151
|
A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Sci Rep 2015; 5:18190. [PMID: 26643979 PMCID: PMC4672292 DOI: 10.1038/srep18190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022] Open
Abstract
Cell division in bacteria is an essential process that is carried out at mid-cell by a group of cell division proteins referred to as the divisome. In Escherichia coli, over two dozen cell division proteins have been identified of which ten are essential. These division proteins localize sequentially and interdependently to the division site, after which constriction eventually produces two daughter cells. Various genetic and biochemical techniques have identified many interactions amongst cell division proteins, however the existence of the divisome as a large multi-protein complex has never been shown. Here, we identify a 1 MDa protein complex by native page that contains seven essential cell division proteins (FtsZ, ZipA, FtsK, FtsQ, FtsB, FtsL, and FtsN). The 1 MDa complex is present in rapidly dividing cells, but absent when cultures enter the stationary growth phase. Slight overexpression of the ftsQ D237N mutation that blocks cell division prevents formation of this 1 MDa complex. In cells depleted of FtsN, the 1 MDa complex is not assembled. Combined, our findings indicate that a large protein complex containing many different cell division proteins indeed exists. We note that this complex is very fragile and sensitive to the expression of tagged versions of FtsQ.
Collapse
|
152
|
Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. J Cell Biol 2015; 211:653-68. [PMID: 26553932 PMCID: PMC4639868 DOI: 10.1083/jcb.201504073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
Collapse
Affiliation(s)
- Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
153
|
Gulbronson CJ, Ribardo DA, Balaban M, Knauer C, Bange G, Hendrixson DR. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol 2015; 99:291-306. [PMID: 26411371 DOI: 10.1111/mmi.13231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.
Collapse
Affiliation(s)
- Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Murat Balaban
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carina Knauer
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) and Department of Chemistry, Philipps University Marburg, 35403, Marburg, Germany
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
154
|
Schulte JB, Zeto RW, Roundy D. Theoretical Prediction of Disrupted Min Oscillation in Flattened Escherichia coli. PLoS One 2015; 10:e0139813. [PMID: 26457805 PMCID: PMC4601790 DOI: 10.1371/journal.pone.0139813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/16/2015] [Indexed: 11/18/2022] Open
Abstract
The dynamics of the Min-protein system help Escherichia coli regulate the process of cell division by identifying the center of the cell. While this system exhibits robust bipolar oscillations in wild-type cell shapes, recent experiments have shown that when the cells are mechanically deformed into wide, flattened out, irregular shapes, the spatial regularity of these oscillations breaks down. We employ widely used stochastic and deterministic models of the Min system to simulate cells with flattened shapes. The deterministic model predicts strong bipolar oscillations, in contradiction with the experimentally observed behavior, while the stochastic model, which is based on the same reaction-diffusion equations, predicts more spatially irregular oscillations. We further report simulations of flattened but more symmetric shapes, which suggest that the flattening and lateral expansion may contribute as much to the irregular oscillation behavior as the asymmetry of the cell shapes.
Collapse
Affiliation(s)
- Jeff B. Schulte
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Rene W. Zeto
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Roundy
- Dept. of Physics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
155
|
Park KT, Du S, Lutkenhaus J. MinC/MinD copolymers are not required for Min function. Mol Microbiol 2015; 98:895-909. [PMID: 26268537 DOI: 10.1111/mmi.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD, and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild-type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild-type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
156
|
Haselwandter CA, Kardar M, Triller A, da Silveira RA. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032705. [PMID: 26465496 DOI: 10.1103/physreve.92.032705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antoine Triller
- IBENS, Institute of Biology at Ecole Normale Supérieure, Inserm U1024, CNRS UMR5197, 46 rue d'Ulm, 75005 Paris, France
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, France
| |
Collapse
|
157
|
Tu Y, Zhang Z, Li D, Li H, Dong J, Wang T. Potato virus Y HC-Pro Reduces the ATPase Activity of NtMinD, Which Results in Enlarged Chloroplasts in HC-Pro Transgenic Tobacco. PLoS One 2015; 10:e0136210. [PMID: 26309250 PMCID: PMC4550256 DOI: 10.1371/journal.pone.0136210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Potato virus Y (PVY) is an important plant virus and causes great losses every year. Viral infection often leads to abnormal chloroplasts. The first step of chloroplast division is the formation of FtsZ ring (Z-ring), and the placement of Z-ring is coordinated by the Min system in both bacteria and plants. In our lab, the helper-component proteinase (HC-Pro) of PVY was previously found to interact with the chloroplast division protein NtMinD through a yeast two-hybrid screening assay and a bimolecular fluorescence complementation (BiFC) assay in vivo. Here, we further investigated the biological significance of the NtMinD/HC-Pro interaction. We purified the NtMinD and HC-Pro proteins using a prokaryotic protein purification system and tested the effect of HC-Pro on the ATPase activity of NtMinD in vitro. We found that the ATPase activity of NtMinD was reduced in the presence of HC-Pro. In addition, another important chloroplast division related protein, NtMinE, was cloned from the cDNA of Nicotiana tabacum. And the NtMinD/NtMinE interaction site was mapped to the C-terminus of NtMinD, which overlaps the NtMinD/HC-Pro interaction site. Yeast three-hybrid assay demonstrated that HC-Pro competes with NtMinE for binding to NtMinD. HC-Pro was previously reported to accumulate in the chloroplasts of PVY-infected tobacco and we confirmed this result in our present work. The NtMinD/NtMinE interaction is very important in the regulation of chloroplast division. To demonstrate the influence of HC-Pro on chloroplast division, we generated HC-Pro transgenic tobacco with a transit peptide to retarget HC-Pro to the chloroplasts. The HC-Pro transgenic plants showed enlarged chloroplasts. Our present study demonstrated that the interaction between HC-Pro and NtMinD interfered with the function of NtMinD in chloroplast division, which results in enlarged chloroplasts in HC-Pro transgenic tobacco. The HC-Pro/NtMinD interaction may cause the formation of abnormal chloroplasts in PVY-infected plants.
