151
|
Park H, Doh J. T cell migration in microchannels densely packed with T cells. Sci Rep 2019; 9:7198. [PMID: 31076592 PMCID: PMC6510777 DOI: 10.1038/s41598-019-43569-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
T cells migrate diverse microenvironments of the body to mount antigen-specific immune responses. T cell activation, a key initial process for antigen-specific immune responses, occur in secondary lymphoid organs such as spleens and lymph nodes where high density of T cells migrates rapidly through the reticular networks formed by stromal cells. In vitro model system recapitulating key characteristics of secondary lymphoid organs, confined spaces densely packed with rapidly migrating cells, would be useful to investigate mechanisms of T cell migration. In this study, we devised a method to fabricate microchannels densely packed with T cells. Microchannel arrays with fixed height (4 μm) and length (1.5 mm) and various widths (15~80 μm) were fabricated in between trapezoid-shaped reservoirs that facilitated T cell sedimentation near microchannel entries. Microchannel surface chemistry and filling time were optimized to achieve high packing density (0.89) of T cell filling within microchannels. Particle image velocimetry (PIV) analysis method was employed to extract velocity field of microchannels densely packed with T cells. Using velocity field information, various motility parameters were further evaluated to quantitatively assess the effects of microchannel width and media tonicity on T cell motility within cell dense microenvironments.
Collapse
Affiliation(s)
- HyoungJun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH) San 31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea. .,Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
152
|
Chang CW, Seibel AJ, Song JW. Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation 2019; 26:e12547. [PMID: 30946511 DOI: 10.1111/micc.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Immense progress in microscale engineering technologies has significantly expanded the capabilities of in vitro cell culture systems for reconstituting physiological microenvironments that are mediated by biomolecular gradients, fluid transport, and mechanical forces. Here, we examine the innovative approaches based on microfabricated vessels for studying lymphatic biology. To help understand the necessary design requirements for microfluidic models, we first summarize lymphatic vessel structure and function. Next, we provide an overview of the molecular and biomechanical mediators of lymphatic vessel function. Then we discuss the past achievements and new opportunities for microfluidic culture models to a broad range of applications pertaining to lymphatic vessel physiology. We emphasize the unique attributes of microfluidic systems that enable the recapitulation of multiple physicochemical cues in vitro for studying lymphatic pathophysiology. Current challenges and future outlooks of microscale technology for studying lymphatics are also discussed. Collectively, we make the assertion that further progress in the development of microscale models will continue to enrich our mechanistic understanding of lymphatic biology and physiology to help realize the promise of the lymphatic vasculature as a therapeutic target for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
153
|
Zilonova EM, Solovchuk M, Sheu TWH. Simulation of cavitation enhanced temperature elevation in a soft tissue during high-intensity focused ultrasound thermal therapy. ULTRASONICS SONOCHEMISTRY 2019; 53:11-24. [PMID: 30770275 DOI: 10.1016/j.ultsonch.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
The present study aims to investigate temperature distribution caused by bubble oscillations in a soft tissue during focused ultrasound therapy by introducing a coupled temperature-cavitation model. The proposed model is capable of describing bubble dynamics, viscoelastic properties of surrounding tissue-like medium, temperature distribution inside and outside the bubble, vapor diffusion within the bubble and vapor flux through the bubble wall to the exterior. The continuous temperature distribution inside and outside the oscillating bubble in soft tissue subject to ultrasound wave with high acoustic pressure is presented. The temperature close to the bubble wall can reach the value of about 103 K. The elasticity of soft tissue reduces temperature values. The relaxation time effect strongly depends on the period of the ultrasound wave. If the vapor mass flux effect is taken into account in the simulations, the rectified growth effect can be observed, which can lead to the decrease of the temperature values. Due to the growth of the bubble, the effects of elasticity and relaxation time on the temperature become less prominent during several bubble oscillation cycles. The impact of cavitation heat source terms on the exterior temperature was examined and led us to draw conclusion that, even though these heat sources can increase the outside temperature values, they can not be treated as main mechanisms for the temperature elevation during a few microseconds. The performed comparison with uncoupled conventional model for the outside temperature calculation revealed that coupling with inside temperature model delivers incomparably higher values to the bubble's exterior and, therefore, it is essential for the accurate description of the treatment process.
Collapse
Affiliation(s)
- E M Zilonova
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.
| | - M Solovchuk
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, ROC; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan 35053, Taiwan, ROC.
| | - T W H Sheu
- Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, ROC; Center of Advanced Study in Theoretical Science (CASTS), National Taiwan University, Taiwan, ROC; Department of Mathematics, National Taiwan University, Taiwan, ROC.
| |
Collapse
|
154
|
An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression. J Biomech 2019; 89:48-56. [DOI: 10.1016/j.jbiomech.2019.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 11/22/2022]
|
155
|
Shojaee P, Niroomand-Oscuii H. CFD analysis of drug uptake and elimination through vascularized cancerous tissue. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
156
|
Ran R, Wang H, Hou F, Liu Y, Hui Y, Petrovsky N, Zhang F, Zhao C. A Microfluidic Tumor-on-a-Chip for Assessing Multifunctional Liposomes' Tumor Targeting and Anticancer Efficacy. Adv Healthc Mater 2019; 8:e1900015. [PMID: 30868753 DOI: 10.1002/adhm.201900015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/03/2019] [Indexed: 01/04/2023]
Abstract
Two principal methods for cancer drug testing are widely used, namely, in vitro 2D cell monolayers and in vivo animal models. In vitro 2D culture systems are simple and convenient but are unable to capture the complexity of biological processes. Animal models are costly, time-consuming, and often fail to replicate human activity. Here a microfluidic tumor-on-a-chip (TOC) model designed for assessing multifunctional liposome cancer targeting and efficacy is presented. The TOC device contains three sets of hemispheric wells with different sizes for tumor spheroid formation and evaluation of liposomes under a controlled flow condition. There is good agreement between time-elapsed tumor targeting of fluorescent liposomes in the TOC model and in in vivo mouse models. Evaluation of the anticancer efficacy of four PTX-loaded liposome formulations shows that compared to 2D cell monolayers and 3D tumor spheroid models, the TOC model better predicts the in vivo anticancer efficacy of targeted liposomes. Lastly, the TOC model is used to assess the effects of flow rates and tumor size on treatment outcome. This study demonstrates that the TOC model provides a convenient and powerful platform for rapid and reliable cancer drug evaluation.
