151
|
Hu X, Xie J, Chen N. Hypoxia-Inducible Factor-Proline Hydroxylase Inhibitor in the Treatment of Renal Anemia. KIDNEY DISEASES 2020; 7:1-9. [PMID: 33614728 DOI: 10.1159/000510587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Background Anemia is a common complication in CKD patients. Despite the use of iron and erythropoietin-stimulating agents, the control rate of anemia in CKD is not satisfying. Novel drugs are needed for anemia correction. Summary HIF-PHI, hypoxia-inducible factor-proline hydroxylase inhibitor, a novel class of therapeutic agents, has been developed to treat anemia in CKD patients. Its main effects comprised boosting EPO production, enhancing iron utilization, and suppressing hepcidin production. Several stage 2 and stage 3 clinical trials have been run to test its efficacy and safety in both nondialysis and dialysis patients, of which the results are very encouraging. Here, we summarize the mechanism, clinical applications, and clinical trials of HIF-PHI in treating renal anemia in order to give an overview of the new drug in clinical practices. Key Messages HIF-PHI is a novel therapeutic agent of treating renal anemia in CKD patients. It is quite effective in improving anemia, which is unaffected by inflammation. Besides, it may ameliorate lipid metabolism as well. Furthermore, the oral form may improve patients' compliances with treatment. Thus, it may be a good alternative of anemia correction in CKD patients.
Collapse
Affiliation(s)
- Xiaofan Hu
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
152
|
McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2020; 502:189-199. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
Collapse
Affiliation(s)
- Courtney E McAleese
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Chandra Choudhury
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
153
|
Monaci S, Aldinucci C, Rossi D, Giuntini G, Filippi I, Ulivieri C, Marotta G, Sozzani S, Carraro F, Naldini A. Hypoxia Shapes Autophagy in LPS-Activated Dendritic Cells. Front Immunol 2020; 11:573646. [PMID: 33329536 PMCID: PMC7734254 DOI: 10.3389/fimmu.2020.573646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
During their lifespan, dendritic cells (DCs) are exposed to different pO2 levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear. The aim of this study was to evaluate whether LPS can induce autophagy in DCs exposed to either aerobic or hypoxic conditions. Using human monocyte-derived DCs and the combination of immunofluorescence confocal analysis, measure of mitochondrial membrane potential, Western blotting, and RT-qPCR, we showed that the ability of LPS to modulate autophagy was strictly dependent upon pO2 levels. Indeed, LPS inhibited autophagy in aerobic conditions whereas the autophagic process was induced in a hypoxic environment. Under hypoxia, LPS treatment caused a significant increase of functional lysosomes, LC3B and Atg protein upregulation, and reduction of SQSTM1/p62 protein levels. This selective regulation was accompanied by activation of signalling pathways and expression of cytokines typically associated with DC survival. Bafilomycin A1 and chloroquine, which are recognized as autophagic inhibitors, confirmed the induction of autophagy by LPS under hypoxia and its impact on DC survival. In conclusion, our results show that autophagy represents one of the mechanisms by which the activation of the MD-2/TLR4 ligand LPS promotes DC survival under hypoxic conditions.
