151
|
Sugiyama T, Thillainadesan G, Chalamcharla VR, Meng Z, Balachandran V, Dhakshnamoorthy J, Zhou M, Grewal SIS. Enhancer of Rudimentary Cooperates with Conserved RNA-Processing Factors to Promote Meiotic mRNA Decay and Facultative Heterochromatin Assembly. Mol Cell 2016; 61:747-759. [PMID: 26942678 DOI: 10.1016/j.molcel.2016.01.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/22/2015] [Accepted: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Venkata R Chalamcharla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Zhaojing Meng
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
152
|
Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, Hölzel M, Kristiansen G, Schorle H. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer 2016; 115:454-64. [PMID: 27441500 PMCID: PMC4985348 DOI: 10.1038/bjc.2016.187] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer/testis-antigens (CTAs) are specifically expressed in human malignancies and testis tissue, but their molecular functions are poorly understood. CTAs serve as regulators of gene expression, cell cycle and spermatogenesis, as well as targets for immune-based therapies. The CTA PRAME is expressed in various cancers, antagonises retinoic acid signalling and is regulated by DNA methylation and histone acetylation. METHODS We analysed the molecular function of the CTA PRAME in primordial germ cells (PGC) and testicular germ cell cancers (GCC). GCCs arise from a common precursor lesion termed germ cell neoplasia in situ (GCNIS), which itself is thought to originate from a defective PGC. GCNIS cells eventually develop into unipotent seminomas or totipotent embryonal carcinomas (ECs), which are capable of differentiation into teratomas, yolk-sac tumours and choriocarcinomas. RESULTS PRAME is, like the master regulator of PGCs SOX17 expressed in human PGCs, GCNIS and seminomas but absent in ECs. shRNA-mediated knockdown of PRAME in seminomatous TCam-2 cells left SOX17 levels unchanged, but resulted in downregulation of pluripotency- and PGC-related genes (LIN28, PRDM14, ZSCAN10), whereas somatic and germ cell differentiation markers were upregulated. So, PRAME seems to act downstream of SOX17 by mediating the regulation of the germ cell differentiation and pluripotency programme. Endoderm differentiation is triggered in somatic cells by SOX17, suggesting that in PGCs, PRAME represses this programme and modulates SOX17 to function as a PGC-master regulator. Surprisingly, knockdown of PRAME in TCam-2 cells did not render the cells sensitive towards retinoic acid, despite the fact that PRAME has been described to antagonise retinoic acid signalling. Finally, we demonstrate that in non-seminomas PRAME expression is silenced by DNA methylation, which can be activated by formation of euchromatin via histone-deacetylase-inhibitors. CONCLUSIONS We identified the CTA PRAME as a downstream factor of SOX17 and LIN28 in regulating pluripotency and suppressing somatic/germ cell differentiation in PGC, GCNIS and seminomas.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Isabell Arndt
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Rakesh Sharma
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Stefanie Riesenberg
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Sina Jostes
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Michael Hölzel
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| |
Collapse
|
153
|
Shraibman B, Kadosh DM, Barnea E, Admon A. Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy. Mol Cell Proteomics 2016; 15:3058-70. [PMID: 27412690 DOI: 10.1074/mcp.m116.060350] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 11/06/2022] Open
Abstract
Treatment of cancer cells with anticancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumor's gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anticancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (Decitabine) has limited antitumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. The proteomics and HLA peptidomics data are available via ProteomeXchange with identifier PXD003790 and the transcriptomics data are available via GEO with identifier GSE80137.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
154
|
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K, Karpf AR. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics 2016; 10:736-48. [PMID: 26098711 PMCID: PMC4622579 DOI: 10.1080/15592294.2015.1062206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45.
Collapse
Key Words
- CNA, copy number alteration
- CT antigen genes, cancer-testis or cancer-germline antigen genes
- CT45
- DAC, decitabine, 5-Aza-2′-deoxycytidine
- DFS, disease-free survival
- DNA methylation
- DNMT, DNA methyltransferase
- EOC, epithelial ovarian cancer
- FTE, normal fallopian tube epithelia
- HGSOC, high-grade serous ovarian cancer
- IHC, immunohistochemistry
- NO, bulk normal ovary
- OS, overall survival
- OSE, normal ovary surface epithelia
- RLM-RACE, 5′ RNA ligase-mediated rapid amplification of cDNA ends
- RNA-seq, RNA sequencing
- TCGA, The Cancer Genome Atlas
- TMA, tissue microarray
- TSS, transcription start site
- cancer germline genes
- cancer testis antigen genes
- decitabine
- epithelial ovarian cancer
- tumor antigens
Collapse
Affiliation(s)
- Wa Zhang
- a Eppley Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
H1T is a linker histone H1 variant that is highly expressed at the primary spermatocyte stage through to the early spermatid stage of spermatogenesis. While the functions of the somatic types of H1 have been extensively investigated, the intracellular role of H1T is unclear. H1 variants specifically expressed in germ cells show low amino acid sequence homology to somatic H1s, which suggests that the functions or target loci of germ cell-specific H1T differ from those of somatic H1s. Here, we describe the target loci and function of H1T. H1T was expressed not only in the testis but also in tumor cell lines, mouse embryonic stem cells (mESCs), and some normal somatic cells. To elucidate the intracellular localization and target loci of H1T, fluorescent immunostaining and ChIP-seq were performed in tumor cells and mESCs. We found that H1T accumulated in nucleoli and predominantly targeted rDNA repeats, which differ from somatic H1 targets. Furthermore, by nuclease sensitivity assay and RT-qPCR, we showed that H1T repressed rDNA transcription by condensing chromatin structure. Imaging analysis indicated that H1T expression affected nucleolar formation. We concluded that H1T plays a role in rDNA transcription, by distinctively targeting rDNA repeats.
