.1039/d2nj01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the third gasotransmitter, is involved in many physiological and pathological processes. Compounds that can release H2S slowly under physiological conditions are useful chemical tools for studying H2S biology as...
Collapse
|
159
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
160
|
Baugh SDP, Jackson MR, Rashad AA, Reitz AB, Lam PYS, Jorns MS. Synthesis and evaluation of potent novel inhibitors of human sulfide:quinone oxidoreductase. Bioorg Med Chem Lett 2021; 54:128443. [PMID: 34763081 DOI: 10.1016/j.bmcl.2021.128443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Here we report the first small-molecule inhibitors of human sulfide:quinone oxidoreductase (SQOR) that decrease the rate of breakdown of hydrogen sulfide (H2S), a potent cardioprotective signaling molecule. SQOR is a mitochondrial membrane-bound protein that catalyzes a two-electron oxidation of H2S to sulfane sulfur (S0), using glutathione (or sulfite) and coenzyme Q (CoQ) as S0 and electron acceptor, respectively. Inhibition of SQOR may constitute a new approach for the treatment of heart failure with reduced ejection fraction. Starting from top hits identified in a high-throughput screen, we conducted SAR development guided by docking of lead candidates into our crystal structure of SQOR. We identified potent SQOR inhibitors such as 19 which has an IC50 of 29 nM for SQOR inhibition and favorable pharmacokinetic and ADME properties required for in vivo efficacy testing.
Collapse
Affiliation(s)
- Simon D P Baugh
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Michael R Jackson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Adel Ahmed Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Patrick Y S Lam
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Marilyn Schuman Jorns
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
161
|
Li W, Shen Y, Gong X, Zhang XB, Yuan L. Highly Selective Fluorescent Probe Design for Visualizing Hepatic Hydrogen Sulfide in the Pathological Progression of Nonalcoholic Fatty Liver. Anal Chem 2021; 93:16673-16682. [PMID: 34842411 DOI: 10.1021/acs.analchem.1c04246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen sulfide (H2S), emerging as an important gaseous signal, has attracted more and more attention for its key role in chronic fatty liver diseases. However, lacking tools for H2S-specific in situ detection, the changes of endogenous hepatic H2S levels in the pathological progression of chronic liver diseases are still unclear. To this end, we adopted a strategy of combining molecular probe design and nanofunctionalization to develop a highly selective near-infrared (NIR) fluorescent probe, which allows in vivo real-time monitoring of hepatic H2S levels in the process of nonalcoholic fatty liver disease (NAFLD). As a proof of strategy demonstration, we first designed NIR molecular probes for H2S sensing through chemical design and probe screening and then loaded molecular probes into mesoporous silicon nanomaterials (MSNs) with surface encapsulation using poly(ethylene glycol) to construct a highly selective probe MSN@CSN@PEG, with significantly improved selectivity and photostability. Moreover, MSN@CSN@PEG exhibited high selectivity and sensitivity for endogenous H2S in cells and tumors in vivo, eliminating the interference of a high concentration of biothiols and sulfhydryl proteins. Furthermore, the probe was applied to in situ intravital imaging and systematic assessment of hepatic H2S levels in different stages of NAFLD for the first time, which may offer a promising tool for the future study of fatty liver diseases and other chronic liver diseases.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
162
|
Hydrogen Sulfide Improves the Cold Stress Resistance through the CsARF5-CsDREB3 Module in Cucumber. Int J Mol Sci 2021; 22:ijms222413229. [PMID: 34948028 PMCID: PMC8706816 DOI: 10.3390/ijms222413229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
As an important gas signaling molecule, hydrogen sulfide (H2S) plays a crucial role in regulating cold tolerance. H2S cooperates with phytohormones such as abscisic acid, ethylene, and salicylic acid to regulate the plant stress response. However, the synergistic regulation of H2S and auxin in the plant response to cold stress has not been reported. This study showed that sodium hydrosulfide (NaHS, an H2S donor) treatment enhanced the cold stress tolerance of cucumber seedlings and increased the level of auxin. CsARF5, a cucumber auxin response factor (ARF) gene, was isolated, and its role in regulating H2S-mediated cold stress tolerance was described. Transgenic cucumber leaves overexpressing CsARF5 were obtained. Physiological analysis indicated that overexpression of CsARF5 enhanced the cold stress tolerance of cucumber and the regulation of the cold stress response by CsARF5 depends on H2S. In addition, molecular assays showed that CsARF5 modulated cold stress response by directly activating the expression of the dehydration-responsive element-binding (DREB)/C-repeat binding factor (CBF) gene CsDREB3, which was identified as a positive regulator of cold stress. Taken together, the above results suggest that CsARF5 plays an important role in H2S-mediated cold stress in cucumber. These results shed light on the molecular mechanism by which H2S regulates cold stress response by mediating auxin signaling; this will provide insights for further studies on the molecular mechanism by which H2S regulates cold stress. The aim of this study was to explore the molecular mechanism of H2S regulating cold tolerance of cucumber seedlings and provide a theoretical basis for the further study of cucumber cultivation and environmental adaptability technology in winter.