Collapse
Affiliation(s)
- Sara Monaci
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Carlo Aldinucci
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gaia Giuntini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Irene Filippi
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Giuseppe Marotta
- Cellular Therapy Unit and South-East Tuscany Blood Establishment, University Hospital, Siena, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Carraro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,*Correspondence: Antonella Naldini,
| |
Collapse
|
154
|
Joshi S, Chittimalli K, Jahan J, Vasam G, Jarajapu YP. ACE2/ACE imbalance and impaired vasoreparative functions of stem/progenitor cells in aging. GeroScience 2020; 43:1423-1436. [PMID: 33247425 PMCID: PMC7694587 DOI: 10.1007/s11357-020-00306-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Aging increases risk for ischemic vascular diseases. Bone marrow–derived hematopoietic stem/progenitor cells (HSPCs) are known to stimulate vascular regeneration. Activation of either the Mas receptor (MasR) by angiotensin-(1-7) (Ang-(1-7)) or angiotensin-converting enzyme-2 (ACE2) stimulates vasoreparative functions in HSPCs. This study tested if aging is associated with decreased ACE2 expression in HSPCs and if Ang-(1-7) restores vasoreparative functions. Flow cytometric enumeration of Lin−CD45lowCD34+ cells was carried out in peripheral blood of male or female individuals (22–83 years of age). Activity of ACE2 or the classical angiotensin-converting enzyme (ACE) was determined in lysates of HSPCs. Lin−Sca-1+cKit+ (LSK) cells were isolated from young (3–5 months) or old (20–22 months) mice, and migration and proliferation were evaluated. Old mice were treated with Ang-(1-7), and mobilization of HSPCs was determined following ischemia induced by femoral ligation. A laser Doppler blood flow meter was used to determine blood flow. Aging was associated with decreased number (Spearman r = − 0.598, P < 0.0001, n = 56), decreased ACE2 (r = − 0.677, P < 0.0004), and increased ACE activity (r = 0.872, P < 0.0001) (n = 23) in HSPCs. Migration or proliferation of LSK cells in basal or in response to stromal-derived factor-1α in old cells is attenuated compared to young, and these dysfunctions were reversed by Ang-(1-7). Ischemia increased the number of circulating LSK cells in young mice, and blood flow to ischemic areas was recovered. These responses were impaired in old mice but were restored by treatment with Ang-(1-7). These results suggest that activation of ACE2 or MasR would be a promising approach for enhancing ischemic vascular repair in aging.
Collapse
Affiliation(s)
- S Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - K Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - J Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - G Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Y P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA.
| |
Collapse
|
155
|
Stucker S, Chen J, Watt FE, Kusumbe AP. Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Front Cell Dev Biol 2020; 8:602269. [PMID: 33324652 PMCID: PMC7726257 DOI: 10.3389/fcell.2020.602269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
The bone marrow (BM) vascular niche microenvironments harbor stem and progenitor cells of various lineages. Bone angiogenesis is distinct and involves tissue-specific signals. The nurturing vascular niches in the BM are complex and heterogenous consisting of distinct vascular and perivascular cell types that provide crucial signals for the maintenance of stem and progenitor cells. Growing evidence suggests that the BM niche is highly sensitive to stress. Aging, inflammation and other stress factors induce changes in BM niche cells and their crosstalk with tissue cells leading to perturbed hematopoiesis, bone angiogenesis and bone formation. Defining vascular niche remodeling under stress conditions will improve our understanding of the BM vascular niche and its role in homeostasis and disease. Therefore, this review provides an overview of the current understanding of the BM vascular niches for hematopoietic stem cells and their malfunction during aging, bone loss diseases, arthritis and metastasis.
Collapse
Affiliation(s)
- Sina Stucker
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
156
|
Kim I, Kim M, Park MK, Naik R, Park JH, Kim BK, Choi Y, Chang KY, Won M, Ban HS, Lee K. The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1α accumulation. Exp Mol Med 2020; 52:1845-1856. [PMID: 33235318 PMCID: PMC8080809 DOI: 10.1038/s12276-020-00523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Targeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation. A drug that curbs the accumulation of a critical protein involved in the oxygen-sensing machinery of cells could offer a potent new therapeutic for treating cancer. Inhyub Kim, University of Science and Technology, Daejeon, South Korea, and colleagues describe a compound called LW1564 that suppresses metabolism within mitochondria, the energy factories of the cell. Less energy production means less oxygen consumption and therefore oxygen molecules build up inside the cell, which in turn stimulates the degradation of HIF-1α, a master regulator of oxygen balance. Many tumors rely on HIF-1α for their aberrant biological characteristics, and without this protein they tend to show reduced growth. The authors demonstrated that LW1564 could limit HIF-1α accumulation and inhibit the proliferation of various cancer cell lines. The drug also inhibited tumor growth in a mouse model of liver cancer.