Collapse
Affiliation(s)
- Yayi Tu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Daofeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Heng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
158
|
Abstract
It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.
Collapse
Affiliation(s)
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
159
|
Hersch M, Hachet O, Dalessi S, Ullal P, Bhatia P, Bergmann S, Martin SG. Pom1 gradient buffering through intermolecular auto-phosphorylation. Mol Syst Biol 2015; 11:818. [PMID: 26150232 PMCID: PMC4547846 DOI: 10.15252/msb.20145996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Hachet
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sascha Dalessi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Payal Bhatia
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
160
|
Hernández-Rocamora VM, Alfonso C, Margolin W, Zorrilla S, Rivas G. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits. J Biol Chem 2015; 290:20325-35. [PMID: 26124275 DOI: 10.1074/jbc.m115.653329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection.
Collapse
Affiliation(s)
- Víctor M Hernández-Rocamora
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Carlos Alfonso
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - William Margolin
- the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Silvia Zorrilla
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| | - Germán Rivas
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain and
| |
Collapse
|
161
|
Robert L. Size sensors in bacteria, cell cycle control, and size control. Front Microbiol 2015; 6:515. [PMID: 26074903 PMCID: PMC4448035 DOI: 10.3389/fmicb.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/09/2015] [Indexed: 12/18/2022] Open
Abstract
Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.
Collapse
Affiliation(s)
- Lydia Robert
- UMR1319 Micalis, Institut National de la Recherche AgronomiqueJouy-en-Josas, France
- UMR Micalis, AgroParisTechJouy-en-Josas, France
- Laboratoire Jean Perrin (Université Pierre et Marie Curie-Centre National de la Recherche Scientifique UMR8237), Université Pierre et Marie CurieParis, France
| |
Collapse
|
162
|
Beaufay F, Coppine J, Mayard A, Laloux G, De Bolle X, Hallez R. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 2015; 34:1786-800. [PMID: 25953831 DOI: 10.15252/embj.201490730] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/21/2015] [Indexed: 11/09/2022] Open
Abstract
Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability.
Collapse
Affiliation(s)
- François Beaufay
- Bacterial Cell Cycle & Development (BCcD), URBM, University of Namur, Namur, Belgium
| | - Jérôme Coppine
- Bacterial Cell Cycle & Development (BCcD), URBM, University of Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell Cycle & Development (BCcD), URBM, University of Namur, Namur, Belgium
| | - Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Xavier De Bolle
- Bacterial Cell Cycle & Development (BCcD), URBM, University of Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell Cycle & Development (BCcD), URBM, University of Namur, Namur, Belgium
| |
Collapse
|
163
|
Cabré EJ, Monterroso B, Alfonso C, Sánchez-Gorostiaga A, Reija B, Jiménez M, Vicente M, Zorrilla S, Rivas G. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity. PLoS One 2015; 10:e0126434. [PMID: 25950808 PMCID: PMC4423959 DOI: 10.1371/journal.pone.0126434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ.