Collapse
Affiliation(s)
- Rui Ran
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Hao‐Fei Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Fei Hou
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd Bedford Park SA 5042 Australia
- Department of Endocrinology Flinders University Bedford Park SA 5042 Australia
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai 200438 China
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia QLD 4072 Australia
| |
Collapse
|
157
|
Nudel I, Hadas O, deBotton G. Experimental study of muscle permeability under various loading conditions. Biomech Model Mechanobiol 2019; 18:1189-1195. [PMID: 30919202 DOI: 10.1007/s10237-019-01138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/07/2019] [Indexed: 11/24/2022]
Abstract
The permeability of a few muscle tissues under various loading conditions is characterized. To this end, we develop an experimental apparatus for permeability measurements which is based on the falling head method. We also design a dedicated sample holder which directs the flow through the tissue and simultaneously enables to pre-compress it. Although outside of the scope of this work, we recall that the permeability of the muscle has a crucial role in the pathophysiology of various diseases such as the compartment syndrome. Following the measurements of porcine, beef, chicken and lamb samples, we find that the permeability decreases with the pre-compression of the tissue. Similar decrease is observed following dehydration of the tissue. Remarkably, we find that within a physiological pressure range the permeabilities of the various samples are quite similar. This suggests that the muscle permeability is governed by a common micro-mechanical mechanism in which the blood propagates through the interstitial spaces. Under physiological loading conditions, the muscle permeability is in the range between 80 and 230 [Formula: see text].
Collapse
Affiliation(s)
- Iftah Nudel
- Department of Biomedical Engineering, Ben-Gurion University, 8410501, Beer-Sheva, Israel
| | - Or Hadas
- Department of Biomedical Engineering, Ben-Gurion University, 8410501, Beer-Sheva, Israel
| | - Gal deBotton
- Department of Biomedical Engineering, Ben-Gurion University, 8410501, Beer-Sheva, Israel. .,Department of Mechanical Engineering, Ben-Gurion University, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
158
|
Possenti L, di Gregorio S, Gerosa FM, Raimondi G, Casagrande G, Costantino ML, Zunino P. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3165. [PMID: 30358172 DOI: 10.1002/cnm.3165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
We present a two-phase model for microcirculation that describes the interaction of plasma with red blood cells. The model takes into account of typical effects characterizing the microcirculation, such as the Fahraeus-Lindqvist effect and plasma skimming. Besides these features, the model describes the interaction of capillaries with the surrounding tissue. More precisely, the model accounts for the interaction of capillary transmural flow with the surrounding interstitial pressure. Furthermore, the capillaries are represented as one-dimensional channels with arbitrary, possibly curved configuration. The latter two features rely on the unique ability of the model to account for variations of flow rate and pressure along the axis of the capillary, according to a local differential formulation of mass and momentum conservation. Indeed, the model stands on a solid mathematical foundation, which is also addressed in this work. In particular, we present the model derivation, the variational formulation, and its approximation using the finite element method. Finally, we conclude the work with a comparative computational study of the importance of the Fahraeus-Lindqvist, plasma skimming, and capillary leakage effects on the distribution of flow in a microvascular network.
Collapse
Affiliation(s)
- Luca Possenti
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Simone di Gregorio
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | | | - Giorgio Raimondi
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Giustina Casagrande
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Maria Laura Costantino
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
159
|
Avendano A, Cortes-Medina M, Song JW. Application of 3-D Microfluidic Models for Studying Mass Transport Properties of the Tumor Interstitial Matrix. Front Bioeng Biotechnol 2019; 7:6. [PMID: 30761297 PMCID: PMC6364047 DOI: 10.3389/fbioe.2019.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023] Open
Abstract
The physical remodeling associated with cancer progression results in barriers to mass transport in the tumor interstitial space. This hindrance ultimately affects the distribution of macromolecules that govern cell fate and potency of cancer therapies. Therefore, knowing how specific extracellular matrix (ECM) and cellular components regulate transport in the tumor interstitium could lead to matrix normalizing strategies that improve patient outcome. Studies over the past decades have provided quantitative insights into interstitial transport in tumors by characterizing two governing parameters: (1) molecular diffusivity and (2) hydraulic conductivity. However, many of the conventional techniques used to measure these parameters are limited due to their inability to experimentally manipulate the physical and cellular environments of tumors. Here, we examine the application and future opportunities of microfluidic systems for identifying the physiochemical mediators of mass transport in the tumor ECM. Further advancement and adoption of microfluidic systems to quantify tumor transport parameters has potential to bridge basic science with translational research for advancing personalized medicine in oncology.
Collapse
Affiliation(s)
- Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States.,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
160
|
Loessberg-Zahl J, van der Meer AD, van den Berg A, Eijkel JCT. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips. LAB ON A CHIP 2019; 19:206-213. [PMID: 30548051 DOI: 10.1039/c8lc01140k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Laminar flow patterning is an iconic microfluidic technology used to deliver chemicals to specific regions on a two-dimensional surface with high spatial fidelity. Here we present a novel extension of this technology using Darcy flow within a three-dimensional (3D) hydrogel. Our test device is a simple 3-inlet microfluidic channel, totally filled with collagen, a cured biological hydrogel, where the concentration profiles of solutes are manipulated via the inlet pressures. This method allows solutes to be delivered with 50 micron accuracy within the gel, as we evidence by controlling concentration profiles of 40 kDa and 1 kDa fluorescent polysaccharide dyes. Furthermore, we design and test a 3D-printed version of our device with an extra two inlets for control of the vertical position of the concentration profile, demonstrating that this method is easily extensible to control of the concentration profile in 3D.