Collapse
|
163
|
Hu Y, Shang Z, Wang J, Hong M, Zhang R, Meng Q, Zhang Z. A phenothiazine-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in food, live cells and animals. Analyst 2021; 146:7528-7536. [PMID: 34816828 DOI: 10.1039/d1an01762d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a phenothiazine-based fluorescent probe (PR) has been developed for the selective detection of hydrogen sulfide (H2S) in biosystems and monitoring H2S produced in the food spoilage process. The nucleophilic attack of H2S on the CC double bond of PRvia a Michael addition interdicted the ICT process to trigger 34-fold enhancement of the fluorescence emission. PR featured high selectivity and sensitivity (1.8 μM), low cytotoxicity and reliability at physiological pH. "Naked-eye" monitoring of H2S produced in the food spoilage process using PR was successfully accomplished. The preliminary fluorescence imaging studies showed that PR is suitable for the visualization of exogenous and endogenous H2S in living cells and live animals. Moreover, PR has been successfully applied to the visualization of H2S generation in an inflammation model. The results indicated that PR is an effective tool to monitor H2S production in the fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Yaoyun Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| |
Collapse
|
164
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
165
|
|
166
|
Lee J, Jeong Y, Park S, Suh M, Lee Y. Development of an Electrochemical Dual H 2S/Ca 2+ Microsensor and Its In Vivo Application to a Rat Seizure Model. ACS Sens 2021; 6:4089-4097. [PMID: 34648260 DOI: 10.1021/acssensors.1c01612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A dual electrochemical microsensor was fabricated for concurrent monitoring of hydrogen sulfide (H2S) and calcium ions (Ca2+), which are closely linked important signaling species involved in various physiological processes. The dual sensor was prepared using a dual recessed electrode consisting of two platinum (Pt) microdisks (50 μm in diameter). Each electrode was individually optimized for the best sensing ability toward a target analyte. One electrode (WE1, amperometric H2S sensor) was modified with electrodeposition of Au and electropolymerized polyaniline coating. The other electrode (WE2, all-solid-state Ca2+-selective electrode) was composed of Ag/AgCl onto the recessed Pt disk formed via electrodeposition/chloridation, followed by silanization and Ca2+-selective membrane loading. The current of WE1 and the potential of WE2 in a dual sensor responded linearly to H2S concentration and logarithm of Ca2+ concentration, respectively, without a crosstalk between the sensing signals. Both WE1 and WE2 presented excellent sensitivity, selectivity (logKH2S,iAmp≤-3.5, i = CO, NO, O2, NO2-, AP, AA, DA, and GABA; and logKCa2+,jPot≤-3.2, j = Na+, K+, and Mg2+), and fast response time with reasonable stability (during ca. 6 h in vivo experiment). Particularly, WE2 prepared using a mixture of two ionophores (ETH1001 and ETH129) and two plasticizers (2-nitrophenyl octyl ether and bis(2-ethylhexyl) sebacate) showed a very shortened response time (tR to attain the ΔE/Δt slope of 0.6 mV/min = 3.0 ± 0.2 s, n ≥ 10), a critically required factor for real-time analysis. The developed sensor was utilized for simultaneous real-time monitoring of H2S and Ca2+ changes at the brain cortex surface of a living rat during spontaneous epileptic seizures induced by a cortical 4-aminopyridine injection. The dynamic changes of H2S and Ca2+ were clearly observed in an intimate correlation with the electrophysiological recording of seizures, demonstrating the sensor feasibility of in vivo and real-time simultaneous measurements of H2S and Ca2+.
Collapse
Affiliation(s)
- Jaeyoung Lee
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoonyi Jeong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Park
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minah Suh
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
167
|
Investigation of H 2S Donor Treatment on Neutrophil Extracellular Traps in Experimental Colitis. Int J Mol Sci 2021; 22:ijms222312729. [PMID: 34884536 PMCID: PMC8657984 DOI: 10.3390/ijms222312729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders, which affect the gastrointestinal tract with intermittent ulceration. It is increasingly clear that neutrophil extracellular traps (NETs) seem to have a role in IBD; however, the associated pathogenesis is still not known. Furthermore, several conventional therapies are available against IBD, although these might have side effects. Our current study aimed to investigate the effects of hydrogen sulfide (H2S) treatment on NETs formation and on the expression of inflammatory mediators in experimental rat colitis. To model IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was administered intracolonically (i.c.) to Wistar-Harlan male rats. Animals were treated (2 times/day) with H2S donor Lawesson's reagent per os. Our results showed that H2S treatment significantly decreased the extent of colonic lesions. Furthermore, the expression of members of NETs formation: peptidyl arginine deiminase 4 (PAD4), citrullinated histone H3 (citH3), myeloperoxidase (MPO) and inflammatory regulators, such as nuclear transcription factor-kappa B (NF-κB) and high-mobility group box 1 (HMGB1) were reduced in H2S treated group compared to TNBS. Additionally, H2S donor administration elevated the expression of ubiquitin C-terminal hydroxylase L1 (UCHL-1), a potential anti-inflammatory mediator. Taken together, our results showed that H2S may exert anti-inflammatory effect through the inhibition of NETs formation, which suggests a new therapeutic approach against IBD.
Collapse
|
168
|
Wu X, Liu Z, Liao W. The involvement of gaseous signaling molecules in plant MAPK cascades: function and signal transduction. PLANTA 2021; 254:127. [PMID: 34812934 DOI: 10.1007/s00425-021-03792-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
This review describes the interaction of gaseous signaling molecules and MAPK cascade components, which further reveals the specific mechanism of the crosstalk between MAPK cascade components and gaseous signaling molecules. Plants have evolved complex and sophisticated mitogen-activated protein kinase (MAPK) signaling cascades that are engaged in response to environmental stress. There is currently compelling experimental evidence that gaseous signaling molecules are involved in MAPK cascades. During stress, nitric oxide (NO) activates MAPK cascades to transmit stimulus signals, and MAPK cascades also regulate NO biosynthesis to mediate NO-dependent physiological processes. Activated MAPK cascades lead to phosphorylation of specific sites of aminocyclopropane carboxylic acid synthase to regulate the ethylene biosynthesis-signaling pathway. Hydrogen sulfide functions upstream of MAPKs and regulates the MAPK signaling pathway at the transcriptional level. Here, we describe the function and signal transduction of gaseous signaling molecules involved in MAPK cascades and focus on introducing and discussing the recent data obtained in this field concerning the interaction of gaseous signaling molecules and MAPK cascades. In addition, this article outlines the direction and challenges of future work and further reveals the specific mechanism of the crosstalk between MAPK cascade components and gaseous signaling molecules.
