151
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
152
|
Guo Y, Du J, Xiao C, Xiang P, Deng Y, Hei Z, Li X. Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur J Pain 2021; 25:1227-1240. [PMID: 33497529 DOI: 10.1002/ejp.1737] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Relationships between iron-dependent ferroptosis and nerve system diseases have been recently revealed. However, the role of ferroptosis in neuropathic pain (NeP) remains to be elucidated. Thus, we aimed to investigate whether ferroptosis in spinal cord contributes to NeP induced by a chronic constriction injury (CCI) of the sciatic nerve. METHODS Forty Sprague-Dawley rats received CCI or sham surgery, and were randomly assigned to the following four groups: sham group; CCI + LIP group; CCI + Veh group; and CCI group. Liproxstatin-1 or corn oil were separately injected intraperitoneally for three consecutive days after surgery in the CCI + LIP or CCI + Veh group. The mechanical and thermal hypersensitivities were tested after surgery. Biochemical and morphological changes related to ferroptosis in the spinal cord were also assessed. These included iron content, glutathione peroxidase 4 (GPX4) and anti-acyl-CoA synthetase long-chain family member 4 (ACSL4) expression, lipid peroxidation assays, as well as mitochondrial morphology. RESULTS CCI-induced NeP was followed by iron accumulation, increased lipid peroxidation and dysregulation of ACSL4 and GPX4. Moreover transmission electron microscopy confirmed the presence of aberrant morphological changes on mitochondrial, such as mitochondria shrinkage and membrane rupture. Furthermore, the administration of liproxstatin-1 on CCI rats attenuated hypersensitivities, lowered the iron level, decreased spinal lipid peroxidation, restored the dysregulations in GPX4 and ACSL4 levels, and protected against CCI induced morphological changes in mitochondria. CONCLUSIONS Our findings indicated the involvement of ferroptosis in CCI induced NeP, and point to ferroptosis inhibitors such as liproxstatin-1 as potential therapies for hypersensitivity induced by peripheral nerve injury. SIGNIFICANCE The spinal ferroptosis-like cell death was involved in the development of neuropathic pain resulted from peripheral nerve injury, and inhibition of ferroptosis by liproxstatin-1 could alleviate mechanical and thermal hypersensitivities. This knowledge suggested that ferroptosis could represent a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yue Guo
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingyi Du
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
153
|
Wang C, Chen P, Lin D, Chen Y, Lv B, Zheng K, Lin X, Wu Z. Effects of varying degrees of ligation in a neuropathic pain model induced by chronic constriction injury. Life Sci 2021; 276:119441. [PMID: 33794257 DOI: 10.1016/j.lfs.2021.119441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM Ligature tightness of chronic constriction injury (CCI) model remains inconsistent and controversial, presenting barriers for researchers. METHODS We summarized the different ligation criteria in literature and attempted to clarify their effects. To assess constriction under different criteria, we calculated the radial strain (εR) of ligated nerves from digital photographs. The mechanical withdrawal thresholds (MWT), thermal withdrawal latency (TWL) and sciatic functional index (SFI) were observed in rats of different groups to assess the state of model. Changes of myelin sheath were detected by pathological staining and immunohistochemistry. RESULTS The median εR values in the Loose, Medium and Tight groups were 13.6%, 15.2% and 21.7%, respectively. Ligated groups had lower MWT than Sham group and the TWL of rats in the Loose approached to rats with sham operation, while that of the Tight group was higher than Medium group 14 days after surgery. Medium and Tight groups showed more abnormal in SFI, compared with the other two groups 14 days. Pathological staining revealed demyelination in three CCI groups, especially in the sciatic nerves. Myelin protein zero levels decreased in the sciatic nerves as the degree of constriction increased, but myelin basic protein of the Medium group was lowest abundant in the spinal cords of all rats. CONCLUSIONS Our study demonstrated that the surrounding muscles briefly twitched when the diameter of the sciatic nerves was constricted by approximately 14-15%, which may provide a reference for other researchers for establishing CCI models.