Collapse
|
161
|
Wertheim KY, Roose T. Can VEGFC Form Turing Patterns in the Zebrafish Embryo? Bull Math Biol 2019; 81:1201-1237. [PMID: 30607882 PMCID: PMC6397306 DOI: 10.1007/s11538-018-00560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
This paper is concerned with a late stage of lymphangiogenesis in the trunk of the zebrafish embryo. At 48 hours post-fertilisation (HPF), a pool of parachordal lymphangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the PLs spread from the horizontal myoseptum to form the thoracic duct, dorsal longitudinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals with the potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation of PLs into the mature lymphatic endothelial cells that form the vessels. We built a mathematical model to describe the biochemical interactions between VEGFC, collagen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability analysis of the model and computer simulations of VEGFC patterning. The results suggest that VEGFC can form Turing patterns due to its relations with MMP2 and collagen I, but the zebrafish embryo needs a separate control mechanism to create the right physiological conditions. Furthermore, this control mechanism must ensure that the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and reasonably fast forming. Generally, the combination of a patterning species, a matrix protein, and a remodelling species is a new patterning mechanism.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
- Present Address: University of Nebraska-Lincoln, 1901 Vine St N231, Lincoln, NE 68503 USA
| | - Tiina Roose
- Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK
| |
Collapse
|
162
|
Mohee L, Offeddu G, Husmann A, Oyen M, Cameron R. Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties. Acta Biomater 2019; 83:189-198. [PMID: 30366136 DOI: 10.1016/j.actbio.2018.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023]
Abstract
Collagen scaffolds are widely used in a range of tissue engineering applications, both in vitro and in vivo, where their permeability to fluid flow greatly affects their mechanical and biological functionality. This paper reports new insights into the interrelationships between permeability, scaffold structure, fluid pressure and deformation in collagen scaffolds, focussing in particular on the degree of closure and the alignment of the pores. Isotropic and aligned scaffolds of different occlusivity were produced by ice templating, and were characterised in terms of their structure and mechanical properties. Permeability studies were conducted using two experimental set-ups to cover a wide range of applied fluid pressures. The permeability was found to be constant at low pressures for a given scaffold with more open structures and aligned structures being more permeable. The deformation of scaffolds under high pressure led to a decrease in permeability. The aligned structures were more responsive to deformation than their isotropic equivalents with their permeability falling more quickly at low strain. For isotropic samples, a broad (1 - ɛ)2 dependence for permeability was observed with the constant of proportionality varying with collagen fraction as the starting structures became more occluded. Aligned scaffolds did not follow the same behaviour, with the pores apparently closing more quickly in response to early deformation. These results highlight the importance of scaffold structure in determining permeability to interstitial fluid, and provide an understanding of scaffold behaviour within the complex mechanical environment of the body. STATEMENT OF SIGNIFICANCE: Collagen scaffolds are widely used in tissue engineering applications, for instance to contribute with wound healing. Their permeability to fluid flow, such as water and blood, is important to ensure they perform efficiently when inside the body. The present study reports new insights into the relationships between permeability, scaffold structure, fluid pressure and deformation in collagen scaffolds. It presents in particular the experimental setups used to measure these properties and the result of comparisons between collagen scaffolds with different structures: aligned and isotropic (non-aligned). It indicates quantitative differences in terms of permeability, and the effects of compression on such permeability. The results contribute to the development and understanding of collagen scaffolds and their applications.
Collapse
|
163
|
How can mindfulness-led breathing of qigong/Tai Chi work on qi and the meridian network? ADVANCES IN INTEGRATIVE MEDICINE 2018. [DOI: 10.1016/j.aimed.2018.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 2018; 553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
|
165
|
Waldeland JO, Evje S. A multiphase model for exploring tumor cell migration driven by autologous chemotaxis. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
166
|
Giri TK. Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals. Curr Drug Deliv 2018; 16:3-17. [DOI: 10.2174/1567201815666180918112139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
Currently, the most important cause of death is cancer. To treat the cancer there are a number of drugs existing in the market but no drug is found to be completely safe and effective. The toxicity of the drugs is the key problem in the cancer chemotherapy. However, plants and plant derived bioactive molecule have proved safe and effective in the treatment of cancers. Phytochemicals that are found in fruits, vegetables, herbs, and plant extract have been usually used for treating cancer. It has been established that several herbal drug have a strong anticancer activity. However, their poor bioavailability, solubility, and stability have severely restricted their use. These problems can be overcome by incorporating the herbal drug in nanolipolomal vesicles. In last few decades, researcher have used herbal drug loaded nanoliposome for the treatment and management of a variety of cancers. Presently, a number of liposomal formulations are on the market for the treatment of cancer and many more are in pipe line. This review discusses about the tumor microenvironment, targeting mechanism of bioactive phytochemicals to the tumor tissue, background of nanoliposome, and the potential therapeutic applications of different bioactive phytochemicals loaded nanoliposome in cancer therapy.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
167
|
A mosaic structure multi-level vascular network design for skull tissue engineering. Comput Biol Med 2018; 104:70-80. [PMID: 30445296 DOI: 10.1016/j.compbiomed.2018.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 10/28/2022]
Abstract
In human skull tissue engineering scaffolds, cell growth and osteogenesis are limited due to the lack of vascular structure. Therefore, a mosaic structure vascular parameterized design method is proposed according to the scanning characteristics of the diploic vein. Using micro-CT scans of skull samples, the features of the diploic vein were extracted, and a multi-level vascular network model was established based on a power diagram. Considering the characteristics of blood flow in the veins, finite element analysis (FEA) of the fluid-solid coupling was established to analyze the effect of blood on vessels with four-level mosaic structures. The results showed that the deformation and stress distribution of vessels were reasonable, and the blood pressure, velocity and shear stress in the designed vascular structure could meet the cell growth requirements. The mosaic structure was prepared by PDMS and cultured in vitro using HUVECs. It was found that most of the cells survived after 48 h, and some cells were attached to the surface mosaic structure. In this method, different levels of vessels nest together, with a curvature that matches the shape of the skull, forming a similar morphology to the native diploic vein, and the local structures can be adjusted flexibly. This mosaic structure vascular design method can be used for network vascular design and experimental studies in hard tissues.
Collapse
|
168
|
Possenti L, Casagrande G, Di Gregorio S, Zunino P, Costantino ML. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc Res 2018; 122:101-110. [PMID: 30448400 DOI: 10.1016/j.mvr.2018.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 02/03/2023]
Abstract
Fluid homeostasis is required for life. Processes involved in fluid balance are strongly related to exchanges at the microvascular level. Computational models have been presented in the literature to analyze the microvascular-interstitial interactions. As far as we know, none of those models consider a physiological description for the lymphatic drainage-interstitial pressure relation. We develop a computational model that consists of a network of straight cylindrical vessels and an isotropic porous media with a uniformly distributed sink term acting as the lymphatic system. In order to describe the lymphatic flow rate, a non-linear function of the interstitial pressure is defined, based on literature data on the lymphatic system. The proposed model of lymphatic drainage is compared to a linear one, as is typically used in computational models. To evaluate the response of the model, the two are compared with reference to both physiological and pathological conditions. Differences in the local fluid dynamic description have been observed using the non-linear model. In particular, the distribution of interstitial pressure is heterogeneous in all the cases analyzed. The resulting averaged values of the interstitial pressure are also different, and they agree with literature data when using the non-linear model. This work highlights the key role of lymphatic drainage and its modeling when studying the fluid balance in microcirculation for both to physiological and pathological conditions, e.g. uremia.