Collapse
Affiliation(s)
- Ruiko Tani
- a Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Koji Hayakawa
- a Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Satoshi Tanaka
- a Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Kunio Shiota
- a Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
156
|
Hickman ES, Lomax ME, Jakobsen BK. Antigen Selection for Enhanced Affinity T-Cell Receptor-Based Cancer Therapies. ACTA ACUST UNITED AC 2016; 21:769-85. [PMID: 26993321 DOI: 10.1177/1087057116637837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Evidence of adaptive immune responses in the prevention of cancer has been accumulating for decades. Spontaneous T-cell responses occur in multiple indications, bringing the study of de novo expressed cancer antigens to the fore and highlighting their potential as targets for cancer immunotherapy. Circumventing the immune-suppressive mechanisms that maintain tumor tolerance and driving an antitumor cytotoxic T-cell response in cancer patients may eradicate the tumor or block disease progression. Multiple strategies are being pursued to harness the cytotoxic potential of T cells clinically. Highly promising results are now emerging. The focus of this review is the target discovery process for cancer immune therapeutics based on affinity-matured T-cell receptors (TCRs). Target cancer antigens in the context of adoptive cell transfer technologies and soluble biologic agents are discussed. To appreciate the impact of TCR-based technology and understand the TCR discovery process, it is necessary to understand key differences between TCR-based therapy and other immunotherapy approaches. The review first summarizes key advances in the cancer immunotherapy field and then discusses the opportunities that TCR technology provides. The nature and breadth of molecular targets that are tractable to this approach are discussed, together with the challenges associated with finding them.
Collapse
|
157
|
Xu ZS, Zhang HX, Zhang YL, Liu TT, Ran Y, Chen LT, Wang YY, Shu HB. PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus. J Mol Cell Biol 2016; 8:221-31. [PMID: 26892021 DOI: 10.1093/jmcb/mjw005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) is tightly regulated during various physiological processes, such as cell proliferation, survival, and differentiation, and aberrant STAT3 activation results in tumorigenesis. In this study, we identified the cancer/testis antigen PASD1 as a positive regulator of STAT3 activity. Overexpression of PASD1 activated STAT3 and potentiated IL-6-induced activation of STAT3, whereas knockdown of PASD1 had opposite effects. Endogenous coimmunoprecipitation experiments indicated that PASD1 interacted with STAT3 in the nucleus. Overexpression of PASD1 enhanced both basal and IL-6-induced STAT3 phosphorylation at Y705, whereas knockdown of PASD1 had opposite effects. Mechanistically, PASD1 competed with TC45, a nuclear protein tyrosine phosphatase, to associate with STAT3, thus inhibited TC45-mediated dephosphorylation of STAT3. Consistently, knockdown of PASD1 inhibited expression of many pro-oncogenic genes, leading to suppression of cell proliferation, anchorage-independent growth, cell migration, and tumor growth in nude mice. Our findings demonstrate that PASD1 serves as a critical nuclear positive regulator of STAT3-mediated gene expression and tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Hong-Xia Zhang
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yu-Long Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tian-Tian Liu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yong Ran
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liu-Ting Chen
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| | - Yan-Yi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong-Bing Shu
- College of Life Sciences, Medical Research Institute, Collaborative Innovation Center for Viral Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
158
|
Wang C, Gu Y, Zhang K, Xie K, Zhu M, Dai N, Jiang Y, Guo X, Liu M, Dai J, Wu L, Jin G, Ma H, Jiang T, Yin R, Xia Y, Liu L, Wang S, Shen B, Huo R, Wang Q, Xu L, Yang L, Huang X, Shen H, Sha J, Hu Z. Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nat Commun 2016; 7:10499. [PMID: 26813108 PMCID: PMC4737856 DOI: 10.1038/ncomms10499] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer-testis (CT) genes represent the similarity between the processes of spermatogenesis and tumorigenesis. It is possible that their selective expression pattern can help identify driver genes in cancer. In this study, we integrate transcriptomics data from multiple databases and systematically identify 876 new CT genes in 19 cancer types. We explore their relationship with testis-specific regulatory elements. We propose that extremely highly expressed CT genes (EECTGs) are potential drivers activated through epigenetic mechanisms. We find mutually exclusive associations between EECTGs and somatic mutations in mutated genes, such as PIK3CA in breast cancer. We also provide evidence that promoter demethylation and close non-coding RNAs (namely, CT-ncRNAs) may be two mechanisms to reactivate EECTG gene expression. We show that the meiosis-related EECTG (MEIOB) and its nearby CT-ncRNA have a role in tumorigenesis in lung adenocarcinoma. Our findings provide methods for identifying epigenetic-driver genes of cancer, which could serve as targets of future cancer therapies.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Kai Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Kaipeng Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Meng Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ningbin Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Linxiang Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Yankai Xia
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Digestive Endoscopy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qianghu Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, Cancer Biology Program, Center for RNA Interference and Non-Coding RNAs, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Pudong New Area, Shanghai 201210, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
159
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
160
|
Abstract
Exploitation of the patient's own immune system to induce antitumor immune responses using dendritic cell (DC) immunotherapy has been established in early clinical trials as a safe and promising therapeutic approach for cancer. However, their limited success in larger clinical trials highlights the need to optimize DC vaccine preparations. This chapter describes the methodologies utilized for the preparation of the DC vaccine most commonly used in clinical trials. Optional variations at different stages in DC vaccine preparation, based on the nature of antigen, delivery of antigen, maturation stimuli, and mode of administration for DC vaccines, are also presented for consideration as these are often dependent on the disease setting, desired immune response, and/or resources available.