Collapse
Affiliation(s)
- Chen Wang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Dongsheng Lin
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Baojiang Lv
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kenan Zheng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingdong Lin
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhibing Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
154
|
Bannister K, Smith RV, Wilkins P, Cummins TM. Towards optimising experimental quantification of persistent pain in Parkinson's disease using psychophysical testing. NPJ Parkinsons Dis 2021; 7:28. [PMID: 33731723 PMCID: PMC7969752 DOI: 10.1038/s41531-021-00173-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
People with Parkinson's disease (PD) may live for multiple decades after diagnosis. Ensuring that effective healthcare provision is received across the range of symptoms experienced is vital to the individual's wellbeing and quality of life. As well as the hallmark motor symptoms, PD patients may also suffer from non-motor symptoms including persistent pain. This type of pain (lasting more than 3 months) is inconsistently described and poorly understood, resulting in limited treatment options. Evidence-based pain remedies are coming to the fore but therapeutic strategies that offer an improved analgesic profile remain an unmet clinical need. Since the ability to establish a link between the neurodegenerative changes that underlie PD and those that underlie maladaptive pain processing leading to persistent pain could illuminate mechanisms or risk factors of disease initiation, progression and maintenance, we evaluated the latest research literature seeking to identify causal factors underlying persistent pain in PD through experimental quantification. The majority of previous studies aimed to identify neurobiological alterations that could provide a biomarker for pain/pain phenotype, in PD cohorts. However heterogeneity of patient cohorts, result outcomes and methodology between human psychophysics studies overwhelmingly leads to inconclusive and equivocal evidence. Here we discuss refinement of pain-PD paradigms in order that future studies may enhance confidence in the validity of observed effect sizes while also aiding comparability through standardisation. Encouragingly, as the field moves towards cross-study comparison of data in order to more reliably reveal mechanisms underlying dysfunctional pain processing, the potential for better-targeted treatment and management is high.
Collapse
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Rory V Smith
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Population Health Sciences, School of Population Health & Environmental Sciences, King's College London, London, UK
| | - Patrick Wilkins
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Population Health Sciences, School of Population Health & Environmental Sciences, King's College London, London, UK
| | - Tatum M Cummins
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
155
|
Sachau J, Kersebaum D, Baron R, Dickenson AH. Unusual Pain Disorders - What Can Be Learned from Them? J Pain Res 2021; 13:3539-3554. [PMID: 33758536 PMCID: PMC7980038 DOI: 10.2147/jpr.s287603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is common in many different disorders and leads to a significant reduction in quality of life in the affected patients. Current treatment options are limited and often result in insufficient pain relief, partly due to the incomplete understanding of the underlying pathophysiological mechanisms. The identification of these pathomechanisms is therefore a central object of current research. There are also a number of rare pain diseases, that are generally little known and often undiagnosed, but whose correct diagnosis and examination can help to improve the management of pain disorders in general. In some of these unusual pain disorders like sodium-channelopathies or sensory modulation disorder the underlying pathophysiological mechanisms have only recently been unravelled. These mechanisms might serve as pharmacological targets that may also play a role in subgroups of other, more common pain diseases. In other unusual pain disorders, the identification of pathomechanisms has already led to the development of new drugs. A completely new therapeutic approach, the gene silencing, can even stop progression in hereditary transthyretin amyloidosis and porphyria, ie in pain diseases that would otherwise be rapidly fatal if left untreated. Thus, pain therapists and researchers should be aware of these rare and unusual pain disorders as they offer the unique opportunity to study mechanisms, identify new druggable targets and finally because early diagnosis might save many patient lives.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
156
|
Chen P, Lin D, Wang C, Song C, Wang W, Qu J, Wu Z. Proteomic Analysis of Emodin Treatment in Neuropathic Pain Reveals Dysfunction of the Calcium Signaling Pathway. J Pain Res 2021; 14:613-622. [PMID: 33707969 PMCID: PMC7943569 DOI: 10.2147/jpr.s290681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background Neuropathic pain (NP) is a syndrome of pain mediated by distinct pathophysiological processes, and current treatments are not fully satisfactory. Emodin is an effective component of Chinese traditional medicine and has an alleviating effect on NP, but the pharmacological mechanism is not clear. Methods We used isobaric tags for relative and absolute quantitation (iTRAQ) technique integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify potential targets of emodin in a rat peripheral nerve chronic constriction injury (CCI) model. Results A total of 177 differentially expressed proteins were identified