Collapse
Affiliation(s)
- Luca Possenti
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy.
| | - Giustina Casagrande
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| | - Simone Di Gregorio
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy; MOX, Department of Mathematics, Politecnico di Milano, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Italy
| | - Maria Laura Costantino
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| |
Collapse
|
169
|
Wilson JT, Edgar LT, Prabhakar S, Horner M, van Loon R, Moore JE. A fully coupled fluid-structure interaction model of the secondary lymphatic valve. Comput Methods Biomech Biomed Engin 2018; 21:813-823. [DOI: 10.1080/10255842.2018.1521964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- John T. Wilson
- Department of Bioengineering, Imperial College London, London, UK
| | - Lowell T. Edgar
- Department of Bioengineering, Imperial College London, London, UK
| | | | | | - Raoul van Loon
- Zienkiewicz Centre of Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
170
|
Waldeland JO, Evje S. Competing tumor cell migration mechanisms caused by interstitial fluid flow. J Biomech 2018; 81:22-35. [DOI: 10.1016/j.jbiomech.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022]
|
171
|
A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bull Math Biol 2018; 80:3184-3226. [DOI: 10.1007/s11538-018-0515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
|
172
|
Pang N, Li J, Sun A, Yang Z, Cheng S, Qi XR. Prior anti-CAFs break down the CAFs barrier and improve accumulation of docetaxel micelles in tumor. Int J Nanomedicine 2018; 13:5971-5990. [PMID: 30323586 PMCID: PMC6178342 DOI: 10.2147/ijn.s171224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal expression of stromal cells and extracellular matrix in tumor stroma creates a tight barrier, leading to insufficient extravasation and penetration of therapeutic agents. Cancer-associated fibroblasts (CAFs) take on pivotal roles encouraging tumor progression. METHOD To surmount the refractoriness of stroma, we constructed a multi-targeting combined scenario of anti-CAFs agent tranilast and antitumor agent docetaxel micelles (DTX-Ms). Tranilast cut down crosstalk between tumor cells and stromal cells, ameliorated the tumor microenvironment, and enhanced the antiproliferation efficacy of DTX-Ms on cancer cells. RESULTS Diverse experiments demonstrated that tranilast enhanced DTX-Ms' antitumor effect in a two-stage pattern by CAFs ablation, tumor cell migration blocking, and metastasis inhibition. Along with activated CAFs decreasing in vivo, the two-stage therapy succeeded in reducing interstitial fluid pressure, normalizing microvessels, improving micelles penetration and retention, and inhibiting tumor growth and metastasis. Interestingly, tranilast alone failed to inhibit tumor growth in vivo, and it could only be used as an adjuvant medicine together with an antitumor agent. CONCLUSION Our proposed two-stage therapy offers a promising strategy to enhance antitumor effects by breaking down CAFs barrier and increasing micellar delivery efficiency.
Collapse
Affiliation(s)
- Ning Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Aning Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Shixuan Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China,
| |
Collapse
|
173
|
Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models. MICROMACHINES 2018; 9:mi9100493. [PMID: 30424426 PMCID: PMC6215090 DOI: 10.3390/mi9100493] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.
Collapse
|
174
|
Viola M, Sequeira J, Seiça R, Veiga F, Serra J, Santos AC, Ribeiro AJ. Subcutaneous delivery of monoclonal antibodies: How do we get there? J Control Release 2018; 286:301-314. [DOI: 10.1016/j.jconrel.2018.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
|
175
|
Xu Z, Kleinstreuer C. Heterogeneous blood flow in microvessels with applications to nanodrug transport and mass transfer into tumor tissue. Biomech Model Mechanobiol 2018; 18:99-110. [PMID: 30105538 DOI: 10.1007/s10237-018-1071-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
Nanodrug transport in tumor microvasculature and deposition/extravasation into tumor tissue are an important link in the nanodrug delivery process. Considering heterogeneous blood flow, such a dual process is numerically studied. The hematocrit distribution is solved by directly considering the forces experienced by the red blood cells (RBCs), i.e., the wall lift force and the random cell collision force. Using a straight microvessel as a test bed, validated computer simulations are performed to determine blood flow characteristics as well as the resulting nanodrug distribution and extravasation. The results confirm that RBCs migrate away from the vessel wall, leaving a cell-free layer (CFL). Nanodrug particles tend to preferentially accumulate in the CFL, leading to increased concentration near the endothelial surface layer. However, shear-induced NP diffusion is diminished within the CFL, causing to a much slower lateral transport rate into tumor tissue. These competing effects determine the NP deposition/extravasation rates. The present modeling framework and NP flux results provide new physical insight. The analysis can be readily extended to simulations of NP transport in blood microvessels of actual tumors.
Collapse
Affiliation(s)
- Z Xu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, NC, 27695-7910, USA.,Corporate Research and Technology, Eaton Corporation, W126N7250 Flint Dr, Menomonee Falls, WI, 53051, USA
| | - C Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 911 Oval Drive, Raleigh, NC, 27695-7910, USA. .,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC, 27695-7910, USA.
| |
Collapse
|
176
|
Øien AH, Wiig H. Modeling In Vivo Interstitial Hydration-Pressure Relationships in Skin and Skeletal Muscle. Biophys J 2018; 115:924-935. [PMID: 30119836 DOI: 10.1016/j.bpj.2018.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022] Open
Abstract
A theoretical understanding of hydrostatic pressure-fluid volume relationships, or equations of state, of interstitial fluid in skin and skeletal muscle through mathematical/physical modeling is lacking. Here, we investigate at the microscopic level forces that seem to underlie and determine the movements of fluid and solid tissue elements on the microscopic as well as on the macroscopic level. Effects that occur during variation of hydration due to interaction between expanding glycosaminoglycans (GAGs) and the collagen interstitial matrix of tissue seem to be of major importance. We focus on these interactions that let effects from spherical GAGs expand and contract relative to collagen on the microscopic level as hydration changes and thereby generate a hydration-dependent electrostatic pressure on the extracellular matrix on the microscopic level. This pressure spreads to macroscopic levels and become a key factor for setting up equations of state for skin and skeletal muscle interstitia. The modeling for a combined skeletal muscle and skin tissue is one dimensional, i.e., a flat box that may mimic central transverse parts of tissue with more complex geometry. Incorporating values of GAG and collagen densities and fluid contents of skin and muscle tissues that are of an order of magnitude found in literature into the model gives interstitial hydrostatic pressure- fluid volume relationships for these tissues that agree well with experimental results.
Collapse
Affiliation(s)
- Alf H Øien
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
177
|
Tran QD, Gonzalez-Rodriguez D. Permeability and viscoelastic fracture of a model tumor under interstitial flow. SOFT MATTER 2018; 14:6386-6392. [PMID: 30033472 DOI: 10.1039/c8sm00844b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interstitial flow in tumors is a key mechanism leading to cancer metastasis. Tumor growth is accompanied by the development of a leaky vasculature, which increases intratumoral pressure and generates an outward interstitial flow. This flow promotes tumor cell migration away from the tumor. The nature of such interstitial flow depends on the coupling between hydrodynamic conditions and material properties of the tumor, such as porosity and deformability. Here we investigate this coupling by means of a microfluidic model of interstitial flow through a tumor, which is represented by a tumor cell aggregate. For a weak intratumoral pressure, the model tumor behaves as a viscoelastic material of low permeability, which we estimate by means of a newly developed microfluidic device. As intratumoral pressure is raised, the model tumor deforms and its permeability increases. For a high enough pressure, localized intratumoral fracture occurs, which creates preferential flow paths and causes tumor cell detachment. The energy required to fracture depends on the rate of variation of intratumoral pressure, as explained here by a theoretical model originally derived to describe polymer adhesion. Besides the well-established picture of individual tumor cells migrating away under interstitial flow, our findings suggest that intratumoral pressures observed in tumors can suffice to detach tumor fragments, which may thus be an important mechanism to release cancer cells and initiate metastasis.