Collapse
|
161
|
McFarlane RJ, Feichtinger J, Larcombe L. Cancer germline gene activation: friend or foe? Cell Cycle 2015; 13:2151-2. [PMID: 25111983 PMCID: PMC4111666 DOI: 10.4161/cc.29661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Julia Feichtinger
- Institute for Knowledge Discovery; Graz University of Technology; Graz, Austria; Core Facility Bioinformatics; Austrian Centre of Industrial Biotechnology; Graz, Austria
| | - Lee Larcombe
- MRC Functional Genomics Unit; Department of Physiology, Anatomy and Genetics; University of Oxford; Oxford; UK
| |
Collapse
|
162
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015; 28:690-714. [PMID: 26678337 DOI: 10.1016/j.ccell.2015.10.012] [Citation(s) in RCA: 1158] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Aitziber Buqué
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; INSERM, U1015, 94805 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France.
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
163
|
Martin SD, Coukos G, Holt RA, Nelson BH. Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann Oncol 2015; 26:2367-74. [PMID: 26371284 PMCID: PMC4658541 DOI: 10.1093/annonc/mdv382] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Owing to recent advances in genomic technologies, personalized oncology is poised to fundamentally alter cancer therapy. In this paradigm, the mutational and transcriptional profiles of tumors are assessed, and personalized treatments are designed based on the specific molecular abnormalities relevant to each patient's cancer. To date, such approaches have yielded impressive clinical responses in some patients. However, a major limitation of this strategy has also been revealed: the vast majority of tumor mutations are not targetable by current pharmacological approaches. Immunotherapy offers a promising alternative to exploit tumor mutations as targets for clinical intervention. Mutated proteins can give rise to novel antigens (called neoantigens) that are recognized with high specificity by patient T cells. Indeed, neoantigen-specific T cells have been shown to underlie clinical responses to many standard treatments and immunotherapeutic interventions. Moreover, studies in mouse models targeting neoantigens, and early results from clinical trials, have established proof of concept for personalized immunotherapies targeting next-generation sequencing identified neoantigens. Here, we review basic immunological principles related to T-cell recognition of neoantigens, and we examine recent studies that use genomic data to design personalized immunotherapies. We discuss the opportunities and challenges that lie ahead on the road to improving patient outcomes by incorporating immunotherapy into the paradigm of personalized oncology.
Collapse
Affiliation(s)
- S D Martin
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria Interdisciplinary Oncology Program, University of British Columbia, Vancouver Michael Smith's Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - G Coukos
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne Hospital of the University of Lausanne (CHUV), Lausanne, Switzerland
| | - R A Holt
- Michael Smith's Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada Molecular Biology and Biochemistry, Simon Fraser University, Vancouver Department of Medical Genetics, University of British Columbia, Vancouver
| | - B H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria Department of Medical Genetics, University of British Columbia, Vancouver Department of Microbiology and Biochemistry, University of Victoria, Victoria, Canada
| |
Collapse
|
164
|
Maxfield KE, Taus PJ, Corcoran K, Wooten J, Macion J, Zhou Y, Borromeo M, Kollipara RK, Yan J, Xie Y, Xie XJ, Whitehurst AW. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun 2015; 6:8840. [PMID: 26567849 PMCID: PMC4660212 DOI: 10.1038/ncomms9840] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
Tumours frequently activate genes whose expression is otherwise biased to the testis,
collectively known as cancer–testis antigens (CTAs). The extent to which
CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In
this study, to address this, we implemented a multidimensional functional genomics
approach that incorporates 7 different phenotypic assays in 11 distinct disease
settings. We identify 26 CTAs that are essential for tumor cell viability and/or are
pathological drivers of HIF, WNT or TGFβ signalling. In particular, we
discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor
in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the
stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting
viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes
TGFβ signalling by directly suppressing the expression of negative feedback
regulatory pathways. This action is essential for the survival of triple negative
breast cancer cells in vitro and in vivo. Thus, CTAs make significant
direct contributions to tumour biology. Proteins usually expressed solely in the testes are often found
over-expressed in cancer and are termed cancer testis antigens. Here, the authors use a
comprehensive screening strategy to identify 26 cancer-testis antigens that promote
tumorigenic behaviour.