Collapse
Affiliation(s)
- Elisa J. Cabré
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Belén Reija
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mercedes Jiménez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail: (GR); (SZ)
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail: (GR); (SZ)
| |
Collapse
|
164
|
Männik J, Bailey MW. Spatial coordination between chromosomes and cell division proteins in Escherichia coli. Front Microbiol 2015; 6:306. [PMID: 25926826 PMCID: PMC4396457 DOI: 10.3389/fmicb.2015.00306] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
Abstract
To successfully propagate, cells need to coordinate chromosomal replication and segregation with cell division to prevent formation of DNA-less cells and cells with damaged DNA. Here, we review molecular systems in Escherichia coli that are known to be involved in positioning the divisome and chromosome relative to each other. Interestingly, this well-studied micro-organism has several partially redundant mechanisms to achieve this task; none of which are essential. Some of these systems determine the localization of the divisome relative to chromosomes such as SlmA-dependent nucleoid occlusion, some localize the chromosome relative to the divisome such as DNA translocation by FtsK, and some are likely to act on both systems such as the Min system and newly described Ter linkage. Moreover, there is evidence that E. coli harbors other divisome-chromosome coordination systems in addition to those known. The review also discusses the minimal requirements of coordination between chromosomes and cell division proteins needed for cell viability. Arguments are presented that cells can propagate without any dedicated coordination between their chromosomes and cell division machinery at the expense of lowered fitness.
Collapse
Affiliation(s)
- Jaan Männik
- Department of Physics and Astronomy, University of Tennessee , Knoxville, TN, USA ; Department of Biochemistry and Molecular and Cellular Biology, University of Tennessee , Knoxville, TN, USA
| | - Matthew W Bailey
- Department of Physics and Astronomy, University of Tennessee , Knoxville, TN, USA
| |
Collapse
|
165
|
FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proc Natl Acad Sci U S A 2015; 112:E2130-8. [PMID: 25848052 DOI: 10.1073/pnas.1414242112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoskeletal structures are dynamically remodeled with the aid of regulatory proteins. FtsZ (filamentation temperature-sensitive Z) is the bacterial homolog of tubulin that polymerizes into rings localized to cell-division sites, and the constriction of these rings drives cytokinesis. Here we investigate the mechanism by which the Bacillus subtilis cell-division inhibitor, MciZ (mother cell inhibitor of FtsZ), blocks assembly of FtsZ. The X-ray crystal structure reveals that MciZ binds to the C-terminal polymerization interface of FtsZ, the equivalent of the minus end of tubulin. Using in vivo and in vitro assays and microscopy, we show that MciZ, at substoichiometric levels to FtsZ, causes shortening of protofilaments and blocks the assembly of higher-order FtsZ structures. The findings demonstrate an unanticipated capping-based regulatory mechanism for FtsZ.
Collapse
|
166
|
Modeling large-scale dynamic processes in the cell: polarization, waves, and division. Q Rev Biophys 2015; 47:221-48. [PMID: 25124728 DOI: 10.1017/s0033583514000079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.
Collapse
|
167
|
An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 2015; 112:10239-46. [PMID: 25831547 DOI: 10.1073/pnas.1421392112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
Collapse
|
168
|
Bramkamp M. Following the equator: division site selection in Streptococcus pneumoniae. Trends Microbiol 2015; 23:121-2. [PMID: 25684260 DOI: 10.1016/j.tim.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
The mechanisms that spatially regulate cytokinesis are more diverse than initially thought. In two recent publications a positive regulator of FtsZ positioning has been identified in Streptococcus pneumoniae. MapZ (LocZ) connects the division machinery with cell wall elongation, providing a simple mechanism to ensure correct division site selection.
Collapse
Affiliation(s)
- Marc Bramkamp
- Ludwig-Maximilians-University Munich, Faculty of Biology, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
169
|
Jacquier N, Viollier PH, Greub G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 2015; 39:262-75. [PMID: 25670734 DOI: 10.1093/femsre/fuv001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine / CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
170
|
Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. ACTA ACUST UNITED AC 2015; 56:977-91. [DOI: 10.1093/pcp/pcv024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
|
171
|
Zamparo M, Chianale F, Tebaldi C, Cosentino-Lagomarsino M, Nicodemi M, Gamba A. Dynamic membrane patterning, signal localization and polarity in living cells. SOFT MATTER 2015; 11:838-849. [PMID: 25563791 DOI: 10.1039/c4sm02157f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review the molecular and physical aspects of the dynamic localization of signaling molecules on the plasma membranes of living cells. At the nanoscale, clusters of receptors and signaling proteins play an essential role in the processing of extracellular signals. At the microscale, "soft" and highly dynamic signaling domains control the interaction of individual cells with their environment. At the multicellular scale, individual polarity patterns control the forces that shape multicellular aggregates and tissues.