Collapse
Affiliation(s)
- Xuetong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China.
| |
Collapse
|
169
|
Yong HW, Kakkar A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. POLYM INT 2021. [DOI: 10.1002/pi.6320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry McGill University Montréal QC Canada
| | - Ashok Kakkar
- Department of Chemistry McGill University Montréal QC Canada
| |
Collapse
|
170
|
Oakley KM, Zhao Z, Lehane RL, Ma J, Kim E. Generation of H 2S from Thiol-Dependent NO Reactivity of Model [4Fe-4S] Cluster and Roussin's Black Anion. Inorg Chem 2021; 60:15910-15917. [PMID: 34180664 DOI: 10.1021/acs.inorgchem.1c01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron-sulfur clusters (Fe-S) have been well established as a target for nitric oxide (NO) in biological systems. Complementary to protein-bound studies, synthetic models have provided a platform to study what iron nitrosylated products and byproducts are produced depending on a controlled reaction environment. We have previously shown a model [2Fe-2S] system that produced a dinitrosyl iron complex (DNIC) upon nitrosylation along with hydrogen sulfide (H2S), another important gasotransmitter, in the presence of thiol, and hypothesized a similar reactivity pattern with [4Fe-4S] clusters which have largely produced inconsistent reaction products across biological and synthetic systems. Roussin's black anion (RBA), [Fe4(μ3-S)3(NO)7]-, is a previously established reaction product from synthetic [4Fe-4S] clusters with NO. Here, we present a new reactivity for the nitrosylation of a synthetic [4Fe-4S] cluster in the presence of thiol and thiolate. [Et4N]2[Fe4S4(SPh)4] (1) was nitrosylated in the presence of excess PhSH to generate H2S and an "RBA-like" intermediate that when further reacted with [NEt4][SPh] produced a {Fe(NO)2}9 DNIC, [Et4N][Fe(NO)2(SPh)2] (2). This "RBA-like" intermediate proved difficult to isolate but shares striking similarities to RBA in the presence of thiol based on IR υ(NO) stretching frequencies. Surprisingly, the same reaction products were produced when the reaction started with RBA and thiol. Similar to 1/NO, RBA in the presence of thiol and thiolate generates stoichiometric amounts of DNIC while releasing its bridging sulfides as H2S. These results suggest not only that RBA may not be the final product of [4Fe-4S] + NO but also that RBA has unprecedented reactivity with thiols and thiolates which may explain current challenges around identifying biological nitrosylated Fe-S clusters.
Collapse
Affiliation(s)
- Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ziyi Zhao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ryan L Lehane
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ji Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
171
|
A novel fluorescent probe for highly selective and sensitive detection of sulfur ions in real samples and living cells based on the tripeptide-Cu2+ ensemble system. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
172
|
Liu X, He L, Li P, Li X, Zhang P. A Direct Electrochemical H
2
S Sensor Based on Ti
3
C
2
T
x
MXene. ChemElectroChem 2021. [DOI: 10.1002/celc.202100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinran Liu
- School of Materials Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Liang He
- School of Materials Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Ping Li
- School of Materials Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Xinqi Li
- School of Materials Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Pandong Zhang
- School of Materials Engineering Shanghai University of Engineering Science Shanghai 201620 China
| |
Collapse
|
173
|
Islam RK, Donnelly E, Islam KN. Circulating Hydrogen Sulfide (H 2S) and Nitric Oxide (NO) Levels Are Significantly Reduced in HIV Patients Concomitant with Increased Oxidative Stress Biomarkers. J Clin Med 2021; 10:jcm10194460. [PMID: 34640478 PMCID: PMC8509794 DOI: 10.3390/jcm10194460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) attacks the immune system and weakens the ability to fight infections/disease. Furthermore, HIV infection confers approximately two-fold higher risk of cardiac events compared with the general population. The pathological mechanisms responsible for the increased incidence of cardiovascular disease in HIV patients are largely unknown. We hypothesized that increased oxidative stress and attenuated circulating levels of the cardioprotective gaseous signaling molecules, nitric oxide (NO), and hydrogen sulfide (H2S) were involved in the cardiovascular pathobiology observed in HIV patients. Plasma samples from both HIV patients and age-matched normal subjects were used for all assays. Oxidative stress was determined by analyzing the levels of advanced oxidation protein products (AOPP) and H2O2. Antioxidant levels were determined by measuring the levels of trolox equivalent capacity. ADMA, hs-CRP, and IL-6 were determined by using ELISA. The levels of H2S (free H2S and sulfane sulfur) and NO2 (nitrite) were determined in the plasma samples by using gas chromatography and HPLC, respectively. In the present study we observed a marked induction in the levels of oxidative stress and decreased antioxidant status in the plasma of HIV patients as compared with the controls. Circulating levels of the cardiovascular disease biomarkers: ADMA, hs-CRP (high-sensitivity C-reactive protein), and IL-6 were significantly increased in the circulatory system of HIV patients. The levels of both nitrite and H2S/sulfane sulfur were significantly reduced in the plasma of HIV patients as compared with normal subjects. Our data demonstrate significant increases in circulating biomarkers of oxidative stress and cardiovascular (CV) in conjunction with decreased bioavailability of H2S and NO in HIV patients. Diminished levels of these two cardioprotective gaseous signaling molecules may be involved in the pathogenesis of CV disease in the setting of HIV.
Collapse
Affiliation(s)
- Rahib K. Islam
- LSU Health Sciences Center, Department of Pharmacology, 1901 Perdido St., New Orleans, LA 70112, USA; (R.K.I.); (E.D.)
| | - Erinn Donnelly
- LSU Health Sciences Center, Department of Pharmacology, 1901 Perdido St., New Orleans, LA 70112, USA; (R.K.I.); (E.D.)
| | - Kazi N. Islam
- LSU Health Sciences Center, Department of Pharmacology, 1901 Perdido St., New Orleans, LA 70112, USA; (R.K.I.); (E.D.)