among the sham group, CCI group, and emodin group, with a threshold of 1.2-fold change and a P value ≤ 0.05. Among them, 100 differentially expressed proteins (51 up-regulated and 49 down-regulated) were identified in the CCI group compared with sham group. Moreover, 108 differentially expressed proteins (65 up-regulated and 43 down-regulated) were identified in the emodin group with the CCI group as reference. The enrichment analysis of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed an important role of calcium signaling pathway, neurotransmitter regulation, and long-term potentiation (LTP) in emodin-treated CCI model. Real-time quantitative fluorescence PCR (qRT-PCR) and Western blot analysis revealed that emodin decreased expression of calcium signaling related proteins, including calmodulin (CaM) dependent protein kinase II (CaMK II), phospholipase Cβ1 (PLCβ1), protein kinase C (PKC), protein kinase C (PKA), and tropomyosin-related kinase B (TrkB), compared with the CCI group. Conclusion Overall, these findings indicated that emodin might alleviate NP by regulating the calcium signaling pathway.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Wenjing Wang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Zhibing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
157
|
Wang XY, Ma HJ, Xue M, Sun YL, Ren A, Li MQ, Huang ZH, Huang C. Anti-nociceptive effects of Sedum Lineare Thunb. on spared nerve injury-induced neuropathic pain by inhibiting TLR4/NF-κB signaling in the spinal cord in rats. Biomed Pharmacother 2021; 135:111215. [PMID: 33418303 DOI: 10.1016/j.biopha.2020.111215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Neuropathic pain is still a critical public health problem worldwide. Thereby, the search for novel and more effective strategies against neuropathic pain is urgently considered. It is known that neuroinflammation plays a crucial role in the pathogenesis of neuropathic pain. SedumLineare Thunb. (SLT), a kind of Chinese herb originated from the whole grass of Crassulaceae plant, was reported to possess anti-inflammatory activity. However, whether SLT has anti-nociceptive effect on neuropathic pain and its possible underlying mechanisms remains poorly elucidated. In this study, a rat model of neuropathic pain induced by spared nerve injury (SNI)was applied. SLT (p.o.) was administered to SNI rats once every day lasting for 14 days. Pain-related behaviors were assessed by using paw withdrawal threshold (PWT) and CatWalk gait parameters. Expression levels of inflammatory mediators and pain-related signaling molecules in the spinal cord were detected using western blotting assay. The results revealed that SLT (30, 100, and 300 mg/kg, p.o.) treatment for SNI rats ameliorated mechanical hypersensitivity in a dose-dependent manner. Application of SLT at the most effective dose of 100 mg/kg to SNI rats not only significantly blocked microglial activation, but also markedly reduced the protein levels of spinal HMGB1, TLR4, MyD88, TRAF6, IL-1β, IL-6, and TNF-α, along with an enhancement in gait parameters. Furthermore, SLT treatment dramatically inhibited the phosphorylation levels of both IKK and NF-κB p65 but obviously improved both IκB and IL-10 protein expression in the spinal cord of SNI rats. Altogether, these data suggested that SLT could suppress spinal TLR4/NF-κB signaling pathway in SNI rats, which might at least partly contribute to its anti-nociceptive action, indicating that SLT may serveas a potential therapeutic agent for neuropathic pain.
Collapse
Affiliation(s)
- Xin-Ying Wang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Hai-Juan Ma
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Meng Xue
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Ya-Lan Sun
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - An Ren
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Meng-Qi Li
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhi-Hua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, PR China; Pain Medicine Research Institute, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
158
|
He C, Wang X, Zhang J, Wang H, Zhao Y, Shah JN, Ma C, Li H, Su W, Zhang Z, Chen S, Zhou L, Dong S. MCRT, a multifunctional ligand of opioid and neuropeptide FF receptors, attenuates neuropathic pain in spared nerve injury model. Basic Clin Pharmacol Toxicol 2021; 128:731-740. [PMID: 33533572 DOI: 10.1111/bcpt.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Chimeric peptide MCRT (YPFPFRTic-NH2 ) was a multifunctional ligand of opioid and neuropeptide FF (NPFF) receptors and reported to be potentially antalgic in acute tail-flick test. Here, we developed spared nerve injury (SNI) model to explore its efficacy in chronic neuropathic pain. Analgesic tolerance, opioid-induced hyperalgesia and gastrointestinal transit were measured for safety evaluation. Intracerebroventricular (i.c.v.) and intraplantar (i.pl.) injections were conducted as central and peripheral routes, respectively. Results demonstrated that MCRT alleviated neuropathic pain effectively and efficiently, with the ED50 values of 4.93 nmol/kg at the central level and 3.11 nmol/kg at the peripheral level. The antagonist blocking study verified the involvement of mu-, delta-opioid and NPFF receptors in MCRT produced anti-allodynia. Moreover, the separation of analgesia from unwanted effects was preliminarily achieved and that MCRT caused neither analgesic tolerance nor hyperalgesia after chronic i.c.v. administration, nor constipation after i.pl. administration. Notably, the local efficacy of MCRT in SNI mice was about one thousandfold higher than morphine and ten thousandfold higher than pregabalin, indicating a great promise in the future treatment of neuropathic pain.