Collapse
Affiliation(s)
- Quang D Tran
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | | |
Collapse
|
178
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
179
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
180
|
Catterton MA, Dunn AF, Pompano RR. User-defined local stimulation of live tissue through a movable microfluidic port. LAB ON A CHIP 2018; 18:2003-2012. [PMID: 29904762 PMCID: PMC6039252 DOI: 10.1039/c8lc00204e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many in vivo tissue responses begin locally, yet most in vitro stimuli are delivered globally. Microfluidics has a unique ability to provide focal stimulation to tissue samples with precise control over fluid location, flow rate, and composition. However, previous devices utilizing fixed ports beneath the tissue required manual alignment of the tissue over the ports, increasing the risk of mechanical damage. Here we present a novel microfluidic device that allows the user to define the location of fluid delivery to a living tissue slice without manipulating the tissue itself. The device utilized a two-component SlipChip design to create a mobile port beneath the tissue slice. A culture chamber perforated by an array of ports housed a tissue slice and was separated by a layer of fluorocarbon oil from a single delivery port, fed by a microfluidic channel in the movable layer below. We derived and validated a physical model, based on interfacial tension and flow resistance, to predict the conditions under which fluid delivery occurred without leakage into the gap between layers. Aqueous solution was delivered reproducibly to samples of tissue and gel, and the width of the delivery region was controlled primarily by convection. Tissue slice viability was not affected by stimulation on the device. As a proof-of-principle, we showed that live slices of lymph node tissue could be sequentially targeted for precise stimulation. In the future this device may serve as a platform to study the effects of fluid flow in tissues and to perform local drug screening.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | | | | |
Collapse
|
181
|
Naskar S, Panda AK, Kumaran V, Mehta B, Basu B. Controlled Shear Flow Directs Osteogenesis on UHMWPE-Based Hybrid Nanobiocomposites in a Custom-Designed PMMA Microfluidic Device. ACS APPLIED BIO MATERIALS 2018; 1:414-435. [DOI: 10.1021/acsabm.8b00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
182
|
Islam MT, Reddy JN, Righetti R. An analytical poroelastic model of a non-homogeneous medium under creep compression for ultrasound poroelastography applications - Part II. J Biomech Eng 2018; 141:2686531. [PMID: 30029209 DOI: 10.1115/1.4040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical parameters. Specifically, in this derivation, the inclusion is assumed to have significantly higher interstitial permeability than the background. The formulations of the effective Poisson's ratio (EPR) and fluid pressure in the inclusion and in the background are derived for the case of a sample subjected to a creep compression. The developed analytical expressions are validated using finite element models (FEM). Statistical comparison between the results obtained from the developed model and the results from FEM demonstrates accuracy of the proposed theoretical model higher than 99.4%. The model presented in this paper complements the one reported in the companion paper (Part I), which refers to the case of an inclusion having less interstitial permeability than the background.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Graduate Research Assistant, Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - J N Reddy
- Professor, Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - Raffaella Righetti
- Associate Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| |
Collapse
|
183
|
Islam MT, Reddy JN, Righetti R. An analytical poroelastic model of a non-homogeneous medium under creep compression for ultrasound poroelastography applications - Part I. J Biomech Eng 2018; 141:2686530. [PMID: 30029267 DOI: 10.1115/1.4040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical properties. Specifically, in this paper, the inclusion is considered to be less permeable than the background. The cylindrical sample is compressed using a constant pressure within two frictionless plates and is allowed to expand in an unconfined way along the radial direction. Analytical expressions for the effective Poisson's ratio (EPR) and fluid pressure inside and outside the inclusion are derived and analyzed. The theoretical results are validated using finite element models (FEM). Statistical analysis shows excellent agreement between the results obtained from the developed model and the results from FEM. Thus the developed theoretical model can be used in medical imaging modalities such as ultrasound poroelastography to extract the mechanical parameters of tissues and/or to better understand the impact of the different mechanical parameters on the estimated displacements, strains, stresses and fluid pressure inside a tumor and in the surrounding tissue.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Graduate Research Assistant, Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - J N Reddy
- Professor, Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - Raffaella Righetti
- Associate Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| |
Collapse
|
184
|
Turner MR, Balu-Iyer SV. Challenges and Opportunities for the Subcutaneous Delivery of Therapeutic Proteins. J Pharm Sci 2018; 107:1247-1260. [PMID: 29336981 PMCID: PMC5915922 DOI: 10.1016/j.xphs.2018.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Biotherapeutics is a rapidly growing drug class, and over 200 biotherapeutics have already obtained approval, with about 50 of these being approved in 2015 and 2016 alone. Several hundred protein therapeutic products are still in the pipeline, including interesting new approaches to treatment. Owing to patients' convenience of at home administration and reduced number of hospital visits as well as the reduction in treatment costs, subcutaneous (SC) administration of biologics is of increasing interest. Although several avenues for treatment using biotherapeutics are being explored, there is still a sufficient gap in knowledge regarding the interplay of formulation conditions, immunogenicity, and pharmacokinetics (PK) of the absorption of these compounds when they are given SC. This review seeks to highlight the major concerns and important factors governing this route of administration and suggest a holistic approach for effective SC delivery.