Collapse
Affiliation(s)
- Kimberly E Maxfield
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Patrick J Taus
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kathleen Corcoran
- Department of Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joshua Wooten
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jennifer Macion
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yunyun Zhou
- Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Borromeo
- Department of Neuroscience, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jingsheng Yan
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yang Xie
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xian-Jin Xie
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Science, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Angelique W Whitehurst
- Simmons Comprehensive Cancer Center, UT-Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
165
|
Kang J, Lee HJ, Jun SY, Park ES, Maeng LS. Cancer-Testis Antigen Expression in Serous Endometrial Cancer with Loss of X Chromosome Inactivation. PLoS One 2015; 10:e0137476. [PMID: 26360551 PMCID: PMC4567132 DOI: 10.1371/journal.pone.0137476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023] Open
Abstract
Background Cancer-testis antigens (CTAs) are potential targets for cancer immunotherapy. Many CTAs are located on the X chromosome and are epigenetically regulated. Loss of X chromosome inactivation (XCI) is observed in breast and ovarian cancers and is thought to be related to the overexpression of CTAs. We investigated the relation between expression of CTAs and loss of XCI in endometrial cancer. Materials and Methods We used data generated by The Cancer Genome Atlas Genome Data Analysis Centers and data for Xist knockout mice available at the Gene Expression Omnibus. Results The status of XCI was estimated by methylation status, and deletion or gain of the X chromosome. The endometrial cancers were classified into the following three groups: preserved inactivated X chromosome (Xi) (n = 281), partial reactivation of Xi (n = 52), and two copies of active X group (n = 38). Loss of XCI was more common in serous adenocarcinoma. Expression of CTAs increased in endometrial cancer with loss of XCI, which was accompanied by global hypomethylation. Expression of CTAs did not increase in Xist knockout mice. Conclusions Loss of XCI is common in serous adenocarcinoma. Global hypomethylation, and not loss of XCI, is the main mechanism of overexpression of CTAs.
Collapse
Affiliation(s)
- Jun Kang
- Department of Hospital Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
- * E-mail:
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sun-Young Jun
- Department of Hospital Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| | - Eun Su Park
- Department of Hospital Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| | - Lee-so Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| |
Collapse
|
166
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
167
|
Grizzi F, Franceschini B, Di Biccari S, Musardo S, Pedretti E, Chiriva-Internati M, Osipov V, Fernández-Aceñero MJ. Sperm protein 17 and AKAP-associated sperm protein cancer/testis antigens are expressed in ciliated hepatic foregut cysts. Histopathology 2015; 67:398-403. [PMID: 25600306 DOI: 10.1111/his.12654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
AIMS Ciliated hepatic foregut cysts (CHFCs) are retained benign lesions of the liver. However, a case of squamous cell metaplasia and five cases of squamous cell carcinoma arising from a CHFC have been described. The potential of malignant transformation makes the identification of new biomarkers necessary. As the cancer/testis antigen sperm protein 17 (Sp17) has been detected in oral and oesophageal squamous cell carcinomas, the aim of this study was to investigate the expression of Sp17 and AKAP-associated sperm protein (ASP), which has a shared N-terminal sequence with Sp17, in four surgically resected CHFCs. METHODS AND RESULTS CHFC specimens were taken from two patients who attended the Medical College of Wisconsin, Milwaukee, USA and two patients who attended the Fundación Jiménez Díaz, Madrid, Spain. CHFCs were found to be immunopositive for Sp17 and ASP. Both proteins were localized to the cytoplasm of ciliated cells lining the cysts, and their cilia. Confocal microscopy demonstrated that Sp17 and ASP overlapped in the same region of the cell. CONCLUSION Sp17 and ASP cancer/testis antigens were found in ciliated cells of four CHFCs. Further characterization of Sp17 and ASP in patients with CHFCs may provide significant clues for understanding the molecular mechanisms underlying their predisposition to develop squamous cell carcinomas.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Barbara Franceschini
- Laboratory of Quantitative Medicine, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Sonia Di Biccari
- Laboratory of Quantitative Medicine, Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Stefano Musardo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Pedretti
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vladimir Osipov
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
168
|
Mobasheri MB, Shirkoohi R, Zendehdel K, Jahanzad I, Talebi S, Afsharpad M, Modarressi MH. Transcriptome analysis of the cancer/testis genes, DAZ1, AURKC, and TEX101, in breast tumors and six breast cancer cell lines. Tumour Biol 2015; 36:8201-8206. [PMID: 25994570 DOI: 10.1007/s13277-015-3546-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most frequent cancer with second mortality rate in women worldwide. Lack of validated biomarkers for early detection of breast cancer to warranty the diagnosis and effective treatments in early stages has directed to the new therapeutic approach. Cancer/testis antigens which have restricted normal expression in testis and aberrant expression in different cancers are promising targets for generating cancer vaccines, monoclonal antibodies, or dendritic cell-based immunotherapy. In this context, we investigated the expression of two known cancer testis genes, Aurora kinase C (AURKC) and testis expressed 101 (TEX101), and one new candidate, deleted in azoospermia 1 (DAZ1), in six breast cancer cell lines including two ductal carcinomas, T47D and BT-474, and four adenocarcinomas, MDA-MB-231, MDA-MB-468, MCF7, and SKBR3 as well as 50 breast cancer tumors in comparison to normal mammary epithelial cells using quantitative real-time reverse transcription PCR (RT-PCR). Results showed significant overexpression (p = 0.000) of all three genes in BT474, DAZ1 in MDA-MB-231, and AURKC and DAZ1 in SKBR3 and significant downregulation (p = 0.000) of AURKC in MCF7 cell line relative to normal breast epithelial cells. Breast tumors showed significant overexpression of AURKC in comparison to normal breast tissues (p = 0.016). The results are noticeable especially in the case of AURKC; however, there is a little knowledge about the nature, causes, consequences, and effects of cancer/testis antigens activation in different cancers. It is suggested that AURKC has effects on cell division via its serin/threonin kinases activity and organizing microtubules in relation to centrosome/spindle function during mitosis.