Collapse
Affiliation(s)
- Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoli Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chan Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hailan Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenting Su
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lanxia Zhou
- The Central Laboratory, The First Hospital, Lanzhou University, Lanzhou, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
159
|
Valproic acid mitigates spinal nerve ligation-induced neuropathic pain in rats by modulating microglial function and inhibiting neuroinflammatory response. Int Immunopharmacol 2021; 92:107332. [PMID: 33421931 DOI: 10.1016/j.intimp.2020.107332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Spinal inflammation is a pathophysiological state of neuropathic pain (NP). The subsequent microglial activation and neuroinflammatory response are contributing factors for long-lasting behavioral hypersensitivity. Valproic acid (VPA), a histone deacetylase inhibitor, has promising anti-inflammatory and neuroprotective properties for clinical use in the treatment of neurological disorders. However, the underlying mechanisms of its effects on NP have not been determined. This study aimed to clarify the possible mechanisms by which VPA alleviates NP in rat models induced by spinal nerve ligation (SNL). Intraperitoneal injection of VPA (300 mg/kg) efficiently attenuated mechanical allodynia in rats with NP. VPA exerted anti-inflammatory effects by downregulating proinflammatory cytokines (tumor necrosis factor-α, cytokines interleukin-1β, cytokines interleukin-6; TNF-α, IL-1β, and IL-6) and upregulating anti-inflammatory cytokines (transforming growth factor-β, cytokines interleukin-10, cytokines interleukin-4; TGF-β, IL-10 and IL-4). Additionally, VPA suppressed spinal microgliosis and promoted the polarization of microglia towards the M2 phenotype to further ameliorate spinal neuroinflammation. VPA also exerted neuroprotective effects by decreasing spinal cell apoptosis. The anti-inflammatory and neuroprotective effects may have depended on changes in nuclear histone deacetylase 3 (HDAC3) expression following VPA treatment. Moreover, VPA treatment inhibited nuclear factor-κB (NF-κB) p65 nuclear expression and upregulated acetylated the signal transducer and activator of transcription 1 (STAT1). In addition, VPA suppressed SNL-induced phosphorylation of Janus Kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Taken together, our results demonstrate that VPA is a promising anti-inflammatory agent suitable for NP therapy that regulates microglial function and suppresses spinal neuroinflammation via the STAT1/NF-κB and JAK2/STAT3 signaling pathways.
Collapse
|
160
|
Tapentadol treatment results in long-term pain relief in patients with chronic low back pain and associates with reduced segmental sensitization. Pain Rep 2020; 5:e877. [PMID: 33364540 PMCID: PMC7752667 DOI: 10.1097/pr9.0000000000000877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/26/2022] Open
Abstract
The endogenous pain system may be used as a biomarker in the pharmacological treatment of patients with CLBP, enabling an individualized, mechanism-based treatment approach. Introduction: Chronic low back pain (CLBP) is one of the most common chronic pain conditions in pain practice. Objectives: In the current study, we describe phenotypes of patients with CLBP based on the status of their endogenous pain modulatory system. Methods: Conditioned pain modulation (a measure of central pain inhibition), temporal summation (TS, a measure of pain facilitation), and offset analgesia (a measure of temporal filtering of nociception) were evaluated in 53 patients with CLBP at painful and nonpainful sites. Next, in a double-blind, randomized, placebo-controlled trial, 40 patients with defective conditioned pain modulation responses received treatment with tapentadol prolonged-release or placebo for 3 months. Results: The majority of patients (87%) demonstrated loss of central pain inhibition combined with segmentally increased TS and reduced offset analgesia at the lower back region. During treatment, tapentadol reduced pain intensity more than placebo (tapentadol −19.5 ± 2.1 mm versus placebo −7.1 ± 1.8 mm, P = 0.025). Furthermore, tapentadol significantly decreased pain facilitation by reduction of TS responses at the lower back (tapentadol −0.94 ± 1.9 versus placebo 0.01 ± 1.5, P = 0.020), which correlated with pain reduction (P < 0.001). Conclusion: Patients with CLBP demonstrated different phenotypes of endogenous pain modulation. In patients with reduced conditioned pain modulation, tapentadol produced long-term pain relief that coincided with reduction of signs of pain facilitation. These data indicate that the endogenous pain system may be used as a biomarker in the pharmacological treatment of CLBP, enabling an individualized, mechanism-based treatment approach.