Collapse
Affiliation(s)
- Michael R Turner
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
185
|
McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. The effect of jet speed on large volume jet injection. J Control Release 2018; 280:51-57. [PMID: 29723614 DOI: 10.1016/j.jconrel.2018.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 01/18/2023]
Abstract
Jet injection presents a promising alternative to needle and syringe injection for transdermal drug delivery. The controllability of recently-developed jet injection devices now allows jet speed to be modulated during delivery, and has enabled efficient and accurate delivery of volumes up to 0.3 mL. However, recent attempts to inject larger volumes of up to 1 mL using the same methods have highlighted the different requirements for successful delivery at these larger volumes. This study aims to establish the jet speed requirements for delivery of 1 mL of liquid using a controllable, voice coil driven injection device. Additionally, the effectiveness of a two-phase jet speed profile is explored (where jet speed is deliberately decreased toward the end of the injection) and compared to the constant jet speed case. A controllable jet injection device was developed to deliver volumes of 1 mL of liquid at jet speeds >140 m/s. This device was used to deliver a series of injections into post-mortem porcine tissue in single and two-phase jet speed profiles. Single-phase injections were performed over the range 80 m/s to 140 m/s. Consistent delivery success (>80% of the liquid delivered) was observed at a jet speed of 130 m/s or greater. Consistent penetration into the muscle layer coincided with delivery success. Two-phase injections of 1 mL were performed with a first phase volume of 0.15 mL, delivered at 140 m/s, while the injection of the remainder of fluid was delivered at a second phase speed that was varied over the range 60 m/s to 120 m/s. Ten two-phase injections were performed with a second phase speed of 100 m/s producing a mean delivery volume of 0.8 mL ± 0.2 mL, while the single-phase injections at 100 m/s achieved a mean delivery volume of 0.4 mL ± 0.3 mL. These results demonstrate that a reduced jet speed can be used in the later stages of a 1 mL injection to achieve delivery success at a reduced energy cost. We found that a jet speed approaching 100 m/s was required following initial penetration to successfully deliver 1 mL, whereas speeds as low as 50 m/s have been used for volumes of <0.3 mL. These findings provide valuable insight into the effect of injection volume and speed on delivery success; this information is particularly useful for devices that have the ability to vary jet speed during drug delivery.
Collapse
Affiliation(s)
- James W McKeage
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
186
|
Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. LAB ON A CHIP 2018; 18:1084-1093. [PMID: 29488533 PMCID: PMC7337251 DOI: 10.1039/c8lc00130h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endothelial barrier function is known to be regulated by a number of molecular mechanisms; however, the role of biomechanical signals associated with blood flow is comparatively less explored. Biomimetic microfluidic models comprised of vessel analogues that are lined with endothelial cells (ECs) have been developed to help answer several fundamental questions in endothelial mechanobiology. However, previously described microfluidic models have been primarily restricted to single straight or two parallel vessel analogues, which do not model the bifurcating vessel networks typically present in physiology. Therefore, the effects of hemodynamic stresses that arise due to bifurcating vessel geometries on ECs are not well understood. Here, we introduce and characterize a microfluidic model that mimics both the flow conditions and the endothelial/extracellular matrix (ECM) architecture of bifurcating blood vessels to systematically monitor changes in endothelial permeability mediated by the local flow dynamics at specific locations along the bifurcating vessel structure. We show that bifurcated fluid flow (BFF) that arises only at the base of a vessel bifurcation and is characterized by stagnation pressure of ∼38 dyn cm-2 and approximately zero shear stress induces significant decrease in EC permeability compared to the static control condition in a nitric oxide (NO)-dependent manner. Similarly, intravascular laminar shear stress (LSS) (3 dyn cm-2) oriented tangential to ECs located downstream of the vessel bifurcation also causes a significant decrease in permeability compared to the static control condition via the NO pathway. In contrast, co-application of transvascular flow (TVF) (∼1 μm s-1) with BFF and LSS rescues vessel permeability to the level of the static control condition, which suggests that TVF has a competing role against the stabilization effects of BFF and LSS. These findings introduce BFF at the base of vessel bifurcations as an important regulator of vessel permeability and suggest a mechanism by which local flow dynamics control vascular function in vivo.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Scott Laboratory, 201 W. 19th Ave, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
187
|
Wang Y, Wang L, Zhu Y, Qin J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. LAB ON A CHIP 2018; 18:851-860. [PMID: 29437173 DOI: 10.1039/c7lc01084b] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nicotine has been recognized to trigger various neuronal disabilities in the fetal brain and long-lasting behavioral deficits in offspring. However, further understanding of fetal brain development under nicotine exposure is challenging due to the limitations of existing animal models. Here, we create a new brain organoid-on-a-chip system derived from human induced pluripotent stem cells (hiPSCs) that allows us to model neurodevelopmental disorders under prenatal nicotine exposure (PNE) at early stages. The brain organoid-on-a-chip system facilitates 3D culture, in situ neural differentiation, and self-organization of brain organoids under continuous perfused cultures in a controlled manner. The generated brain organoids displayed well-defined neural differentiation, regionalization, and cortical organization, which recapitulates the key features of the early stages of human brain development. The brain organoids exposed to nicotine exhibited premature neuronal differentiation with enhanced expression of the neuron marker TUJ1. Brain regionalization and cortical development were disrupted in the nicotine-treated organoids identified by the expressions of forebrain (PAX6 and FOXG1), hindbrain (PAX2 and KROX20) and cortical neural layer (preplate TBR1 and deep-layer CTIP2) markers. Moreover, the neurite outgrowth showed abnormal neuronal differentiation and migration in nicotine-treated brain organoids. These results suggest that nicotine exposure elicits impaired neurogenesis in early fetal brain development during gestation. The established brain organoid-on-a-chip system provides a promising platform to model neurodevelopmental disorders under environmental exposure, which can be extended for applications in brain disease studies and drug testing.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | |
Collapse
|
188
|
Abstract
![]()
Hydrodynamic phenomena
are ubiquitous in living organisms and can
be used to manipulate cells or emulate physiological microenvironments
experienced in vivo. Hydrodynamic effects influence multiple cellular
properties and processes, including cell morphology, intracellular
processes, cell–cell signaling cascades and reaction kinetics,
and play an important role at the single-cell, multicellular, and
organ level. Selected hydrodynamic effects can also be leveraged to
control mechanical stresses, analyte transport, as well as local temperature
within cellular microenvironments. With a better understanding of
fluid mechanics at the micrometer-length scale and the advent of microfluidic
technologies, a new generation of experimental tools that provide
control over cellular microenvironments and emulate physiological
conditions with exquisite accuracy is now emerging. Accordingly, we
believe that it is timely to assess the concepts underlying hydrodynamic
control of cellular microenvironments and their applications and provide
some perspective on the future of such tools in in vitro cell-culture
models. Generally, we describe the interplay between living cells,
hydrodynamic stressors, and fluid flow-induced effects imposed on
the cells. This interplay results in a broad range of chemical, biological,
and physical phenomena in and around cells. More specifically, we
describe and formulate the underlying physics of hydrodynamic phenomena
affecting both adhered and suspended cells. Moreover, we provide an
overview of representative studies that leverage hydrodynamic effects
in the context of single-cell studies within microfluidic systems.