Collapse
Affiliation(s)
- M Zamparo
- Human Genetics Foundation - Torino, Italy.
| | | | | | | | | | | |
Collapse
|
172
|
Pichoff S, Du S, Lutkenhaus J. The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Mol Microbiol 2015; 95:971-87. [PMID: 25496259 DOI: 10.1111/mmi.12907] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
Assembly of the divisome in Escherichia coli occurs in two temporally distinct steps. First, FtsZ filaments attached to the membrane through interaction with FtsA and ZipA coalesce into a Z ring at midcell. Then, additional proteins are recruited to the Z ring in a hierarchical manner to form a complete divisome, activated by the arrival of FtsN. Recently, we proposed that the interaction of FtsA with itself competes with its ability to recruit downstream division proteins (both require the IC domain of FtsA) and ZipA's essential function is to promote the formation of FtsA monomers. Here, we tested whether overexpression of a downstream division protein could make ZipA dispensable, presumably by shifting the FtsA equilibrium to monomers. Only overexpression of FtsN bypassed ZipA and a conserved motif in the cytoplasmic domain of FtsN was required for both the bypass and interaction with FtsA. Also, this cytoplasmic motif had to be linked to the periplasmic E domain of FtsN to bypass ZipA, indicating that linkage of FtsA to periplasmic components of the divisome through FtsN was essential under these conditions. These results are used to further elaborate our model for the role of FtsA in recruiting downstream division proteins.
Collapse
Affiliation(s)
- Sebastien Pichoff
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
173
|
Abstract
To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.
Collapse
Affiliation(s)
- David William Adams
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
174
|
Zieske K, Schwille P. Reconstituting geometry-modulated protein patterns in membrane compartments. Methods Cell Biol 2015; 128:149-63. [DOI: 10.1016/bs.mcb.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
175
|
Broughton CE, Roper DI, Van Den Berg HA, Rodger A. Bacterial cell division: experimental and theoretical approaches to the divisome. Sci Prog 2015; 98:313-45. [PMID: 26790174 PMCID: PMC10365498 DOI: 10.3184/003685015x14461391862881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.
Collapse
|
176
|
He Z, Liu Z, Guo K, Ding L. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis. Phys Chem Chem Phys 2015; 17:31966-77. [DOI: 10.1039/c5cp00183h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell morphodynamics during bacterial cytokinesis is extensively investigated by a combination of phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance.
Collapse
Affiliation(s)
- Zi He
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Zhuan Liu
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Kunkun Guo
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Lina Ding
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
177
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
178
|
Du S, Park KT, Lutkenhaus J. Oligomerization of FtsZ converts the FtsZ tail motif (conserved carboxy-terminal peptide) into a multivalent ligand with high avidity for partners ZipA and SlmA. Mol Microbiol 2014; 95:173-88. [PMID: 25382687 DOI: 10.1111/mmi.12854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2014] [Indexed: 01/06/2023]
Abstract
A short conserved motif located at the carboxy terminus of FtsZ, referred to here as the CCTP (conserved carboxy-terminal peptide), is required for the interaction of FtsZ with many of its partners. In Escherichia coli interaction of FtsZ with its membrane anchors, ZipA and FtsA, as well as the spatial regulators of Z-ring formation, MinC and SlmA, requires the CCTP. ZipA interacts with FtsZ with high affinity and interacts with the CCTP with low affinity, but the reason for this difference is not clear. In this study, we show that this difference is due to the oligomerization of FtsZ converting the CCTP to a multivalent ligand that binds multiple ZipAs bound to a surface with high avidity. Artificial dimerization of the CCTP is sufficient to increase the affinity for ZipA in vitro. Similar principles apply to the interaction of FtsZ with SlmA. Although done in vitro, these results have implications for the recruitment of FtsZ to the membrane in vivo, the interaction of FtsZ with spatial regulators and the reconstitution of FtsZ systems in vitro.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | |
Collapse
|
179
|
MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 2014; 5:5341. [PMID: 25500731 PMCID: PMC4338524 DOI: 10.1038/ncomms6341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/20/2014] [Indexed: 11/28/2022] Open
Abstract
During bacterial cell division, filaments of the tubulin-like protein FtsZ assemble at midcell to form the cytokinetic Z-ring. Its positioning is regulated by the oscillation of MinCDE proteins. MinC is activated by MinD through an unknown mechanism and prevents Z-ring assembly anywhere but midcell. Here, using X-ray crystallography, electron microscopy and in vivo analyses we show that MinD activates MinC by forming a new class of alternating copolymeric filaments that show similarity to eukaryotic septin filaments A non-polymerising mutation in MinD causes aberrant cell division in E. coli. MinCD copolymers bind to membrane, interact with FtsZ, and are disassembled by MinE. Imaging a functional msfGFP-MinC fusion protein in MinE deleted cells reveals filamentous structures. EM imaging of our reconstitution of the MinCD-FtsZ interaction on liposome surfaces reveals a plausible mechanism for regulation of FtsZ ring assembly by MinCD copolymers.