- Agricultural Research Development Program, College of Engineering, Science, Technology and Agriculture, Central State University, 1400 Brush Row Road, Wilberforce, OH 45384, USA
- Correspondence:
| |
Collapse
|
174
|
Lv S, Li X, Zhao S, Liu H, Wang H. The Role of the Signaling Pathways Involved in the Protective Effect of Exogenous Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury. Front Cell Dev Biol 2021; 9:723569. [PMID: 34527675 PMCID: PMC8435706 DOI: 10.3389/fcell.2021.723569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 01/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury refers to the functional and structural changes in the process of blood flow recovery after ischemia. In addition to ischemia, the blood flow recovery can also lead to very harmful damage, such as the obvious cell swelling and the irreversible cell necrosis. I/R injury is related with many diseases, including myocardial I/R injury. Myocardial I/R injury refers to the aggravation of ischemic myocardial tissue injury due to sudden disorder of blood circulation. Although there are many studies on myocardial I/R injury, the exact mechanism is not fully understood. Hydrogen sulfide (H2S), like carbon monoxide and nitric oxide, is an important gas signal molecule. It plays an important role in many physiological and pathological processes. Recent studies indicate that H2S can improve myocardial I/R injury, however, its mechanism is not fully understood, especially the involved signal pathways. In this review, we summarize the related researches about the role of the signaling pathways involved in the protective effects of exogenous H2S on myocardial I/R injury, so as to provide theoretical reference for the future in-depth researches.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huiyang Liu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
175
|
Postharvest Treatment of Hydrogen Sulfide Delays the Softening of Chilean Strawberry Fruit by Downregulating the Expression of Key Genes Involved in Pectin Catabolism. Int J Mol Sci 2021; 22:ijms221810008. [PMID: 34576171 PMCID: PMC8469075 DOI: 10.3390/ijms221810008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide (H2S) plays several physiological roles in plants. Despite the evidence, the role of H2S on cell wall disassembly and its implications on fleshy fruit firmness remains unknown. In this work, the effect of H2S treatment on the shelf-life, cell wall polymers and cell wall modifying-related gene expression of Chilean strawberry (Fragaria chiloensis) fruit was tested during postharvest storage. The treatment with H2S prolonged the shelf-life of fruit by an effect of optimal dose. Fruit treated with 0.2 mM H2S maintained significantly higher fruit firmness than non-treated fruit, reducing its decay and tripling its shelf-life. Additionally, H2S treatment delays pectin degradation throughout the storage period and significantly downregulated the expression of genes encoding for pectinases, such as polygalacturonase, pectate lyase, and expansin. This evidence suggests that H2S as a gasotransmitter prolongs the post-harvest shelf-life of the fruit and prevents its fast softening rate by a downregulation of the expression of key pectinase genes, which leads to a decreased pectin degradation.
Collapse
|
176
|
Analytical Methods for Detection of Gasotransmitter Hydrogen Sulfide Released from Live Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5473965. [PMID: 34497847 PMCID: PMC8419496 DOI: 10.1155/2021/5473965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/31/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) plays an important role in mammals as a signaling molecule. Recently, abnormal H2S concentration has been associated with several pathophysiological states, such as diabetes mellitus, hypertension, Alzheimer's disease, and Parkinson's disease. As regulating H2S concentration can be a very prominent way of developing new drugs, many researchers have paid great attention to H2S research. To understand the role of H2S in pathophysiology and develop H2S-based therapies, it is necessary to measure the exact concentration of H2S within biological systems. But, H2S is volatile and can be easily oxidized. Besides, the active sites for several biological effects of H2S are inside the cell. Therefore, there is a need for the development of new methods for the accurate and reliable detection of H2S within live cells. This review provides a summary of recent developments in H2S detection methods for live cell analysis.
Collapse
|
177
|
Zhang Q, Liu Y, Jia X, He Y, Zhang R, Guan T, Zhang Q, Yang Y, Liu Y. Fluorescence turn off–on mechanism of selective chemosensor for hydrogen sulfide: A theoretical perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
178
|
Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H 2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021; 9:biomedicines9091107. [PMID: 34572292 PMCID: PMC8472626 DOI: 10.3390/biomedicines9091107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelium controls vascular homeostasis through a delicate balance between secretion of vasodilators and vasoconstrictors. The loss of physiological homeostasis leads to endothelial dysfunction, for which inflammatory events represent critical determinants. In this context, therapeutic approaches targeting inflammation-related vascular injury may help for the treatment of cardiovascular disease and a multitude of other conditions related to endothelium dysfunction, including COVID-19. In recent years, within the complexity of the inflammatory scenario related to loss of vessel integrity, hydrogen sulfide (H2S) has aroused great interest due to its importance in different signaling pathways at the endothelial level. In this review, we discuss the effects of H2S, a molecule which has been reported to demonstrate anti-inflammatory activity, in addition to many other biological functions related to endothelium and sulfur-drugs as new possible therapeutic options in diseases involving vascular pathobiology, such as in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| |
Collapse
|
179
|
McCook O, Denoix N, Radermacher P, Waller C, Merz T. H 2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med 2021; 10:jcm10163484. [PMID: 34441780 PMCID: PMC8397059 DOI: 10.3390/jcm10163484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Today it is well established that early life stress leads to cardiovascular programming that manifests in cardiovascular disease, but the mechanisms by which this occurs, are not fully understood. This perspective review examines the relevant literature that implicates the dysregulation of the gasomediator hydrogen sulfide and the neuroendocrine oxytocin systems in heart disease and their putative mechanistic role in the early life stress developmental origins of cardiovascular disease. Furthermore, interesting hints towards the mutual interaction of the hydrogen sulfide and OT systems are identified, especially with regards to the connection between the central nervous and the cardiovascular system, which support the role of the vagus nerve as a communication link between the brain and the heart in stress-mediated cardiovascular disease.