Collapse
Affiliation(s)
- Inhyub Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Min Kyung Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Ravi Naik
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Jae Hyung Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | | | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea.
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, 34141, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
| |
Collapse
|
157
|
Chanana N, Palmo T, Newman JH, Pasha MAQ. Vascular homeostasis at high-altitude: role of genetic variants and transcription factors. Pulm Circ 2020; 10:2045894020913475. [PMID: 33282179 PMCID: PMC7682230 DOI: 10.1177/2045894020913475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
High-altitude pulmonary edema occurs most frequently in non-acclimatized low landers on exposure to altitude ≥2500 m. High-altitude pulmonary edema is a complex condition that involves perturbation of signaling pathways in vasoconstrictors, vasodilators, anti-diuretics, and vascular growth factors. Genetic variations are instrumental in regulating these pathways and evidence is accumulating for a role of epigenetic modification in hypoxic responses. This review focuses on the crosstalk between high-altitude pulmonary edema-associated genetic variants and transcription factors, comparing high-altitude adapted and high-altitude pulmonary edema-afflicted subjects. This approach might ultimately yield biomarker information both to understand and to design therapies for high-altitude adaptation.
Collapse
Affiliation(s)
- Neha Chanana
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tsering Palmo
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - John H Newman
- Pulmonary Circulation Center, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M A Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
158
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
159
|
Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020; 6:116. [PMID: 33298860 PMCID: PMC7604280 DOI: 10.1038/s41420-020-00347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is responsible for liver injury during hepatic resection and liver transplantation. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) could regulate immune response in multiple liver diseases. Nevertheless, the underlying role of TGR5 in hepatic I/R injury remains largely unknown. This study aimed to investigate the potential mechanism of TGR5 in hepatic I/R injury. Wild-type (WT) and TGR5 knockout (TGR5KO) mice were used to perform hepatic I/R, and macrophages were isolated from mice for in vitro experiments. The results demonstrated that knockout of TGR5 in mice significantly exacerbated liver injury and inflammatory response. TGR5KO mice infused with WT macrophages showed relieved liver injury. Further study revealed that TGR5 knockout inhibited sirtuin 3 (SIRT3) and forkhead box O3 (FOXO3) expression. In vitro experiments indicated that SIRT3 inhibited acetylation, ubiquitination and degradation of FOXO3. FOXO3 inhibited HIF-1α transcription by binding to its promoter. TGR5 knockout inhibited SIRT3 expression, thus promoted the acetylation, ubiquitination, and degradation of FOXO3, which resulted in increased HIF-1α transcription and macrophages proinflammatory response. Collectively, TGR5 plays a critical protective role in hepatic I/R injury. FOXO3 deacetylation mediated by SIRT3 can attenuate hepatic I/R injury. TGR5 deficiency aggravates hepatic I/R injury via inhibiting SIRT3/FOXO3/HIF-1α pathway.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Song Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shun Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chengyu Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yong Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,School of Medicine, Southeast University, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| |
Collapse
|
160
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
161
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
162
|