Collapse
|
180
|
Conti J, Viola MG, Camberg JL. The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide. FEBS Lett 2014; 589:201-6. [PMID: 25497011 DOI: 10.1016/j.febslet.2014.11.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022]
Abstract
The Min system of proteins, consisting of MinC, MinD and MinE, is essential for normal cell division in Escherichia coli. MinC forms a polar gradient to restrict placement of the division septum to midcell. MinC localization occurs through a direct interaction with MinD, a membrane-associating Par-like ATPase. MinE stimulates ATP hydrolysis by MinD, thereby releasing MinD from the membrane. Here, we show that MinD forms polymers with MinC and ATP without the addition of phospholipids. The topological regulator MinE induces disassembly of MinCD polymers. Two MinD mutant proteins, MinD(K11A) and MinD(ΔMTS15), are unable to form polymers with MinC.
Collapse
Affiliation(s)
- Joseph Conti
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Marissa G Viola
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA; Department of Nutrition and Food Sciences, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
181
|
Jeoung JH, Goetzl S, Hennig SE, Fesseler J, Wörmann C, Dendra J, Dobbek H. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation. Biol Chem 2014; 395:545-58. [PMID: 24477517 DOI: 10.1515/hsz-2013-0290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/15/2022]
Abstract
The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO2) to build the acetyl-group of acetyl-CoA. Productive utilization of CO2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. This allows the coupling of ATP binding and hydrolysis to electron transfer against a redox potential gradient and metal incorporation to (re)activate one of the central players of the pathway. This review gives an overview about our current knowledge on how these ATPases achieve their tasks of maturation and reductive activation.
Collapse
|
182
|
Rashkov P, Schmitt BA, Keilberg D, Beck K, Søgaard-Andersen L, Dahlke S. A model for spatio-temporal dynamics in a regulatory network for cell polarity. Math Biosci 2014; 258:189-200. [PMID: 25445576 DOI: 10.1016/j.mbs.2014.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Cell polarity in Myxococcus xanthus is crucial for the directed motility of individual cells. The polarity system is characterised by a dynamic spatio-temporal localisation of the regulatory proteins MglA and MglB at opposite cell poles. In response to signalling by the Frz chemosensory system, MglA and MglB are released from the poles and then rebind at the opposite poles. Thus, over time MglA and MglB oscillate irregularly between the poles in synchrony but out of phase. A minimal macroscopic model of the Mgl/Frz regulatory system based on a reaction-diffusion PDE system is presented. Mathematical analysis of the steady states derives conditions on the reaction terms for formation of dynamic localisation patterns of the regulatory proteins under different biologically-relevant regimes, i.e. with and without Frz signalling. Numerical simulations of the model system produce either a stationary pattern in time (fixed polarity), periodic solutions in time (oscillating polarity), or excitable behaviour (irregular switching of polarity).
Collapse
Affiliation(s)
- Peter Rashkov
- Department of Mathematics and Informatics, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany.
| | - Bernhard A Schmitt
- Department of Mathematics and Informatics, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany
| | - Daniela Keilberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | | | - Lotte Søgaard-Andersen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Stephan Dahlke
- Department of Mathematics and Informatics, Philipps-Universität Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany
| |
Collapse
|
183
|
Stylianidou S, Kuwada NJ, Wiggins PA. Cytoplasmic dynamics reveals two modes of nucleoid-dependent mobility. Biophys J 2014; 107:2684-92. [PMID: 25468347 DOI: 10.1016/j.bpj.2014.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
It has been proposed that forces resulting from the physical exclusion of macromolecules from the bacterial nucleoid play a central role in organizing the bacterial cell, yet this proposal has not been quantitatively tested. To investigate this hypothesis, we mapped the generic motion of large protein complexes in the bacterial cytoplasm through quantitative analysis of thousands of complete cell-cycle trajectories of fluorescently tagged ectopic MS2-mRNA complexes. We find the motion of these complexes in the cytoplasm is strongly dependent on their spatial position along the long axis of the cell, and that their dynamics are consistent with a quantitative model that requires only nucleoid exclusion and membrane confinement. This analysis also reveals that the nucleoid increases the mobility of MS2-mRNA complexes, resulting in a fourfold increase in diffusion coefficients between regions of the lowest and highest nucleoid density. These data provide strong quantitative support for two modes of nucleoid action: the widely accepted mechanism of nucleoid exclusion in organizing the cell and a newly proposed mode, in which the nucleoid facilitates rapid motion throughout the cytoplasm.