Collapse
Affiliation(s)
- Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
- Correspondence: ; Tel.: +49-731-500-60185; Fax: +49-731-500-60162
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (N.D.); (P.R.); (T.M.)
| |
Collapse
|
180
|
Wen S, Wang Q, Guo Z, Chen B, Liu Y, Wang P, Yang X, An Y. A rapid “on-off-on” peptide-based fluorescent probe for selective and consecutive detection of mercury and sulfide ions in aqueous systems and live cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
181
|
Wu X, Lu Y, Liu B, Chen Y, Zhang J, Zhou Y. A H2S-triggered two-photon ratiometric fluorescent theranostic prodrug for bio-imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
182
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
183
|
Hellmich MR, Chao C, Módis K, Ding Y, Zatarain JR, Thanki K, Maskey M, Druzhyna N, Untereiner AA, Ahmad A, Xue Y, Chen H, Russell WK, Wang J, Zhou J, Szabo C. Efficacy of Novel Aminooxyacetic Acid Prodrugs in Colon Cancer Models: Towards Clinical Translation of the Cystathionine β-Synthase Inhibition Concept. Biomolecules 2021; 11:biom11081073. [PMID: 34439739 PMCID: PMC8394431 DOI: 10.3390/biom11081073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Upregulation of hydrogen sulfide (H2S) biosynthesis, at least in part related to the upregulation of cystathionine β-synthetase (CBS) in cancer cells, serves as a tumor-promoting factor and has emerged as a possible molecular target for antitumor drug development. To facilitate future clinical translation, we have synthesized a variety of novel CBS-targeting, esterase-cleavable prodrugs based on the structure of the prototypical CBS inhibitor aminooxyacetic acid (AOAA). The pharmacological properties of these compounds were evaluated in cell-free assays with recombinant human CBS protein, the human colon cancer cell line HCT116, and in vivo using various tumor-bearing mice models. The prodrug YD0251 (the isopropyl ester derivative of AOAA) was selected for detailed characterization. YD0251 exhibits improved antiproliferative efficacy in cell culture models when compared to AOAA. It is up to 18 times more potent than AOAA at suppressing HCT116 tumor growth in vivo and is effective when administered to tumor-bearing mice either via subcutaneous injection or oral gavage. Patient-derived xenografts (PDTXs) with higher levels of CBS protein grew significantly larger than tumors with lower levels, and YD0251 treatment inhibited the growth of PDTXs with elevated CBS, whereas it had no significant effect on PDTXs with low CBS protein levels. The toxicity of YD0251 was assessed in mice subjected to subchronic administration of supratherapeutic doses the inhibitor; no significant alteration in circulating markers of organ injury or histopathological alterations were noted, up to 60 mg/kg/day × 5 days. In preparation to a future theranostic concept (to match CBS inhibitor therapy to high-CBS expressors), we identified a potential plasma marker of CBS-expressing tumors. Colon cancer cells produced significant levels of lanthionine, a rare metabolic intermediate of CBS-mediated H2S biosynthesis; forced expression of CBS into non-transformed epithelial cells increased lanthionine biogenesis in vitro and in vivo (measured in the urine of tumor-bearing mice). These current results may be useful to facilitate the translation of a CBS inhibition-based antitumor concept into the clinical space.
Collapse
Affiliation(s)
- Mark R. Hellmich
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
- Correspondence: (M.R.H.); (J.Z.); (C.S.)
| | - Celia Chao
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
| | - Katalin Módis
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
- Department of Anesthesiology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (N.D.); (A.A.U.); (A.A.)
| | - Ye Ding
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (Y.D.); (Y.X.); (H.C.)
| | - John R. Zatarain
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
| | - Ketan Thanki
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
| | - Manjit Maskey
- Department of Surgery, University of Texas, Medical Branch, Galveston, TX 77555, USA; (C.C.); (K.M.); (J.R.Z.); (K.T.); (M.M.)
| | - Nadiya Druzhyna
- Department of Anesthesiology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (N.D.); (A.A.U.); (A.A.)
| | - Ashley A. Untereiner
- Department of Anesthesiology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (N.D.); (A.A.U.); (A.A.)
| | - Akbar Ahmad
- Department of Anesthesiology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (N.D.); (A.A.U.); (A.A.)
| | - Yu Xue
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (Y.D.); (Y.X.); (H.C.)
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (Y.D.); (Y.X.); (H.C.)
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX 77555, USA;
| | - Jianmei Wang
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (Y.D.); (Y.X.); (H.C.)
- Correspondence: (M.R.H.); (J.Z.); (C.S.)
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas, Medical Branch, Galveston, TX 77555, USA; (N.D.); (A.A.U.); (A.A.)
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (M.R.H.); (J.Z.); (C.S.)