Collapse
|
161
|
The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav 2020; 227:113141. [DOI: 10.1016/j.physbeh.2020.113141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023]
|
162
|
Dolphin AC, Insel PA, Blaschke TF, Meyer UA. Introduction to the Theme "Ion Channels and Neuropharmacology: From the Past to the Future". Annu Rev Pharmacol Toxicol 2020; 60:1-6. [PMID: 31914892 DOI: 10.1146/annurev-pharmtox-082719-110050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
"Ion Channels and Neuropharmacology: From the Past to the Future" is the main theme of articles in Volume 60 of the Annual Review of Pharmacology and Toxicology. Reviews in this volume discuss a wide spectrum of therapeutically relevant ion channels and GPCRs with a particular emphasis on structural studies that elucidate drug binding sites and mechanisms of action. The regulation of ion channels by second messengers, including Ca2+ and cyclic AMP, and lipid mediators is also highly relevant to several of the ion channels discussed, including KCNQ channels, HCN channels, L-type Ca2+ channels, and AMPA receptors, as well as the aquaporin channels. Molecular identification of exactly where drugs bind in the structure not only elucidates their mechanism of action but also aids future structure-based drug discovery efforts to focus on relevant pharmacophores. The ion channels discussed here are targets for multiple nervous system diseases, including epilepsy and neuropathic pain. This theme complements several previous themes, including "New Therapeutic Targets," "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development," and "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology."
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom;
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Terrence F Blaschke
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
163
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
164
|
Tyrtyshnaia AA, Egorova EL, Starinets AA, Ponomarenko AI, Ermolenko EV, Manzhulo IV. N-Docosahexaenoylethanolamine Attenuates Neuroinflammation and Improves Hippocampal Neurogenesis in Rats with Sciatic Nerve Chronic Constriction Injury. Mar Drugs 2020; 18:md18100516. [PMID: 33076443 PMCID: PMC7602669 DOI: 10.3390/md18100516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic neuropathic pain is a condition that causes both sensory disturbances and a variety of functional disorders, indicating the involvement of various brain structures in pain pathogenesis. One of the factors underlying chronic neuropathic pain is neuroinflammation, which is accompanied by microglial activation and pro-inflammatory factor release. N-docosahexaenoylethanolamine (DHEA, synaptamide) is an endocannabinoid-like metabolite synthesized endogenously from docosahexaenoic acid. Synaptamide exhibits anti-inflammatory activity and improves neurite outgrowth, neurogenesis, and synaptogenesis within the hippocampus. This study aims to evaluate the effects of synaptamide obtained by the chemical modification of DHA, extracted from the Far Eastern raw material Berryteuthis magister on neuroinflammatory response and hippocampal neurogenesis changes during neuropathic pain. The study of microglial protein and cytokine concentrations was performed using immunohistochemistry and ELISA. The brain lipid analysis was performed using the liquid chromatography-mass spectrometry technique. Behavioral experiments showed that synaptamide prevented neuropathic pain-associated sensory and behavioral changes, such as thermal allodynia, impaired locomotor activity, working and long-term memory, and increased anxiety. Synaptamide attenuated microglial activation, release of proinflammatory cytokines, and decrease in hippocampal neurogenesis. Lipid analysis revealed changes in the brain N-acylethanolamines composition and plasmalogen concentration after synaptamide administration. In conclusion, we show here that synaptamide may have potential for use in preventing or treating neuropathic cognitive pain and emotional effects.