Collapse
Affiliation(s)
| | - Nathan J Kuwada
- Department of Physics, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington; Department of Microbiology, University of Washington, Seattle, Washington.
| |
Collapse
|
184
|
A beacon for bacterial tubulin. Nature 2014; 516:175-6. [DOI: 10.1038/nature14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Kuwada NJ, Traxler B, Wiggins PA. Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 2014; 95:64-79. [PMID: 25353361 PMCID: PMC4309519 DOI: 10.1111/mmi.12841] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacterial cells display both spatial and temporal organization, and this complex structure is known to play a central role in cellular function. Although nearly one-fifth of all proteins in Escherichia coli localize to specific subcellular locations, fundamental questions remain about how cellular-scale structure is encoded at the level of molecular-scale interactions. One significant limitation to our understanding is that the localization behavior of only a small subset of proteins has been characterized in detail. As an essential step toward a global model of protein localization in bacteria, we capture and quantitatively analyze spatial and temporal protein localization patterns throughout the cell cycle for nearly every protein in E. coli that exhibits nondiffuse localization. This genome-scale analysis reveals significant complexity in patterning, notably in the behavior of DNA-binding proteins. Complete cell-cycle imaging also facilitates analysis of protein partitioning to daughter cells at division, revealing a broad and robust assortment of asymmetric partitioning behaviors.
Collapse
Affiliation(s)
- Nathan J Kuwada
- Department of Physics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
186
|
Oscillatory AAA+ ATPase Knk1 constitutes a novel morphogenetic pathway in fission yeast. Proc Natl Acad Sci U S A 2014; 111:17899-904. [PMID: 25422470 DOI: 10.1073/pnas.1407226111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips. Through genetic analysis, we place Knk1 into a novel pathway controlling cell shape independently of MTs and Tea1. Knk1 localizes at cell tips. Its localization is mediated by the Knk1 N terminus and is enhanced upon ATP binding to the C-terminal ATPase domain. Furthermore, Knk1 tip recruitment is regulated by SRC-like adaptor 2 (Sla2) and cell division cycle 42 (Cdc42) independently of Sla2's role in endocytosis. Finally, we discovered that Knk1 shows an anticorrelated oscillatory behavior between the two cell tips at a periodicity that is different from the reported oscillatory Cdc42 dynamics.
Collapse
|
187
|
Zieske K, Schwille P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 2014; 3. [PMID: 25271375 PMCID: PMC4215534 DOI: 10.7554/elife.03949] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular protein gradients are significant determinants of spatial organization. However, little is known about how protein patterns are established, and how their positional information directs downstream processes. We have accomplished the reconstitution of a protein concentration gradient that directs the assembly of the cell division machinery in E.coli from the bottom-up. Reconstituting self-organized oscillations of MinCDE proteins in membrane-clad soft-polymer compartments, we demonstrate that distinct time-averaged protein concentration gradients are established. Our minimal system allows to study complex organizational principles, such as spatial control of division site placement by intracellular protein gradients, under simplified conditions. In particular, we demonstrate that FtsZ, which marks the cell division site in many bacteria, can be targeted to the middle of a cell-like compartment. Moreover, we show that compartment geometry plays a major role in Min gradient establishment, and provide evidence for a geometry-mediated mechanism to partition Min proteins during bacterial development.
Collapse
Affiliation(s)
- Katja Zieske
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| |
Collapse
|
188
|
Tan D, Wu Q, Chen JC, Chen GQ. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 2014; 26:34-47. [PMID: 25217798 DOI: 10.1016/j.ymben.2014.09.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacI(q)-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4-6 mol% 3-hydroxyvalerate or 3 HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.
Collapse
Affiliation(s)
- Dan Tan
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
189
|
Abstract
Cell polarization is fundamental to many cellular processes, including cell differentiation, cell motility and cell fate determination. A key regulatory enzyme in the control of cell morphogenesis is the conserved Rho GTPase Cdc42, which breaks symmetry via self-amplifying positive-feedback mechanisms. Additional mechanisms of control, including competition between different sites of polarized cell growth and time-delayed negative feedback, define a cellular-level system that promotes Cdc42 oscillatory dynamics and modulates activated Cdc42 intracellular distribution.
Collapse
|
190
|
Characterization of a Corynebacterium glutamicum dnaB mutant that shows temperature-sensitive growth and mini-cell formation. Arch Microbiol 2014; 196:871-9. [PMID: 25141796 DOI: 10.1007/s00203-014-1026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Corynebacterium glutamicum is known to perform a unique form of cell division called post-fission snapping division. In order to investigate the mechanism of cell division of this bacterium, we isolated temperature-sensitive mutants from C. glutamicum wild-type strain ATCC 31831, and found that one of them, M45, produced high frequencies of mini-cells with no nucleoids. Cell pairs composed of an elongated cell, with one nucleoid, connected to a mini-cell, with no nucleoids, were occasionally observed. The temperature sensitivity and mini-cell formation of M45 was complemented by a 2-kb DraI-EcoRI fragment derived from the ATCC 31831 chromosomal DNA, which carried a dnaB homolog encoding a replicative DNA helicase. DNA sequence analysis revealed that M45 carried a missense mutation in the dnaB gene, which caused a substitution of Thr364 to Ile. Microscopic observation after 4',6-diamidino-2-phenylindole staining revealed that the DNA content of single cells was decreased by culturing at the restrictive temperature, suggesting that the mutation affects chromosomal replication. These results suggest that the C. glutamicum dnaB mutant performs an asymmetric cell division even after DNA replication is inhibited, which results in the production of mini-cells.