Collapse
Affiliation(s)
- Maryam Beigom Mobasheri
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Issa Jahanzad
- Department of Pathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Talebi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Afsharpad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
169
|
Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis. Biochem J 2015; 471:211-20. [PMID: 26268560 PMCID: PMC4613502 DOI: 10.1042/bj20150730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022]
Abstract
We studied the expression pattern and the mechanisms governing the transcription of GPAT2, an enzyme that is highly expressed in testis. GPAT2 is regulated epigenetically and its expression correlates with the initiation of meiosis. Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on–off expression pattern responds predominantly to epigenetic modifications.
Collapse
|
170
|
He Y, Chen Y, Mooney SM, Rajagopalan K, Bhargava A, Sacho E, Weninger K, Bryan PN, Kulkarni P, Orban J. Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered Cancer/Testis Antigen. J Biol Chem 2015; 290:25090-102. [PMID: 26242913 DOI: 10.1074/jbc.m115.658583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
Prostate-associated gene 4 (PAGE4) is an intrinsically disordered cancer/testis antigen that is up-regulated in the fetal and diseased human prostate. Knocking down PAGE4 expression results in cell death, whereas its overexpression leads to a growth advantage of prostate cancer cells (Zeng, Y., He, Y., Yang, F., Mooney, S. M., Getzenberg, R. H., Orban, J., and Kulkarni, P. (2011) The cancer/testis antigen prostate-associated gene 4 (PAGE4) is a highly intrinsically disordered protein. J. Biol. Chem. 286, 13985-13994). Phosphorylation of PAGE4 at Thr-51 is critical for potentiating c-Jun transactivation, an important factor in controlling cell growth, apoptosis, and stress response. Using NMR spectroscopy, we show that the PAGE4 polypeptide chain has local and long-range conformational preferences that are perturbed by site-specific phosphorylation at Thr-51. The population of transient turn-like structures increases upon phosphorylation in an ∼20-residue acidic region centered on Thr-51. This central region therefore becomes more compact and more negatively charged, with increasing intramolecular contacts to basic sequence motifs near the N and C termini. Although flexibility is decreased in the central region of phospho-PAGE4, the polypeptide chain remains highly dynamic overall. PAGE4 utilizes a transient helical structure adjacent to the central acidic region to bind c-Jun with low affinity in vitro. The binding interaction is attenuated by phosphorylation at Thr-51, most likely because of masking the effects of the more compact phosphorylated state. Therefore, phosphorylation of PAGE4 leads to conformational shifts in the dynamic ensemble, with large functional consequences. The changes in the structural ensemble induced by posttranslational modifications are similar conceptually to the conformational switching events seen in some marginally stable ("metamorphic") folded proteins in response to mutation or environmental triggers.
Collapse
Affiliation(s)
- Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Steven M Mooney
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Krithika Rajagopalan
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Ajay Bhargava
- Shakti BioResearch, Woodbridge, Connecticut 06525, and
| | - Elizabeth Sacho
- the Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
| | - Keith Weninger
- the Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
| | - Philip N Bryan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Prakash Kulkarni
- the Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287,
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742,
| |
Collapse
|
171
|
Mobasheri MB, Shirkoohi R, Modarressi MH. Cancer/Testis OIP5 and TAF7L Genes are Up-Regulated in Breast Cancer. Asian Pac J Cancer Prev 2015; 16:4623-8. [DOI: 10.7314/apjcp.2015.16.11.4623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
172
|
A Forward Genetic Screen for Suppressors of Somatic P Granules in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 5:2209-15. [PMID: 26100681 PMCID: PMC4593002 DOI: 10.1534/g3.115.019257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Caenorhabditis elegans, germline expression programs are actively repressed in somatic tissue by components of the synMuv (synthetic multi-vulva) B chromatin remodeling complex, which include homologs of tumor suppressors Retinoblastoma (Rb/LIN-35) and Malignant Brain Tumor (MBT/LIN-61). However, the full scope of pathways that suppress germline expression in the soma is unknown. To address this, we performed a mutagenesis and screened for somatic expression of GFP-tagged PGL-1, a core P-granule nucleating protein. Eight alleles were isolated from 4000 haploid genomes. Five of these alleles exhibit a synMuv phenotype, whereas the remaining three were identified as hypomorphic alleles of known synMuv B genes, lin-13 and dpl-1. These findings suggest that most suppressors of germline programs in the soma of C. elegans are either required for viability or function through synMuv B chromatin regulation.