Collapse
|
165
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
166
|
Electroacupuncture Modulates Spinal BDNF/TrκB Signaling Pathway and Ameliorates the Sensitization of Dorsal Horn WDR Neurons in Spared Nerve Injury Rats. Int J Mol Sci 2020; 21:ijms21186524. [PMID: 32906633 PMCID: PMC7555233 DOI: 10.3390/ijms21186524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is more complex and severely affects the quality of patients’ life. However, the therapeutic strategy for neuropathic pain in the clinic is still limited. Previously we have reported that electroacupuncture (EA) has an attenuating effect on neuropathic pain induced by spared nerve injury (SNI), but its potential mechanisms remain to be further elucidated. In this study, we designed to determine whether BDNF/TrκB signaling cascade in the spinal cord is involved in the inhibitory effect of 2 Hz EA on neuropathic pain in SNI rats. The paw withdrawal threshold (PWT) of rats was used to detect SNI-induced mechanical hypersensitivity. The expression of BDNF/TrκB cascade in the spinal cord was evaluated by qRT-PCR and Western blot assay. The C-fiber-evoked discharges of wide dynamic range (WDR) neurons in spinal dorsal horn were applied to indicate the noxious response of WDR neurons. The results showed that 2 Hz EA significantly down-regulated the levels of BDNF and TrκB mRNA and protein expression in the spinal cord of SNI rats, along with ameliorating mechanical hypersensitivity. In addition, intrathecal injection of 100 ng BDNF, not only inhibited the analgesic effect of 2 Hz EA on pain hypersensitivity, but also reversed the decrease of BDNF and TrκB expression induced by 2 Hz EA. Moreover, 2 Hz EA obviously reduced the increase of C-fiber-evoked discharges of dorsal horn WDR neurons by SNI, but exogenous BDNF (100 ng) effectively reversed the inhibitory effect of 2 Hz EA on SNI rats, resulting in a remarkable improvement of excitability of dorsal horn WDR neurons in SNI rats. Taken together, these data suggested that 2 Hz EA alleviates mechanical hypersensitivity by blocking the spinal BDNF/TrκB signaling pathway-mediated central sensitization in SNI rats. Therefore, targeting BDNF/TrκB cascade in the spinal cord may be a potential mechanism of EA against neuropathic pain.
Collapse
|
167
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
168
|
Wang C, Chen P, Lin D, Chen Y, Wu Z, Lin X. [Effects of different materials for partial sciatic nerve ligation on glial cell activation in rat models of chronic constriction injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1207-1212. [PMID: 32895191 DOI: 10.12122/j.issn.1673-4254.2020.08.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare the effects of different materials for partial sciatic nerve ligation on glial cell activation in the spinal cord in a rat model of chronic constriction injury (CCI). METHODS SD rats were randomly divided into the sham group (n=15), silk suture CCI group (n=15) and chromic catgut CCI group (n=14). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of the rats were detected at 3, 7, 11 and 15 days after the operation. The changes in the sciatic nerve, the activation of spinal cord glial cells and the expression of inflammatory factors were observed using Western blotting and RT-PCR. RESULTS At 3 to 15 days after the surgery, MWT and TWL of the rats were significantly lower in silk suture group and chromic catgut group than in the control group (P < 0.05), and was significantly lower in chromic catgut group than in the silk suture group (P < 0.05) at 3 days after the surgery. The results of sciatic nerve myelin staining showed that the sciatic nerve was damaged and demyelinated in both the ligation groups. The expressions of CD11b, GFAP, IL-1β and TNF-α in the two ligation groups were similar and all significantly higher than those in the control group (P < 0.05). IL-6 mRNA level was significantly higher in chromic catgut group than in the silk suture group (P < 0.05). CONCLUSIONS The CCI models established by partial sciatic nerve ligation with silk suture and chromic catgut all show glial activation, and the inflammatory response is stronger in chromic catgut group.