Collapse
|
191
|
Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Männik J. Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. PLoS Genet 2014; 10:e1004504. [PMID: 25101671 PMCID: PMC4125044 DOI: 10.1371/journal.pgen.1004504] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E. coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative Ter macrodomain – Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins. Cell division in Escherichia coli begins with the assembly of FtsZ proteins into a ring-like structure, the Z-ring. Remarkably, the Z-ring localizes with very high precision at midcell. Currently, two molecular systems, nucleoid occlusion and the Min system, are known to localize the Z-ring. Here, we explore whether there are additional divisome localization systems in E. coli. Using quantitative fluorescence imaging, we show that slow growing cells lacking both known positioning systems continue to divide accurately at midcell. We find that the terminus region of the chromosome moves first to mid-cell where it functions as a positional landmark for the subsequent localization of the Z-ring. Furthermore, we provide evidence that this divisome positioning system involves MatP, ZapB, and ZapA proteins. Our work shows that E. coli can divide without the canonical mechanisms for localizing its cytokinetic ring. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.
Collapse
Affiliation(s)
- Matthew W. Bailey
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Paola Bisicchia
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Boyd T. Warren
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
192
|
Effect of the Min system on timing of cell division in Escherichia coli. PLoS One 2014; 9:e103863. [PMID: 25090009 PMCID: PMC4121188 DOI: 10.1371/journal.pone.0103863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times.
Collapse
|
193
|
Du S, Lutkenhaus J. SlmA antagonism of FtsZ assembly employs a two-pronged mechanism like MinCD. PLoS Genet 2014; 10:e1004460. [PMID: 25078077 PMCID: PMC4117426 DOI: 10.1371/journal.pgen.1004460] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the Z-ring over unsegregated nucleoids is prevented by a process called nucleoid occlusion (NO), which in Escherichia coli is partially mediated by SlmA. SlmA is a Z ring antagonist that is spatially regulated and activated by binding to specific DNA sequences (SlmA binding sites, SBSs) more abundant in the origin proximal region of the chromosome. However, the mechanism by which SBS bound SlmA (activated form) antagonizes Z ring assembly is controversial. Here, we report the isolation and characterization of two FtsZ mutants, FtsZ-K190V and FtsZ-D86N that confer resistance to activated SlmA. In trying to understand the basis of resistance of these mutants, we confirmed that activated SlmA antagonizes FtsZ polymerization and determined these mutants were resistant, even though they still bind SlmA. Investigation of SlmA binding to FtsZ revealed activated SlmA binds to the conserved C-terminal tail of FtsZ and that the ability of activated SlmA to antagonize FtsZ assembly required the presence of the tail. Together, these results lead to a model in which SlmA binding to an SBS is activated to bind the tail of FtsZ resulting in further interaction with FtsZ leading to depolymerization of FtsZ polymers. This model is strikingly similar to the model for the inhibitory mechanism of the spatial inhibitor MinCD. Bacteria divide in the middle of the cell by spatially regulating the position of the Z ring, a cytoskeletal element required for cytokinesis. In the model organisms, Escherichia coli and Bacillus subtilis, two negative regulatory systems contribute to this spatial regulation. Both systems contain antagonists of FtsZ assembly that are localized in the cell. In this study we isolated FtsZ mutants resistant to SlmA, which is positioned within the cell by binding to sites asymmetrically distributed around the chromosome. We confirm that SlmA is activated by DNA binding to antagonize FtsZ polymerization in vitro and that the newly isolated mutants are resistant. We also show that SlmA binds to the very conserved tail of FtsZ and that this is required to antagonize FtsZ assembly even though the tail is not required for polymerization. Together, these results highlight the importance of the tail of FtsZ and lead to a model in which SlmA binding to the tail of FtsZ results in further interactions that break the filament. This mechanism is shared with the other spatial regulator and raises the possibility that it may be a common mechanism among spatial regulators of Z ring assembly.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
194
|
Altegoer F, Schuhmacher J, Pausch P, Bange G. From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum. Biotechnol Genet Eng Rev 2014; 30:49-64. [DOI: 10.1080/02648725.2014.921500] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
195
|
Vecchiarelli AG, Li M, Mizuuchi M, Mizuuchi K. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Mol Microbiol 2014; 93:453-63. [PMID: 24930948 DOI: 10.1111/mmi.12669] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
196
|