Nimje MA, Patir H, Tirpude RK, Reddy PK, Kumar B. Physiological and oxidative stress responses to intermittent hypoxia training in Sprague Dawley rats. Exp Lung Res 2020; 46:376-392. [PMID: 32930002 DOI: 10.1080/01902148.2020.1821263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Rapid ascent to high altitude and inability to acclimatize lead to high-altitude illnesses. Intermittent hypoxia (IH) conditioning has been hypothesized as a non-pharmacological strategy aiming to improve adaptive responses during high altitude ascent. In the recent years, IH training (IHT) has become increasingly popular among recreational and professional athletes owing to its ability to mitigate high altitude related problems. This study aimed at exploring the role of IHT in altitude acclimatization. METHODS Male Sprague Dawley rats were subjected to IHT for 4 h consecutively for 5 days at 12% FiO2 under normobaric conditions. To assess the effect of IHT in hypoxic acclimatization, animals were further exposed to extreme hypoxia (EH) at 8% FiO2. Oxygen saturation (SpO2), respiratory rate and heart rate were recorded during the exposure. Oxidative stress (ROS, MDA, and 4-HNE) and histopathological examinations were studied in the lung tissue sections. Hypoxia biomarkers, HIF-1α, EPO, VEGF, and BPGM were evaluated through western blotting in the lung tissue. RESULTS Assessment of the IHT showed that SpO2 levels were found to be higher in the IH trained rats with a statistical difference of p < 0.01 in the first hour of hypoxia exposure as compared to the untrained rats. There was a significantly higher (p < 0.001) generation of ROS and MDA in the untrained rats as compared to the trained rats. Lipid peroxidation markers and systemic inflammatory marker were found to be expressed at much higher level in the untrained rats. There was a higher expression of HIF-1α (1.24-fold ↑), VEGF (1.14-fold ↑) and decrease in EPO (1.43-fold ↓) in the untrained rats as compared to trained rats. CONCLUSIONS Preconditioning with IHT resulted in the reduction in hypoxia induced oxidative stress during extreme hypoxia exposure and thus, maintaining redox balance as well as adjustment in the physiological changes in rats.
Collapse
Affiliation(s)
- Megha A Nimje
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Himadri Patir
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Rajesh Kumar Tirpude
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| |
Collapse
|
163
|
Qi M, Wu Q, Liu T, Hou Y, Miao Y, Hu M, Liu Q. Hepatopancreas Transcriptome Profiling Analysis Reveals Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus carpio var qingtianensis. Front Physiol 2020; 11:1110. [PMID: 33041847 PMCID: PMC7518031 DOI: 10.3389/fphys.2020.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. Its high tolerance to hypoxia makes it an ideal organism for studying the molecular regulation mechanism during hypoxia process as well as reoxygenation following hypoxia in fish. In this study, we counted the differentially expressed genes (DEGs) altered during hypoxic exposure and reoxygenation process. The results indicated that 2236 genes (1506 up-regulated genes and 730 down-regulated genes) were differentially expressed between the control and hypoxic groups. The results from Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that 1152 of 2236 genes were enriched, and those genes participated in energy metabolism, reactive oxygen species (ROS) elimination, acceleration of cell apoptosis, inhibition of growth, and other processes. We found activation of the pentose phosphate pathway in hypoxia treatment, suggesting that carbohydrates not only provide energy for metabolism but also provide NADPH for protecting the body from oxidative damage and ribosomes for promoting RNA synthesis. During reoxygenation, 4509 genes (1865 up-regulated genes and 2644 down-regulated genes) were differentially expressed. The results of KEGG enrichment analysis indicated that 2392 of 4509 genes were enriched, and participated in pyruvate and lactic acid metabolism, synthesis of amino acids and lipids, inhibition of cell apoptosis, regulation of cell growth and differentiation, and other processes. These differentially expressed genes effectively alleviate the body acidosis and promote the normal growth and development of the body. Through the analysis of KEGG pathway enrichment, we observed that the physiological regulation of Qingtian paddy field carp during the processes of hypoxia and reoxygenation is not a simple and reversible process. This work first reported the adaptive mechanism of hypoxia and the recovery mechanism of reoxygenation after hypoxia in common carp, and also provided new insights for the physiological regulation of fish under hypoxia treatment.