Collapse
Affiliation(s)
- Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Dongsheng Lin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yi Chen
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhibing Wu
- Department of Neurology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xingdong Lin
- Department of Neurology, Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510240, China
| |
Collapse
|
169
|
Dragan S, Șerban MC, Damian G, Buleu F, Valcovici M, Christodorescu R. Dietary Patterns and Interventions to Alleviate Chronic Pain. Nutrients 2020; 12:E2510. [PMID: 32825189 PMCID: PMC7551034 DOI: 10.3390/nu12092510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is one of the main problems for modern society and medicine, being the most common symptom described by almost all patients. When pain becomes chronic, the life of the patients is dramatically affected, being associated with significant emotional distress and/or functional disability. A complex biopsychosocial evaluation is necessary to better understand chronic pain, where good results can be obtained through interconnected biological, psychological, and social factors. The aim of this study was to find the most relevant articles existent in the PubMed database, one of the most comprehensive databases for medical literature, comprising dietary patterns to alleviate chronic pain. Through a combined search using the keywords "chronic pain" and "diet" limited to the last 10 years we obtained 272 results containing the types of diets used for chronic pain published in the PubMed database. Besides classical and alternative methods of treatment described in literature, it was observed that different diets are also a valid solution, due to many components with antioxidant and anti-inflammatory qualities capable to influence chronic pain and to improve the quality of life. Thirty-eight clinical studies and randomized controlled trials are analyzed, in an attempt to characterize present-day dietary patterns and interventions to alleviate chronic pain.
Collapse
Affiliation(s)
- Simona Dragan
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (S.D.); (F.B.); (M.V.); (R.C.)
- Institute of Cardiovascular Diseases Timișoara, 13 Gheorghe Adam Street, 300310 Timișoara, Romania
| | - Maria-Corina Șerban
- Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| | - Georgiana Damian
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (S.D.); (F.B.); (M.V.); (R.C.)
| | - Florina Buleu
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (S.D.); (F.B.); (M.V.); (R.C.)
| | - Mihaela Valcovici
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (S.D.); (F.B.); (M.V.); (R.C.)
- Institute of Cardiovascular Diseases Timișoara, 13 Gheorghe Adam Street, 300310 Timișoara, Romania
| | - Ruxandra Christodorescu
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania; (S.D.); (F.B.); (M.V.); (R.C.)
| |
Collapse
|
170
|
Knezevic NN, Jovanovic F, Candido KD, Knezevic I. Oral pharmacotherapeutics for the management of peripheral neuropathic pain conditions - a review of clinical trials. Expert Opin Pharmacother 2020; 21:2231-2248. [PMID: 32772737 DOI: 10.1080/14656566.2020.1801635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epidemiological studies have shown that 6.9-10% of people suffer from neuropathic pain, a complex painful condition which is often undertreated. Data regarding the effectiveness of treatment options for patients with neuropathic pain is inconsistent, and there is no single treatment option that shows cost-effectiveness across studies. AREAS COVERED In this narrative review, the authors present the results of different prospective, randomized controlled trials, systematic reviews and meta-analyses assessing the effects of different oral medications in the management of various peripheral neuropathic pain conditions. The authors discuss the effectiveness of commonly used oral medications such as voltage-gated calcium channels antagonists, voltage-gated sodium channel antagonists, serotonin-norepinephrine reuptake inhibitors, NMDA antagonists, and medications with other mechanisms of action. EXPERT OPINION Most of the presented medications were more effective than placebo; however, when compared to each other, none of them were significantly superior. The heterogeneity of the studies looking into different oral neuropathic conditions has been the major issue that prevents us from making stronger recommendations. There are multiple reasons including high placebo responsiveness, improperly treated underlying comorbidities (particularly anxiety and depression), and inter-patient variability. Different sensory phenotypes should also be taken into consideration when designing future clinical trials for neuropathic pain.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center , Chicago, IL, US.,Department of Anesthesiology, College of Medicine, University of Illinois , Chicago, IL, US.,Department of Surgery, College of Medicine, University of Illinois , Chicago, IL, US
| | - Filip Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center , Chicago, IL, US
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center , Chicago, IL, US.,Department of Anesthesiology, College of Medicine, University of Illinois , Chicago, IL, US.,Department of Surgery, College of Medicine, University of Illinois , Chicago, IL, US