| |
Collapse
|
184
|
Kim J, Oh J, Han MS. A ratiometric fluorescence probe for the selective detection of H 2S in serum using a pyrene-DPA-Cd 2+ complex. RSC Adv 2021; 11:24410-24415. [PMID: 35479021 PMCID: PMC9036711 DOI: 10.1039/d1ra04277g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
A ratiometric and selective hydrogen sulfide (H2S) detection probe was proposed based on the pyrene-DPA–Cd2+ complex through the metal ion displacement approach (MDA) mechanism. While most MDA-based fluorescence probes with paramagnetic Cu2+ have focused on the development of a simple turn-on sensor using the broad spectral range of fluorescence enhancement, this ratiometric probe exhibited unchanged monomer emission as a built-in internal reference with an increase in excimer emission with added H2S. The demonstrated probe showed a rapid response (within 1 min) and a high sensitivity, with 70 nM as the limit of detection. The selectivity for H2S over cysteine, homocysteine and glutathione was confirmed, and reliable fluorescence enhancement, which could be monitored by the naked eye, was observed upon irradiation with handheld UV light. In addition, this detection system was successfully applied to detect H2S in human serum without interference from biological molecules. The pyrene-DPA–Cd2+ complex is demonstrated as a ratiometric fluorescence probe for selective hydrogen sulfide detection in serum based on a metal displacement approach.![]()
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Jinyoung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
185
|
Characterization of the Inducible and Slow-Releasing Hydrogen Sulfide and Persulfide Donor P*: Insights into Hydrogen Sulfide Signaling. Antioxidants (Basel) 2021; 10:antiox10071049. [PMID: 34209813 PMCID: PMC8300844 DOI: 10.3390/antiox10071049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of H2S. In this study, we characterized the biological effects of P*, a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects, we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement, qPCR, ELISA, and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells, P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides, but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2S release. Taken together, P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signaling. These data demonstrate the importance of not only H2S, but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and, in particular, antioxidant properties.
Collapse
|
186
|
Pedre B, Barayeu U, Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H 2S and sulfane sulfur species. Pharmacol Ther 2021; 228:107916. [PMID: 34171332 DOI: 10.1016/j.pharmthera.2021.107916] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Daria Ezeriņa
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
187
|
Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc Natl Acad Sci U S A 2021; 118:2014929118. [PMID: 34185679 PMCID: PMC8255783 DOI: 10.1073/pnas.2014929118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Environmental factors can promote phenotypic variation through alterations in the epigenome and facilitate adaptation of an organism to the environment. Although hydrogen sulfide is toxic to most organisms, the fish Poecilia mexicana has adapted to survive in environments with high levels that exceed toxicity thresholds by orders of magnitude. Epigenetic changes in response to this environmental stressor were examined by assessing DNA methylation alterations in red blood cells, which are nucleated in fish. Males and females were sampled from sulfidic and nonsulfidic natural environments; individuals were also propagated for two generations in a nonsulfidic laboratory environment. We compared epimutations between the sexes as well as field and laboratory populations. For both the wild-caught (F0) and the laboratory-reared (F2) fish, comparing the sulfidic and nonsulfidic populations revealed evidence for significant differential DNA methylation regions (DMRs). More importantly, there was over 80% overlap in DMRs across generations, suggesting that the DMRs have stable generational inheritance in the absence of the sulfidic environment. This is an example of epigenetic generational stability after the removal of an environmental stressor. The DMR-associated genes were related to sulfur toxicity and metabolic processes. These findings suggest that adaptation of P. mexicana to sulfidic environments in southern Mexico may, in part, be promoted through epigenetic DNA methylation alterations that become stable and are inherited by subsequent generations independent of the environment.
Collapse
|
188
|
Mir JM, Maurya RC, Khan MW. NO, CO and H2S based pharmaceuticals in the mission of vision (eye health): a comprehensive review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
- Department of Chemistry , Islamic University of Science and Technology , Awantipora , J&K 192122 , India
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
| | - Mohd Washid Khan
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P.G. Studies and Research in Chemistry and Pharmacy , Rani Durgavati University , Jabalpur , M.P. , India
| |
Collapse
|
189
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
190
|
Han X, Gu C, Ding Y, Yu J, Li K, Zhao D, Chen B. Stable Eu 3+/Cu 2+-Functionalized Supramolecular Zinc(II) Complexes as Fluorescent Probes for Turn-On and Ratiometric Detection of Hydrogen Sulfide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20371-20379. [PMID: 33885284 DOI: 10.1021/acsami.1c04013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabrication of dual-emitting materials for H2S sensing under environmental and biological conditions is currently of great interest. In this work, a new chemically stable metal supramolecular complex [Zn2(pda)2(H2O)3]·(H2O)0.5 (Znpda, pda = 1,10-phenanthroline-2,9-dicarboxylic acid), with accessible uncoordinated carboxylic oxygen sites, is solvothermally synthesized. It can serve as a host in luminescent hybrid composites. By incorporating Eu3+ and Cu2+ in the supramolecular coordination network, we obtained the dual-emitting hybrid material Eu3+/Cu2+@Znpda, which simultaneously shows intense ligand and weak Eu3+ emissions in HEPES buffer solution. Since H2S can easily chelate with Cu2+ and recover the blocked "antenna effect" between the ligand and Eu3+, Eu3+/Cu2+@Znpda possesses both the turn-on and ratiomectric fluorescence response to H2S. Accordingly, we designed an IMPLICATION logic gate for H2S recognition by employing the fluorescence intensity ratio between the ligand and Eu3+ as the output signal. In addition, Eu3+/Cu2+@Znpda shows a fast response (<1 min) and high sensitivity (1.45 μM) to H2S over other interfering species in the HEPES buffer solution, highlighting its potential use for H2S sensing under environmental and biological conditions.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Chao Gu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanyun Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jiulong Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Kunyi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
191
|
Dorofeyeva NA, Korkach IP, Kutsyk OE, Sagach VF. Modulation of hydrogen sulfide synthesis improves heart function and endothelium-dependent vasorelaxation in diabetes. Can J Physiol Pharmacol 2021; 99:549-555. [PMID: 33064964 DOI: 10.1139/cjpp-2020-0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetes dramatically increases the risk of cardiovascular complications. The endothelial dysfunction and diastolic heart dysfunction are associated with a decreasing level of hydrogen sulfide (H2S) and inhibition of the activity of endothelial nitric oxide synthase (NOS) in diabetes. The aim of this study is to investigate the effect of modulation of H2S synthesis on heart functions and vasorelaxation in diabetes. The dl-propargylglycine and l-cysteine were administered intraperitoneally. H2S content in the heart tissue, markers of oxidative stress, inducible NOS and constitutive NOS (cNOS) activities, endothelium-dependent vasorelaxation of the aortic rings, and heart function were studied. We demonstrate that our combination increased H2S synthesis 13 times and cNOS activity 5 times in the heart tissue of diabetic rats. Increasing NO and H2S production caused improvement and restoration of endothelium-dependent relaxation of aorta, effective arterial elastance, and diastolic heart function in diabetic rats. The endothelium-dependent relaxation increased 2.4 times; effective arterial elastance decreased by 47%. The end-diastolic myocardial stiffness decreased 2.2 times. Thus, modulation of H2S synthesis leads to increased cNOS activity by up to 5 times in the cardiovascular system. Increasing NO and H2S production restored endothelium-dependent relaxation of aorta and improved heart function in diabetes.