Collapse
|
173
|
Cancer-testis antigen SLLP1 represents a promising target for the immunotherapy of multiple myeloma. J Transl Med 2015; 13:197. [PMID: 26088750 PMCID: PMC4474344 DOI: 10.1186/s12967-015-0562-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Most patients with multiple myeloma (MM) will relapse after an initial response and eventually succumb to their disease. This is due to the persistence of chemotherapy-resistant tumor cells in the patients’ bone marrow (BM) and immunotherapeutic approaches could contribute to eradicating these remaining cells. We evaluated SLLP1 as a potential
immunotherapeutic target for MM. Methods We determined SLLP1 expression in myeloma cell lines and 394 BM samples from myeloma patients (n = 177) and BM samples from healthy donors (n = 11). 896 blood samples and 64 BM samples from myeloma patients (n = 263) and blood from healthy donors (n = 112) were analyzed for anti-SLLP1 antibodies. Seropositive patients were evaluated regarding SLLP1-specific T cells. Results Most cell lines showed SLLP1 RNA and protein expression while it was absent from normal BM. Of 177 patients 41% evidenced SLLP1 expression at least once during the course of their disease and 44% of newly diagnosed patients were SLLP1-positive. Expression of SLLP1 was associated with adverse cytogenetics and with negative prognostic factors including the patient’s age, number of BM-infiltrating plasma cells, serum albumin, β2-microglobulin, creatinine, and hemoglobin. Among patients treated with allogeneic stem cell transplantation those with SLLP1 expression showed a trend towards a reduced overall survival. Spontaneous anti-SLLP humoral immunity was detectable in 9.5% of patients but none of the seropositive patients evidenced SLLP1-specific T cells. However, antigen-specific T cells could readily be induced in vitro after stimulation with SLLP1. Conclusions SLLP1 represents a promising target for the immunotherapy of MM, in particular for the adoptive transfer of T cell receptor-transduced T cells.
Collapse
|
174
|
Michael AK, Harvey SL, Sammons PJ, Anderson AP, Kopalle HM, Banham AH, Partch CL. Cancer/Testis Antigen PASD1 Silences the Circadian Clock. Mol Cell 2015; 58:743-54. [PMID: 25936801 PMCID: PMC4458219 DOI: 10.1016/j.molcel.2015.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.
Collapse
Affiliation(s)
- Alicia K Michael
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stacy L Harvey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick J Sammons
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Hema M Kopalle
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
175
|
Grizzi F, Mirandola L, Qehajaj D, Cobos E, Figueroa JA, Chiriva-Internati M. Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int Rev Immunol 2015; 34:143-153. [PMID: 25901859 DOI: 10.3109/08830185.2015.1018418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of immunotherapy to evoke successful antitumor immune responses has been well documented over the past decade. Despite abundant preclinical data, it is only with the recent approval by the Food and Drug Administration (FDA) of the drugs such as sipuleucel-T and ipilimumab that immunotherapy is finally being recognized as a viable alternative to traditional therapies for treatment of various cancers. Despite the ability of immunotherapy to elicit successful antitumor immune responses, its efficacy is hindered by several factors. Among these are the paucity of tumor-associated antigens (TAA) that can be used as effective targets and the systemic toxicities that often lead to treatment interruption. Indeed, such adverse effects, which can be immunological and/or parenchymal, can be particularly severe and even fatal to some patients. A family of TAA called cancer-testis antigens (CTA) has been identified and their encoding genes have been extensively investigated. CTA expression has been demonstrated in a variety of human cancer tissues, and at least 19 CTA have been found to elicit humoral and/or cellular immune responses in cancer patients. Here we discuss how CTA and immunotherapy will most likely play a major role in the cure of cancer in the light of cancer complexity.
Collapse
Affiliation(s)
- F Grizzi
- Humanitas Clinical and Research Center , Rozzano, Milan , Italy
| | | | | | | | | | | |
Collapse
|
176
|
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, Konala V, Aulakh A, Littlefield L, Grizzi F, Rahman RL, Jenkins MR, Musgrove B, Radhi S, D'Cunha N, D'Cunha LN, Hermonat PL, Cobos E, Chiriva-Internati M. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol 2015; 34:154-187. [PMID: 25901860 DOI: 10.3109/08830185.2015.1018419] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.
Collapse
Affiliation(s)
- Jose A Figueroa
- Division of Hematology and Oncology, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Héninger E, Krueger TEG, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6:29. [PMID: 25699047 PMCID: PMC4316783 DOI: 10.3389/fimmu.2015.00029] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Erika Héninger
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA ; Department of Medicine, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
178
|
Zhang YE, Long M. New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genet Dev 2014; 29:90-6. [PMID: 25218862 PMCID: PMC4631527 DOI: 10.1016/j.gde.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022]
Abstract
New genes in human genomes have been found relevant in evolution and biology of humans. It was conservatively estimated that the human genome encodes more than 300 human-specific genes and 1000 primate-specific genes. These new arrivals appear to be implicated in brain function and male reproduction. Surprisingly, increasing evidence indicates that they may also bring negative pleiotropic effects, while assuming various possible biological functions as sources of phenotypic novelties, suggesting a non-progressive route for functional evolution. Similar to these fixed new genes, polymorphic new genes were found to contribute to functional evolution within species, for example, with respect to digestion or disease resistance, revealing that new genes can acquire new or diverged functions in its initial stage as prototypic genes. These progresses have provided new opportunities to explore the genetic basis of human biology and human evolutionary history in a new dimension.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, USA.
