151
|
Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front Cell Dev Biol 2017; 5:10. [PMID: 28280720 PMCID: PMC5322154 DOI: 10.3389/fcell.2017.00010] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Myc is an oncogene deregulated in most-perhaps all-human cancers. Each Myc family member, c-, L-, and N-Myc, has been connected to tumor progression and maintenance. Myc is recognized as a "most wanted" target for cancer therapy, but has for many years been considered undruggable, mainly due to its nuclear localization, lack of a defined ligand binding site, and physiological function essential to the maintenance of normal tissues. The challenge of identifying a pharmacophore capable of overcoming these hurdles is reflected in the current absence of a clinically-viable Myc inhibitor. The first attempts to inhibit Myc used antisense technology some three decades ago, followed by small molecule inhibitors discovered through "classical" compound library screens. Notable breakthroughs proving the feasibility of systemic Myc inhibition were made with the Myc dominant negative mutant Omomyc, showing both the great promise in targeting this infamous oncogene for cancer treatment as well as allaying fears about the deleterious side effects that Myc inhibition might have on normal proliferating tissues. During this time many other strategies have appeared in an attempt to drug the undruggable, including direct and indirect targeting, knockdown, protein/protein and DNA interaction inhibitors, and translation and expression regulation. The inhibitors range from traditional small molecules to natural chemicals, to RNA and antisense, to peptides and miniproteins. Here, we briefly describe the many approaches taken so far, with a particular focus on their potential clinical applicability.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'Hebron Barcelona, Spain
| | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Peptomyc, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de BarcelonaBellaterra, Spain
| |
Collapse
|
152
|
Cheng LC, Tan VM, Ganesan S, Drake JM. Integrating phosphoproteomics into the clinical management of prostate cancer. Clin Transl Med 2017; 6:9. [PMID: 28197968 PMCID: PMC5309189 DOI: 10.1186/s40169-017-0138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/05/2017] [Indexed: 12/12/2022] Open
Abstract
Phosphoproteomic analysis of tumor samples has the potential to uncover significant insights into kinase signaling networks present in late stage prostate cancer that are complementary to genomic and transcriptomic approaches. Phosphoproteomics could potentially aid drug development in clinical trial design as well as provide utility for oncologists in the personalized therapeutic management of individual cancers through identifying novel biomarkers and druggable targets. Rapid advancement of targeted mass spectrometry platforms is underway to integrate phosphoproteomic technology with genomic assays to soon translate this information into the cancer clinic.
Collapse
Affiliation(s)
- Larry C Cheng
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.,Graduate Program in Quantitative Biomedicine, Graduate School-New Brunswick, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Victor M Tan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.,Graduate Program in Quantitative Biomedicine, Graduate School-New Brunswick, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.,Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Justin M Drake
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA. .,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Graduate Program in Quantitative Biomedicine, Graduate School-New Brunswick, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
153
|
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Collapse
Affiliation(s)
| | - Craig M. Crews
- Departments of Molecular, Cellular & Developmental Biology; Chemistry; Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
154
|
Biswas S, McCullough BS, Ma ES, LaJoie D, Russell CW, Garrett Brown D, Round JL, Ullman KS, Mulvey MA, Barrios AM. Dual colorimetric and fluorogenic probes for visualizing tyrosine phosphatase activity. Chem Commun (Camb) 2017; 53:2233-2236. [DOI: 10.1039/c6cc09204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two resorufin-based substrates were developed, providing sensitive fluorogenic readouts for PTP activityin vitroand in living cells.
Collapse
Affiliation(s)
- Suvendu Biswas
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Brandon S. McCullough
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Elena S. Ma
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | - Dollie LaJoie
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Colin W. Russell
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - D. Garrett Brown
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - June L. Round
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Katharine S. Ullman
- Department of Oncological Sciences
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Matthew A. Mulvey
- Department of Pathology
- University of Utah School of Medicine
- Salt Lake City
- USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| |
Collapse
|
155
|
Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol 2017; 14:38-48. [PMID: 27872477 PMCID: PMC5489122 DOI: 10.1038/nrurol.2016.225] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Carceles-Cordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yujin Hoshida
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew D Galsky
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Josep Domingo-Domenech
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
156
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
157
|
Leung AWY, de Silva T, Bally MB, Lockwood WW. Synthetic lethality in lung cancer and translation to clinical therapies. Mol Cancer 2016; 15:61. [PMID: 27686855 PMCID: PMC5041331 DOI: 10.1186/s12943-016-0546-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is a heterogeneous disease consisting of multiple histological subtypes each driven by unique genetic alterations. Despite the development of targeted therapies that inhibit the oncogenic mutations driving a subset of lung cancer cases, there is a paucity of effective treatments for the majority of lung cancer patients and new strategies are urgently needed. In recent years, the concept of synthetic lethality has been established as an effective approach for discovering novel cancer-specific targets as well as a method to improve the efficacy of existing drugs which provide partial but insufficient benefits for patients. In this review, we discuss the concept of synthetic lethality, the various types of synthetic lethal interactions in the context of oncology and the approaches used to identify these interactions, including recent advances that have transformed the ability to discover novel synthetic lethal combinations on a global scale. Lastly, we describe the specific synthetic lethal interactions identified in lung cancer to date and explore the pharmacological challenges and considerations in translating these discoveries to the clinic.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
- Centre for Drug Research and Development, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5 Canada
- Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC V5Z 1L3 Canada
| |
Collapse
|
158
|
Fabini E, Zambelli B, Mazzei L, Ciurli S, Bertucci C. Surface plasmon resonance and isothermal titration calorimetry to monitor the Ni(II)-dependent binding of Helicobacter pylori NikR to DNA. Anal Bioanal Chem 2016; 408:7971-7980. [DOI: 10.1007/s00216-016-9894-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 02/03/2023]
|
159
|
Salamoun JM, Wipf P. Allosteric Modulation of Phosphatase Activity May Redefine Therapeutic Value. J Med Chem 2016; 59:7771-2. [PMID: 27539118 DOI: 10.1021/acs.jmedchem.6b01210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite their extensive involvement in signaling pathways and disease pathologies, targeting protein phosphatases remains an underexplored opportunity in drug discovery. Selective intracellular regulation of phosphatases with small molecule inhibitors has been an unmet challenge. However, recent progress in the development of allosteric modulators encourages renewed efforts to exploit their potential as therapeutic targets.
Collapse
Affiliation(s)
- Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
160
|
Parsons ZD, Ruddraraju KV, Santo N, Gates KS. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B). Bioorg Med Chem 2016; 24:2631-40. [PMID: 27132865 DOI: 10.1016/j.bmc.2016.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/16/2016] [Accepted: 03/27/2016] [Indexed: 01/26/2023]
Abstract
Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes.
Collapse
Affiliation(s)
- Zachary D Parsons
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | | | - Nicholas Santo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
161
|
Insel PA, Amara SG, Blaschke TF, Meyer UA. Introduction to the Theme "Cancer Pharmacology". Annu Rev Pharmacol Toxicol 2015; 56:19-22. [PMID: 26551200 DOI: 10.1146/annurev-pharmtox-102015-123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093
| | - Susan G Amara
- National Institute of Mental Health, Bethesda, Maryland 20892
| | - Terrence F Blaschke
- Departments of Medicine and Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305
| | - Urs A Meyer
- Division of Pharmacology and Neurobiology, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|