Collapse
Affiliation(s)
- N A Dorofeyeva
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I P Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O E Kutsyk
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - V F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
192
|
Liu C, Tian L, Liu K, Xue J, Fan L, Li T, Yang ZY. A chromone derivative as a colorimetric and “ON-OFF-ON” fluorescent probe for highly sensitive and selective detection of Cu2+ and S2−. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
193
|
Nesci S, Algieri C, Trombetti F, Ventrella V, Fabbri M, Pagliarani A. Sulfide affects the mitochondrial respiration, the Ca 2+-activated F 1F O-ATPase activity and the permeability transition pore but does not change the Mg 2+-activated F 1F O-ATPase activity in swine heart mitochondria. Pharmacol Res 2021; 166:105495. [PMID: 33600941 DOI: 10.1016/j.phrs.2021.105495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
In mammalian cells enzymatic and non-enzymatic pathways produce H2S, a gaseous transmitter which recently emerged as promising therapeutic agent and modulator of mitochondrial bioenergetics. To explore this topic, the H2S donor NaHS, at micromolar concentrations, was tested on swine heart mitochondria. NaHS did not affect the F1FO-ATPase activated by the natural cofactor Mg2, but, when Mg2+ was replaced by Ca2+, a slight 15% enzyme inhibition at 100 µM NaHS was shown. Conversely, both the NADH-O2 and succinate-O2 oxidoreductase activities were totally inhibited by 200 μM NaHS with IC50 values of 61.6 ± 4.1 and 16.5 ± 4.6 μM NaHS, respectively. Since the mitochondrial respiration was equally inhibited by NaHS at both first or second respiratory substrates sites, the H2S generation may prevent the electron transfer from complexes I and II to downhill respiratory chain complexes, probably because H2S competes with O2 in complex IV, thus reducing membrane potential as a consequence of the cytochrome c oxidase activity inhibition. The Complex IV blockage by H2S was consistent with the linear concentration-dependent NADH-O2 oxidoreductase inhibition and exponential succinate-O2 oxidoreductase inhibition by NaHS, whereas the coupling between substrate oxidation and phosphorylation was unaffected by NaHS. Even if H2S is known to cause sulfhydration of cysteine residues, thiol oxidizing (GSSG) or reducing (DTE) agents, did not affect the F1FO-ATPase activities and mitochondrial respiration, thus ruling out any involvement of post-translational modifications of thiols. The permeability transition pore, the lethal channel which forms when the F1FO-ATPase is stimulated by Ca2+, did not open in the presence of NaHS, which showed a similar effect to ruthenium red, thus suggesting a putative Ca2+ transport cycle inhibition.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy.
| | - Cristina Algieri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara di Sopra, 50, Ozzano Emilia, 40064 Bologna, Italy
| |
Collapse
|
194
|
Wan D, Pan T, Ou P, Zhou R, Ouyang Z, Luo L, Xiao Z, Peng Y. Construct a lysosome-targeting and highly selective fluorescent probe for imaging of hydrogen sulfide in living cells and inflamed tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119311. [PMID: 33333413 DOI: 10.1016/j.saa.2020.119311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Since the fluctuation of cellular hydrogen sulfide (H2S) is a very important third endogenously generated gaseous signaling molecule and plays a key role in the development of numerous human disorders, the real-time fluorescence detection of H2S in living systems has attracted plenty of interest during past decade. Although a lot of H2S fluorescent probes have been reported, the relationship between the physiology and pathology of H2S in organelles remains unclear, especially for inflammatory tissue. In this work, by adopting a weakly basic morpholine group as the lysosome-targeting site, a naphthalimide derivative as the signal reporter group and a 4-dinitrobenzene-ether (DNB) as fluorescence signal quencher and H2S-selective recognition moiety, we reported a new lysosome-targeting TP fluorescent probe LyNP-H2S for H2S detection and imaging in living cells and inflamed tissues. The probe LyNP-H2S exhibits very low fluorescence signal in the absence of H2S, and displays a significant 262-fold fluorescence intensity enhancement in the presence of H2S at 540 nm. Moreover, LyNP-H2S has the capability of quantitative detection of H2S at concentrations ranging from 0 to 12.0 μM (limit of detection = 9.8 nM), rapid response, as well as high sensitivity and selectivity toward H2S. Impressively, the results of living cell and inflamed tissues imaging test demonstrate that LyNP-H2S has the potentiality of being an ideal probe for real-time H2S detection in biosystems.