| | - Ivana Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center , Chicago, IL, US
| |
Collapse
|
171
|
van Velzen M, Dahan A, Niesters M. Neuropathic Pain: Challenges and Opportunities. FRONTIERS IN PAIN RESEARCH 2020; 1:1. [PMID: 35295693 PMCID: PMC8915755 DOI: 10.3389/fpain.2020.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
172
|
Wu J, Wang Y, Cui W, Zhou W, Zhao X. 5-HT 1A receptor-mediated attenuation of heat hyperalgesia and mechanical allodynia by chrysin in mice with experimental mononeuropathy. Reg Anesth Pain Med 2020; 45:610-619. [PMID: 32561651 DOI: 10.1136/rapm-2020-101472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Persistent neuropathic pain poses a health problem, for which effective therapy or antidote is in dire need. This work aimed to investigate the pain-relieving effect of chrysin, a natural flavonoid with monoamine oxidase inhibitory activity, in an experimental model of neuropathic pain and elucidate mechanism(s). METHODS Chronic constriction injury (CCI) was produced by loose ligation of sciatic nerve in mice. The pain-related behaviors were examined using von Frey test and Hargreaves test. The serotonin-related mechanisms were investigated by serotonin depletion with p-chlorophenylalanine (PCPA) and antagonist tests in vivo and in vitro. RESULTS Repeated treatment of CCI mice with chrysin (orally, two times per day for 2 weeks) ameliorated heat hyperalgesia and mechanical allodynia in a dose-dependent fashion (3-30 mg/kg). The chrysin-triggered pain relief seems serotonergically dependent, since its antihyperalgesic and antiallodynic actions were abolished by chemical depletion of serotonin by PCPA, whereas potentiated by 5-hydroxytryptophan (a precursor of 5-HT). Consistently, chrysin-treated neuropathic mice showed enhanced levels of spinal monoamines especially 5-HT, with depressed monoamine oxidase activity. Moreover, chrysin-evoked pain relief was preferentially counteracted by 5-HT1A receptor antagonist WAY-100635 delivered systematically or spinally. In vitro, chrysin (0.1-10 nM) increased the maximum effect (Emax, shown as stimulation of [35S] GTPγS binding) of 8-OH-DPAT, a 5-HT1A agonist. Beneficially, chrysin was able to correct comorbid behavioral symptoms of depression and anxiety evoked by neuropathic pain, without causing hypertensive crisis (known as 'cheese reaction'). CONCLUSION These findings confirm the antihyperalgesic and antiallodynic efficacies of chrysin, with spinal 5-HT1A receptors being critically engaged.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Yangui Wang
- Department of Geriatrics, Hunan Provincial People's Hospital, Changsha, China
| | - Wugeng Cui
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Wenhua Zhou
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Xin Zhao
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| |
Collapse
|
173
|
Dahan A, van Velzen M, Niesters M. Ketamine for neuropathic pain: a tiger that won't bite? Br J Anaesth 2020; 125:e275-e276. [PMID: 32536446 DOI: 10.1016/j.bja.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/19/2022] Open
|
174
|
Serotonergically dependent antihyperalgesic and antiallodynic effects of isoliquiritin in a mouse model of neuropathic pain. Eur J Pharmacol 2020; 881:173184. [PMID: 32417324 DOI: 10.1016/j.ejphar.2020.173184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
Chronic neuropathic pain poses a significant health problem worldwide, for which effective treatment is lacking. The current work aimed to investigate the potential analgesic effect of isoliquiritin, a flavonoid from Glycyrrhiza uralensis, against neuropathic pain and elucidate mechanisms. Male C57BL/6J mice were subjected to chronic constriction injury (CCI) by loose ligation of their sciatic nerves. Following CCI surgery, the neuropathic mice developed pain-like behaviors, as shown by thermal (heat) hyperalgesia in the Hargreaves test and tactile allodynia in the von Frey test. Repetitive treatment of CCI mice with isoliquiritin (p.o., twice per day for two weeks) ameliorated behavioral hyperalgesia to thermal (heat) stimuli and allodynia to tactile stimuli in a dose-dependent fashion (5, 15 and 45 mg/kg). The isoliquiritin-triggered analgesia seems serotonergically dependent, since its antihyperalgesic and antiallodynic actions were totally abolished by chemical depletion of spinal serotonin by p-chlorophenylalanine, whereas potentiated by 5-HTP (a precursor of 5-HT). Consistently, isoliquiritin-treated neuropathic mice showed escalated levels of spinal monoamines especially 5-HT, with depressed monoamine oxidase activity. Moreover, isoliquiritin-evoked antihyperalgesia and antiallodynia were preferentially counteracted by the 5-HT1A receptor antagonist WAY-100635 delivered systematically or spinally. Of notable benefit, isoliquiritin was able to correct co-morbid behavioral symptoms of depression and anxiety evoked by neuropathic pain. Collectively, these findings demonstrate, for the first time, the therapeutic efficacy of isoliquiritin on neuropathic hypersensitivity, and this effect is dependent on the spinal serotonergic system and 5-HT1A receptors.
Collapse
|