| |
Collapse
|
179
|
Silveira SM, da Cunha IW, Marchi FA, Busso AF, Lopes A, Rogatto SR. Genomic screening of testicular germ cell tumors from monozygotic twins. Orphanet J Rare Dis 2014; 9:181. [PMID: 25424124 PMCID: PMC4254261 DOI: 10.1186/s13023-014-0181-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) account for 1-2% of all tumors in young and middle aged men. A 75-fold increase in TCGT development has been reported for monozygotic (MZ) twins. Therefore, the occurrence of simultaneous tumors in MZ twins emphasizes the importance of genetic factors that influence the risk of developing these tumors. Genomic screening was performed for one family containing MZ twins with testicular germ cell tumors, in order to define alterations associated with risk of tumor development. METHODS Copy number alterations were evaluated using array-CGH (4x44K, Agilent Technologies) in one seminoma and one embryonal carcinoma (EC) from MZ twins. In addition, genomic alterations from the tumors and peripheral blood cells of the twins were compared to the parental genomes via their peripheral blood cells. RESULTS Embryonal carcinoma (Twin-1 t) presented a lower frequency of genomic alterations compared to the seminoma (Twin-2 t). One minimal common region of loss was observed in 9p13.1-p12 in the comparison between DNA from blood samples for Twin-1 and Twin-2. In this region is mapped the CNTNAP3 gene which was confirmed as involved in losses by qPCR. Comparative analysis of novel CNVs between the Twin-1 t and Twin-2 t showed five minimal common regions involving gain at chromosomes 12 (12p12.3-p11.1 and 12p13.33-p12.3), while losses were observed at 10p15.3-p15.2, 13q21.1-q21.2 and 15q11.1-q11.2. In addition, one exclusive rare copy number alteration was detected in Twin-1 t and Twin-2 t, and 19 novel alterations were identified in the Twin-2 t. CONCLUSION Distinct genomic profiles for MZ twins with phenotypically different TGCT were described. Of particular interest, 12p gains were detected exclusively in tumor samples. In peripheral blood samples, loss of 9p13.1-p12 was the unique novel CNV shared by the twins, confirming the involvement of CNTNAP3 gene in TGCTs development. Although similar CNV profiles were shared by both the peripheral blood and tumor samples of the twins, tumor-specific CNV loci were identified for seminoma and non-seminomatous tumors. These findings suggest the presence of de novo germline structural alterations and TGCT predisposition.
Collapse
Affiliation(s)
| | | | - Fabio Albuquerque Marchi
- Institute of Mathematics and Statistics, Inter-Institutional Program on Bioinformatics, USP, São Paulo, Brazil.
| | | | - Ademar Lopes
- Nucleus of Sarcoma, Department of Pelvic Surgery, A.C. Camargo Cancer Center, São Paulo, Brazil.
| | - Silvia Regina Rogatto
- Neogene Laboratory, CIPE, A. C. Camargo Cancer Center, São Paulo, Brazil. .,Department of Urology, Faculty of Medicine, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
180
|
Identification of a class of human cancer germline genes with transcriptional silencing refractory to the hypomethylating drug 5-aza-2'-deoxycytidine. Oncoscience 2014; 1:745-50. [PMID: 25594001 PMCID: PMC4278271 DOI: 10.18632/oncoscience.95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022] Open
Abstract
Bona fide germline genes have expression restricted to the germ cells of the gonads. Testis-specific germline development-associated genes can become activated in cancer cells and can potentially drive the oncogenic process and serve as therapeutic/biomarker targets; such germline genes are referred to as cancer/testis genes. Many cancer/testis genes are silenced via hypermethylation of CpG islands in their associated transcriptional control regions and become activated upon treatment with DNA hypomethylating agents; such hypomethylation-induced activation of cancer/testis genes provides a potential combination approach to augment immunotherapeutics. Thus, understanding cancer/testis gene regulation is of increasing clinical importance. Previously studied cancer/testis gene activation has focused on X chromosome encoded cancer/testis genes. Here we find that a sub-set of non-X encoded cancer/testis genes are silenced in non-germline cells via a mechanism that is refractory to epigenetic dysregulation, including treatment with the hypomethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor tricostatin A. These findings formally indicate that there is a sub-group of the clinically important cancer/testis genes that are unlikely to be activated in clinical therapeutic approaches using hypomethylating agents and it indicates a unique transcriptional silencing mechanism for germline genes in non-germline cells that might provide a target mechanism for new clinical therapies.