Collapse
Affiliation(s)
- Dan Wan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China
| | - Tao Pan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China; Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Pinghua Ou
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| | - Rongrong Zhou
- The First Affiliated Hospital/School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Ziting Ouyang
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Lan Luo
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Zuoqi Xiao
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Yongbo Peng
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China; The First Affiliated Hospital/School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
195
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
196
|
Yue J, Tao Y, Zhang J, Wang H, Wang N, Zhao W. BODIPY‐based Fluorescent Probe for Fast Detection of Hydrogen Sulfide and Lysosome‐targeting Applications in Living Cells. Chem Asian J 2021; 16:850-855. [DOI: 10.1002/asia.202100041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/28/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Jinlei Yue
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Yuanfang Tao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
- School of Pharmacy Institutes of Integrative Medicine Fudan University Shanghai 201203 P. R. China
| |
Collapse
|
197
|
On-tissue polysulfide visualization by surface-enhanced Raman spectroscopy benefits patients with ovarian cancer to predict post-operative chemosensitivity. Redox Biol 2021; 41:101926. [PMID: 33752108 PMCID: PMC8010883 DOI: 10.1016/j.redox.2021.101926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Chemosensitivity to cisplatin derivatives varies among individual patients with intractable malignancies including ovarian cancer, while how to unlock the resistance remain unknown. Ovarian cancer tissues were collected the debulking surgery in discovery- (n = 135) and validation- (n = 47) cohorts, to be analyzed with high-throughput automated immunohistochemistry which identified cystathionine γ-lyase (CSE) as an independent marker distinguishing non-responders from responders to post-operative platinum-based chemotherapy. We aimed to identify CSE-derived metabolites responsible for chemoresistant mechanisms: gold-nanoparticle (AuN)-based surface-enhanced Raman spectroscopy (SERS) was used to enhance electromagnetic fields which enabled to visualize multiple sulfur-containing metabolites through detecting scattering light from Au-S vibration two-dimensionally. Clear cell carcinoma (CCC) who turned out less sensitive to cisplatin than serous adenocarcinoma was classified into two groups by the intensities of SERS intensities at 480 cm-1; patients with greater intensities displayed the shorter overall survival after the debulking surgery. The SERS signals were eliminated by topically applied monobromobimane that breaks sulfane-sulfur bonds of polysulfides to result in formation of sulfodibimane which was detected at 580 cm-1, manifesting the presence of polysulfides in cancer tissues. CCC-derived cancer cell lines in culture were resistant against cisplatin, but treatment with ambroxol, an expectorant degrading polysulfides, renders the cells CDDP-susceptible. Co-administration of ambroxol with cisplatin significantly suppressed growth of cancer xenografts in nude mice. Furthermore, polysulfides, but neither glutathione nor hypotaurine, attenuated cisplatin-induced disturbance of DNA supercoiling. Polysulfide detection by on-tissue SERS thus enables to predict prognosis of cisplatin-based chemotherapy. The current findings suggest polysulfide degradation as a stratagem unlocking cisplatin chemoresistance.
Collapse
|
198
|
Randi EB, Casili G, Jacquemai S, Szabo C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants (Basel) 2021; 10:antiox10030361. [PMID: 33673622 PMCID: PMC7997437 DOI: 10.3390/antiox10030361] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S), a mammalian gasotransmitter, is involved in the regulation of a variety of fundamental processes including intracellular signaling, cellular bioenergetics, cell proliferation, and cell differentiation. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently considered the three principal mammalian H2S-generating enzymes. However, recently, a fourth H2S-producing enzyme, selenium-binding-protein 1 (SELENBP1), has also been identified. The cellular regulatory role(s) of SELENBP1 are incompletely understood. The current study investigated whether SELENBP1 plays a role in the regulation of adipocyte differentiation in vitro. 3T3-L1 preadipocytes with or without SELENBP1 knock-down were subjected to differentiation-inducing conditions, and H2S production, cellular lipid accumulation, cell proliferation, and mitochondrial activity were quantified. Adipocyte differentiation was associated with an upregulation of H2S biosynthesis. SELENBP1 silencing decreased cellular H2S levels, suppressed the expression of the three “classical” H2S-producing enzymes (CBS, CSE, and 3-MST) and significantly suppressed adipocyte differentiation. Treatment of SELENBP1 knock-down cells with the H2S donor GYY4137 partially restored lipid accumulation, increased cellular H2S levels, and exerted a bell-shaped effect on cellular bioenergetics (enhancement at 1 and 3 mM, and inhibition at 6 mM). We conclude that SELENBP1 in adipocytes (1) contributes to H2S biosynthesis and (2) acts as an endogenous stimulator of adipocyte differentiation.
Collapse
|
199
|
Üçüncü M, Zeybek H, Karakuş E, Üçüncü C, Emrullahoğlu M. A new fluorescent ‘turn on’ probe for rapid detection of biothiols. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1893321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Muhammed Üçüncü
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Hüseyin Zeybek
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, the Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), Gebze, Turkey
| | - Canan Üçüncü
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
| | - Mustafa Emrullahoğlu
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla, Turkey
- Department of Photonics, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
200
|
Fortibui MM, Yoon DW, Lim JY, Lee S, Choi M, Heo JS, Kim J, Kim J. A cancer cell-specific benzoxadiazole-based fluorescent probe for hydrogen sulfide detection in mitochondria. Dalton Trans 2021; 50:2545-2554. [PMID: 33522560 DOI: 10.1039/d0dt03653f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work describes the design and biological applications of a novel colorimetric and fluorescence turn-on probe for hydrosulfide detection. The probe was designed to introduce hemicyanine as the fluorescent skeleton and 7-nitro-1,2,3-benzoxadiazole as the recognition site. The optical properties and responses of the probe towards HS-, anions and some biothiols indicate an impressively high selectivity of the probe towards HS- such that it can be effectively used as an indicator for monitoring the level of HS- in living cells. In biological experiments using the probe, the H2S levels are found to be higher in cancer cells than in normal cells. In addition, the probe is shown to specifically and rapidly detect endogenous H2S, which is produced primarily in the mitochondria of cancer cells, as demonstrated by a co-localization experiment using specific trackers for the detection of cellular organelles in pharmacological inhibition or stimulation studies, without any significant cytotoxic effects. Thus, the results of the chemical and biological experiments described herein demonstrate the potential of this novel probe to specifically, safely, and rapidly detect H2S to distinguish cancer cells from normal cells by targeting it specifically in mitochondria.
Collapse
Affiliation(s)
- Maxine Mambo Fortibui
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | | | | | | | | | |
Collapse
|