Vijay S, Mukkayyan N, Ajitkumar P. Highly Deviated Asymmetric Division in Very Low Proportion of Mycobacterial Mid-log Phase Cells. Open Microbiol J 2014; 8:40-50. [PMID: 24949109 PMCID: PMC4062944 DOI: 10.2174/1874285801408010040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/08/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, we show that about 20% of the septating Mycobacterium smegmatis and Mycobacterium xenopi cells in the exponential phase populationdivideasymmetrically, with an unusually high deviation (17 ± 4%) in the division site from the median, to generate short cells and long cells, thereby generating population heterogeneity. This mode of division is very different from the symmetric division of themajority (about 80%) of the septating cells in the Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG exponential phase population, with 5-10% deviation in the division site from the mid-cell site, as reported by recent studies. The short cells and the long cells further grew and divided to generate a population. We speculate that the generation of the short cells and the long cells through the highly deviated asymmetric divisionin the low proportions of mycobacterial population may have a role in stress tolerance.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| |
Collapse
|
197
|
Further Evaluation of the Localization and Functionality of Hemagglutinin Epitope- and Fluorescent Protein-Tagged AtMinD1 inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 73:1693-7. [DOI: 10.1271/bbb.90309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
198
|
Hypermotility in Clostridium perfringens strain SM101 is due to spontaneous mutations in genes linked to cell division. J Bacteriol 2014; 196:2405-12. [PMID: 24748614 DOI: 10.1128/jb.01614-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is a Gram-positive anaerobic pathogen of humans and animals. Although they lack flagella, C. perfringens bacteria can still migrate across surfaces using a type of gliding motility that involves the formation of filaments of bacteria lined up in an end-to-end conformation. In strain SM101, hypermotile variants are often found arising from the edges of colonies on agar plates. Hypermotile cells are longer than wild-type cells, and video microscopy of their gliding motility suggests that they form long, thin filaments that move rapidly away from a colony, analogously to swarmer cells in bacteria with flagella. To identify the cause(s) of the hypermotility phenotype, the genome sequences of normal strains and their direct hypermotile derivatives were determined and compared. Strains SM124 and SM127, hypermotile derivatives of strains SM101 and SM102, respectively, contained 10 and 6 single nucleotide polymorphisms (SNPs) relative to their parent strains. While SNPs were located in different genes in the two sets of strains, one feature in common was mutations in cell division genes, an ftsI homolog in strain SM124 (CPR_1831) and a minE homolog in strain SM127 (CPR_2104). Complementation of these mutations with wild-type copies of each gene restored the normal motility phenotype. A model explaining the principles underlying the hypermotility phenotype is presented.
Collapse
|
199
|
Hoffmann M, Schwarz US. Oscillations of Min-proteins in micropatterned environments: a three-dimensional particle-based stochastic simulation approach. SOFT MATTER 2014; 10:2388-2396. [PMID: 24622920 DOI: 10.1039/c3sm52251b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Min-proteins from E. coli and other bacteria are the best characterized pattern forming system in cells and their spatiotemporal oscillations have been successfully reconstituted in vitro. Different mathematical and computational models have been used to better understand these oscillations. Here we use particle-based stochastic simulations to study Min-oscillations in patterned environments. We simulate a rectangular box of length 10 μm and width 5 μm that is filled with grid or checkerboard patterns of different patch sizes and distances. For this geometry, we find different stable oscillation patterns, typically pole-to-pole oscillations along the minor axis and striped oscillations along the major axis. The Min-oscillations can switch from one pattern to the other, either effected by changes in pattern geometry or stochastically. By automatic analysis of large-scale computer simulations, we show quantitatively how the perturbing effect of increased patch distance can be rescued by increased patch size. We also show that striped oscillations occur robustly in arbitrarily shaped filamentous E. coli cells. Our results highlight the robustness and variability of Min-oscillations, put limits on the effect of putative division sites, and provide a powerful computational framework for future studies of protein self-organization in patterned environments.
Collapse
Affiliation(s)
- Max Hoffmann
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | |
Collapse
|
200
|
Donovan C, Bramkamp M. Cell division in Corynebacterineae. Front Microbiol 2014; 5:132. [PMID: 24782835 PMCID: PMC3989709 DOI: 10.3389/fmicb.2014.00132] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/14/2014] [Indexed: 12/02/2022] Open
Abstract
Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal regulation of bacterial cytokinesis is indispensable for the production of viable, genetically identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome assembles in the proximity of the midcell region, however more spatial flexibility is observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to intensive study and are well-understood. In comparison, only a minimal set of positive and negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing of cytokinesis and the placement of the division septum is coordinated with growth as well as initiation of chromosome replication and segregation. We summarize here the current knowledge on cytokinesis and division site selection in the Actinobacteria suborder Corynebacterineae.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|