Collapse
Affiliation(s)
- Deborah Huber
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland.,Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Ali Oskooei
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Govind V Kaigala
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
189
|
Islam MT, Chaudhry A, Unnikrishnan G, Reddy JN, Righetti R. An analytical poroelastic model for ultrasound elastography imaging of tumors. ACTA ACUST UNITED AC 2018; 63:025031. [DOI: 10.1088/1361-6560/aa9631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
190
|
Understanding Qi Running in the Meridians as Interstitial Fluid Flowing via Interstitial Space of Low Hydraulic Resistance. Chin J Integr Med 2018; 24:304-307. [PMID: 29327122 DOI: 10.1007/s11655-017-2791-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 10/18/2022]
Abstract
Qi, blood and the meridians are fundamental concepts in Chinese medicine (CM), which are components of the human body and maintain physiological function. Pathological changes of qi, blood and meridians may lead to discomfort and disease. Treatment with acupuncture or herbal medicine aims to regulate qi and blood so as to recover normal function of the meridians. This paper explores the nature of qi as well as compares and correlates them with the structures of the human body. We propose a conceptualization of qi as being similar to the interstitial fluid, and the meridians as being similar to interstitial space of low hydraulic resistance in the body. Hence, qi running in the meridians can be understood as interstitial fluid flowing via interstitial space of low hydraulic resistance.
Collapse
|
191
|
Human adipocyte differentiation and characterization in a perfusion-based cell culture device. Biomed Microdevices 2018; 19:18. [PMID: 28357654 DOI: 10.1007/s10544-017-0164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocytes have gained significant attention recently, because they are not only functioning as energy storage but also as endocrine cells. Adipocytes secret various signaling molecules, including adiponectin, MCP-1, and IL-6, termed collectively as "adipokines". Adipokines regulate glucose metabolism, thereby play an important role in obesity, diabetes type 2, and other metabolic disorders. Conventionally, to study the secretory function, adipocytes are cultured in vitro in static conditions. However, static culturing condition falls short of mimicking the interstitial fluid flows in living systems. Here, we developed a perfusion device which allows dynamic culture of adipocytes under constant and mild flow using a double-layered fluidic structure. Adipocytes were cultured in the bottom layer while the culture media were constantly flown in the upper layer and perfused through a porous membrane that separate the two chambers. The porous membrane between the two chambers physically separates the cells from the flow stream while maintain a fluidic connection by diffusion. This setting not only provides continuous nutrient supply to adipocytes but also maintains a steady and mild shear stress on the cell membrane. It was found the perfusion-based culture conditions promoted faster growth of primary preadipocytes and stimulated greater adipogenesis compared to static culture condition. Adipocytes cultured under perfusion systems produced more MCP-1 and IL-6, but less adiponectin. When stimulated with TNF-α, adipocytes expressed higher level of MCP-1 and IL-6, but lower level of adiponectin. No significant glucose uptake regulation was observed after treating the adipocytes with insulin in both static and perfusion-based culture. Our results demonstrate that perfusion-base culture has played a role in the adipocyte function particularly the secretion of adipokines. More future studies are required to unveil the mechanisms behind perfusion's impact on adipocytes.
Collapse
|
192
|
Wang Y, Wang L, Guo Y, Zhu Y, Qin J. Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv 2018; 8:1677-1685. [PMID: 35540867 PMCID: PMC9077091 DOI: 10.1039/c7ra11714k] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/23/2017] [Indexed: 11/29/2022] Open
Abstract
Brain organoids derived from the self-organization of human induced pluripotent stem cells (hiPSCs) represent a new class of in vitro organ system for modeling brain development and diseases. However, engineering brain organoids in a biomimetic environment that is favorable for brain development remains challenging. In this work, we present a new strategy to generate hiPSCs-derived 3D brain organoids using an organ-on-a-chip system in a controlled manner. This system provides a biomimetic brain microenvironment by incorporating three-dimensional (3D) Matrigel, fluid flow and multicellular architectures of tissues that allows for extended 3D culture, in situ neural differentiation, and organization of brain organoids on a single device. The generated brain organoids display well-defined neural differentiation, regionalization and cortical organization under perfused culture conditions, which recapitulate the key features of early human brain development. Moreover, the brain organoids exhibit an enhanced expression of cortical layer markers (TBR1 and CTIP2) under perfused cultures as compared to that under static cultures on a Petri dish, indicating the role of mechanical fluid flow in promoting brain organogenesis. The simple and robust brain organoids-on-a-chip system may open new avenues for various stem cell-based organoids engineering and its application in developmental biology and human disease studies.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China +86-411-84379059
- University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences China
| | - Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China +86-411-84379059
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China +86-411-84379059
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China +86-411-84379059
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China +86-411-84379059
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
193
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
194
|
Berke S, Kampmann AL, Wuest M, Bailey JJ, Glowacki B, Wuest F, Jurkschat K, Weberskirch R, Schirrmacher R. 18F-Radiolabeling and In Vivo Analysis of SiFA-Derivatized Polymeric Core–Shell Nanoparticles. Bioconjug Chem 2017; 29:89-95. [DOI: 10.1021/acs.bioconjchem.7b00630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sheldon Berke
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Anne-Larissa Kampmann
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Melinda Wuest
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | - Justin J. Bailey
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | | | - Frank Wuest
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| | | | | | - Ralf Schirrmacher
- Department
of Oncology, University of Alberta, 6820 116 Street, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
195
|
Nagy N, de la Zerda A, Kaber G, Johnson PY, Hu KH, Kratochvil MJ, Yadava K, Zhao W, Cui Y, Navarro G, Annes JP, Wight TN, Heilshorn SC, Bollyky PL, Butte MJ. Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 2017; 293:567-578. [PMID: 29183997 DOI: 10.1074/jbc.ra117.000148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
We have identified a novel role for hyaluronan (HA), an extracellular matrix polymer, in governing the mechanical properties of inflamed tissues. We recently reported that insulitis in type 1 diabetes of mice and humans is preceded by intraislet accumulation of HA, a highly hygroscopic polymer. Using the double transgenic DO11.10 × RIPmOVA (DORmO) mouse model of type 1 diabetes, we asked whether autoimmune insulitis was associated with changes in the stiffness of islets. To measure islet stiffness, we used atomic force microscopy (AFM) and developed a novel "bed of nails"-like approach that uses quartz glass nanopillars to anchor islets, solving a long-standing problem of keeping tissue-scale objects immobilized while performing AFM. We measured stiffness via AFM nanoindentation with a spherical indenter and found that insulitis made islets mechanically soft compared with controls. Conversely, treatment with 4-methylumbelliferone, a small-molecule inhibitor of HA synthesis, reduced HA accumulation, diminished swelling, and restored basal tissue stiffness. These results indicate that HA content governs the mechanical properties of islets. In hydrogels with variable HA content, we confirmed that increased HA leads to mechanically softer hydrogels, consistent with our model. In light of recent reports that the insulin production of islets is mechanosensitive, these findings open up an exciting new avenue of research into the fundamental mechanisms by which inflammation impacts local cellular responses.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Department of Medicine, Division of Infectious Diseases,