Collapse
|
181
|
Shang B, Gao A, Pan Y, Zhang G, Tu J, Zhou Y, Yang P, Cao Z, Wei Q, Ding Y, Zhang J, Zhao Y, Zhou Q. CT45A1 acts as a new proto-oncogene to trigger tumorigenesis and cancer metastasis. Cell Death Dis 2014; 5:e1285. [PMID: 24901056 PMCID: PMC4611718 DOI: 10.1038/cddis.2014.244] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Cancer/testis antigen (CTA)-45 family (CT45) belongs to a new family of genes in phylogenetics and is absent in normal tissues except for testis, but is aberrantly overexpressed in various cancer types. Whether CT45 and other CTAs act as proto-oncogenes has not been determined. Using breast cancer as a model, we found that CT45A1, a representative CT45 family member, alone had a weak tumorigenic effect. However, its neoplastic potency was greatly enhanced in the presence of growth factors. Overexpression of CT45A1 in breast cancer cells markedly upregulated various oncogenic and metastatic genes, constitutively activated ERK and CREB signaling pathways, promoted epithelial-mesenchymal transition, and increased cell stemness, tumorigenesis, invasion, and metastasis, whereas silencing CT45A1 significantly reduced cancer cell migration and invasion. We propose that CT45A1 functions as a novel proto-oncogene to trigger oncogenesis and metastasis. CT45A1 and other CT45 members are therefore excellent targets for anticancer drug discovery and targeted tumor therapy, and valuable genes in the study of a molecular phylogenetic tree.
Collapse
Affiliation(s)
- B Shang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - A Gao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Pan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - G Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Tu
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - P Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Z Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Ding
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
182
|
Sammut SJ, Feichtinger J, Stuart N, Wakeman JA, Larcombe L, McFarlane RJ. A novel cohort of cancer-testis biomarker genes revealed through meta-analysis of clinical data sets. Oncoscience 2014; 1:349-359. [PMID: 25594029 PMCID: PMC4278308 DOI: 10.18632/oncoscience.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer-specific biomolecules is of fundamental importance to the development of diagnostic and/or prognostic markers, which may also serve as therapeutic targets. Some antigenic proteins are only normally present in male gametogenic tissues in the testis and not in normal somatic cells. When these proteins are aberrantly produced in cancer they are referred to as cancer/testis (CT) antigens (CTAs). Some CTA genes have been proven to encode immunogenic proteins that have been used as successful immunotherapy targets for various forms of cancer and have been implicated as drug targets. Here, a targeted in silico analysis of cancer expressed sequence tag (EST) data sets resulted in the identification of a significant number of novel CT genes. The expression profiles of these genes were validated in a range of normal and cancerous cell types. Subsequent meta-analysis of gene expression microarray data sets demonstrates that these genes are clinically relevant as cancer-specific biomarkers, which could pave the way for the discovery of new therapies and/or diagnostic/prognostic monitoring technologies.
Collapse
Affiliation(s)
| | - Julia Feichtinger
- Institute for Knowledge Discovery, Graz University of Technology, Austria.,Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Austria
| | | | - Jane A Wakeman
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Lee Larcombe
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, Bangor University, Bangor, UK.,NISCHR Cancer Genetics Biomedical Research Unit
| |
Collapse
|
183
|
Zeng J, Nagrajan HK, Yi SV. Fundamental diversity of human CpG islands at multiple biological levels. Epigenetics 2014; 9:483-91. [PMID: 24419148 PMCID: PMC4121359 DOI: 10.4161/epi.27654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CpG islands (CGIs) are commonly used as genomic markers to study the patterns and regulatory consequences of DNA methylation. Interestingly, recent studies reveal a substantial diversity among CGIs: long and short CGIs, for example, exhibit contrasting patterns of gene expression complexity and nucleosome occupancy. Evolutionary origins of CGIs are also highly heterogeneous. In order to systematically evaluate potential diversities among CGIs and ultimately to illuminate the link between diversity of CGIs and their epigenetic variation, we analyzed the nucleotide-resolution DNA methylation maps (methylomes) of multiple cellular origins. We discover novel ‘clusters’ of CGIs according to their patterns of DNA methylation; the stably hypomethylated CGI cluster (cluster I), sperm-hypomethylated CGI cluster (cluster II), and variably methylated CGI cluster (cluster III). These epigenomic CGI clusters are strikingly distinct at multiple biological features including genomic, evolutionary, and functional characteristics. At the genomic level, the stably hypomethylated CGI cluster tends to be longer and harbors many more CpG dinucleotides than those in other clusters. They are also frequently associated with promoters, while CGI clusters II and III mostly reside in intragenic or intergenic regions and exhibit highly tissue-specific DNA methylation. Functional ontology terms and transcriptional profiles co-vary with CGI clusters, indicating that the regulatory functions of CGIs are tightly linked to their heterogeneity. Finally, CGIs associated with distinctive biological processes, such as diseases, aging, and imprinting, occur disproportionately across CGI clusters. These new findings provide an effective means to combine existing knowledge on CGIs into a genomic context while bringing new insights that elucidate the significance of DNA methylation across different biological conditions and demography.
Collapse
Affiliation(s)
- Jia Zeng
- School of Biology; Georgia Institute of Technology; Atlanta, GA USA
| | - Hema K Nagrajan
- School of Biology; Georgia Institute of Technology; Atlanta, GA USA
| | - Soojin V Yi
- School of Biology; Georgia Institute of Technology; Atlanta, GA USA
| |
Collapse
|