| | | | - Gernot Kaber
- From the Department of Medicine, Division of Infectious Diseases
| | - Pamela Y Johnson
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Michael J Kratochvil
- From the Department of Medicine, Division of Infectious Diseases.,the Department of Materials Science and Engineering
| | - Koshika Yadava
- From the Department of Medicine, Division of Infectious Diseases
| | - Wenting Zhao
- the Department of Materials Science and Engineering
| | - Yi Cui
- the Department of Materials Science and Engineering
| | | | - Justin P Annes
- the Department of Medicine, Division of Endocrinology, and
| | - Thomas N Wight
- the Matrix Biology Program, Benaroya Research Institute, Seattle, Washington 98101
| | | | - Paul L Bollyky
- From the Department of Medicine, Division of Infectious Diseases
| | - Manish J Butte
- the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Stanford University, Stanford, California 94305 and
| |
Collapse
|
196
|
Huang K, Boerhan R, Liu C, Jiang G. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow. Mol Pharm 2017; 14:4618-4627. [DOI: 10.1021/acs.molpharmaceut.7b00726] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ke Huang
- Key Lab of Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Rena Boerhan
- Key Lab of Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Changming Liu
- Key Lab of Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis,
Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
197
|
Abstract
The purpose of this study was to determine the impact of elevated temperature exposure in tissue banking on soft tissues. A secondary objective was to determine the relative ability of various assays to detect changes in soft tissues due to temperature deviations. Porcine pulmonary heart valve leaflets exposed to 37 °C were compared with those incubated at 52 and 67 °C for 10, 30 and 100 min. The analytical methods consisted of (1) viability assessment using the resazurin assay, (2) collagen content using the Sircol assay, and (3) permeability assessment using an electrical conductivity assay. Additionally, histology and two photon microscopy were used to reveal mechanisms of cell and tissue damage. Viability, collagen content, and permeability all decreased following heat treatment. In terms of statistical significance with respect to treatment temperature, cell viability was most affected (p < 0.0001), followed by permeability (p < 0.0001), and then collagen content (p = 0.13). After heat treatment, histology indicated increased apoptosis and two photon microscopy revealed a decrease in collagen fiber organization and an increase in elastin density. These results suggest that measures of cell viability would be best for assessing tissues where the cells are alive and that permeability may be best where cell viability is not intentionally maintained.
Collapse
|
198
|
Shirure VS, Lezia A, Tao A, Alonzo LF, George SC. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 2017; 20:493-504. [PMID: 28608153 PMCID: PMC10597324 DOI: 10.1007/s10456-017-9559-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
Convective transport can significantly distort spatial concentration gradients. Interstitial flow is ubiquitous throughout living tissue, but our understanding of how interstitial flow affects concentration gradients in biological processes is limited. Interstitial flow is of particular interest for angiogenesis because pathological and physiological angiogenesis is associated with altered interstitial flow, and both interstitial flow and morphogen gradients (e.g., vascular endothelial growth factor, VEGF) can potentially stimulate and guide new blood vessel growth. We designed an in vitro microfluidic platform to simulate 3D angiogenesis in a tissue microenvironment that precisely controls interstitial flow and spatial morphogen gradients. The microvascular tissue was developed from endothelial colony forming cell-derived endothelial cells extracted from cord blood and stromal fibroblasts in a fibrin extracellular matrix. Pressure in the microfluidic lines was manipulated to control the interstitial flow. A mathematical model of mass and momentum transport, and experimental studies with fluorescently labeled dextran were performed to validate the platform. Our data demonstrate that at physiological interstitial flow (0.1-10 μm/s), morphogen gradients were eliminated within hours, and angiogenesis demonstrated a striking bias in the opposite direction of interstitial flow. The interstitial flow-directed angiogenesis was dependent on the presence of VEGF, and the effect was mediated by αvβ3 integrin. We conclude that under physiological conditions, growth factors such as VEGF and fluid forces work together to initiate and spatially guide angiogenesis.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Andrew Lezia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Arnold Tao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Luis F Alonzo
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
199
|
Ehret AE, Bircher K, Stracuzzi A, Marina V, Zündel M, Mazza E. Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nat Commun 2017; 8:1002. [PMID: 29042539 PMCID: PMC5714996 DOI: 10.1038/s41467-017-00801-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/28/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the mechanisms of deformation of biological materials is important for improved diagnosis and therapy, fundamental investigations in mechanobiology, and applications in tissue engineering. Here we demonstrate the essential role of interstitial fluid mobility in determining the mechanical properties of soft tissues. Opposite to the behavior expected for a poroelastic material, the tissue volume of different collagenous membranes is observed to strongly decrease with tensile loading. Inverse poroelasticity governs monotonic and cyclic responses of soft biomembranes, and induces chemo-mechanical coupling, such that tensile forces are modulated by the chemical potential of the interstitial fluid. Correspondingly, the osmotic pressure varies with mechanical loads, thus providing an effective mechanism for mechanotransduction. Water mobility determines the tissue's ability to adapt to deformation through compaction and dilation of the collagen fiber network. In the near field of defects this mechanism activates the reversible formation of reinforcing collagen structures which effectively avoid propagation of cracks.How soft tissues respond to mechanical load is essential to their biological function. Here, the authors discover that - contrary to predictions of poroelasticity - fluid mobility in collagenous tissues induces drastic volume decrease with tensile loading and pronounced chemo-mechanical coupling.
Collapse
Affiliation(s)
- Alexander E Ehret
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Kevin Bircher
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Alberto Stracuzzi
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Vita Marina
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Manuel Zündel
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
200
|
Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. LAB ON A CHIP 2017; 17:3221-3233. [PMID: 28805874 PMCID: PMC6007858 DOI: 10.1039/c7lc00623c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tumor cell invasion, whether penetrating through the extracellular matrix (ECM) or crossing a vascular endothelium, is a critical step in the cancer metastatic cascade. Along the way from a primary tumor to a distant metastatic site, tumor cells interact actively with the microenvironment either via biomechanical (e. g. ECM stiffness) or biochemical (e.g. secreted cytokines) signals. Increasingly, it is recognized that the tumor microenvironment (TME) is a critical player in tumor cell invasion. A main challenge for the mechanistic understanding of tumor cell-TME interactions comes from the complexity of the TME, which consists of extracellular matrices, fluid flows, cytokine gradients and other cell types. It is difficult to control TME parameters in conventional in vitro experimental designs such as Boyden chambers or in vivo such as in mouse models. Microfluidics has emerged as an enabling tool for exploring the TME parameter space because of its ease of use in recreating a complex and physiologically realistic three dimensional TME with well-defined spatial and temporal control. In this perspective, we will discuss designing principles for modeling the biophysical microenvironment (biological flows and ECM) for tumor cells using microfluidic devices and the potential microfluidic technology holds in recreating a physiologically realistic tumor microenvironment. The focus will be on applications of microfluidic models in tumor cell invasion.
Collapse
Affiliation(s)
- Yu Ling Huang
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|