Collapse
Affiliation(s)
- Ming Qi
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qianqian Wu
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Tao Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yiling Hou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yixin Miao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Menghong Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
164
|
Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett 2020; 487:10-20. [PMID: 32470488 PMCID: PMC7336507 DOI: 10.1016/j.canlet.2020.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
A common feature of many solid tumors is low oxygen conditions due to inadequate blood supply. Hypoxia induces hypoxia inducible factor (HIF) stabilization and downstream signaling. This signaling has pleiotropic roles in cancers, including the promotion of cellular proliferation, changes in metabolism, and induction of angiogenesis. In addition, hypoxia is becoming recognized as an important driver of epithelial-to-mesenchymal (EMT) in cancer. During EMT, epithelial cells lose their typical polarized states and transition to a more mobile mesenchymal phenotype. Hypoxia induces this transition by modulating EMT signaling pathways, inducing EMT transcription factor activity, and regulating miRNA networks. As both hypoxia and EMT modulate the tumor microenvironment (TME) and are associated with immunosuppression, we also explore how these pathways may impact response to immuno-oncology therapeutics.
Collapse
Affiliation(s)
| | - Scott M Haake
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
165
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
166
|
Qiu J, Singh P, Pan G, de Paolis A, Champagne FA, Liu J, Cardoso L, Rodríguez-Contreras A. Defining the relationship between maternal care behavior and sensory development in Wistar rats: Auditory periphery development, eye opening and brain gene expression. PLoS One 2020; 15:e0237933. [PMID: 32822407 PMCID: PMC7442246 DOI: 10.1371/journal.pone.0237933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Defining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams. The results show the first evidence that the transcription of genes involved in the hypoxia-sensitive pathway and neurotrophin signaling is regulated during separate sensitive periods that occur before and after hearing onset, respectively. Although the timing of ABR onset, EO, and the relative mRNA levels of genes involved in the hypoxia-sensitive pathway did not differ between pups from different LG groups, we found statistically significant increases in the relative mRNA levels of four genes involved in neurotrophin signaling in auditory brain regions from pups of different LG backgrounds. These results suggest that sensitivity to hypoxic challenge might be widespread in the auditory system of neonate rats before hearing onset, and that maternal LG may affect the transcription of genes involved in experience-dependent neuroplasticity.
Collapse
Affiliation(s)
- Jingyun Qiu
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Preethi Singh
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Geng Pan
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Annalisa de Paolis
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, New York, United States of America
| | - Luis Cardoso
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Adrián Rodríguez-Contreras
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
167
|
Mreisat A, Kanaani H, Saada A, Horowitz M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. J Therm Biol 2020; 93:102691. [PMID: 33077115 DOI: 10.1016/j.jtherbio.2020.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/27/2023]
Abstract
Heat acclimation (HA) induces metabolic plasticity to resist the effects of environmental heat with cross-tolerance to novel stressors such as oxygen supply perturbations, exercise, and alike. Our previous results indicated that hypoxia inducible transcription factor (HIF-1α) contributes to this adaptive process. In the present study, we link functional studies in isolated cardiomyocytes, with molecular and biochemical studies of cardiac mitochondria and demonstrate that HA remodels mitochondrial metabolism and performance. We observed the significant role that HIF-1α plays in the HA heart, as HA reduces oxidative stress during ischemia by shifting mitochondrial substrate preference towards pyruvate, with elevated level and activity of mitochondrial LDH (LDHb), acting a pivotal role. Increased antioxidative capacity to encounter hazards is implicated. These results deepen our understanding of heat acclimation-mediated cross tolerance (HACT), in which adaptive bioenergetic-mechanisms counteract the hazards of oxidative stress.
Collapse
Affiliation(s)
- A Mreisat
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - H Kanaani
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - A Saada
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| | - M Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
168
|
Takaki H, Hirata Y, Ueshima E, Kodama H, Matsumoto S, Wada R, Suzuki H, Nakasho K, Yamakado K. Hepatic Artery Embolization Enhances Expression of Programmed Cell Death 1 Ligand 1 in an Orthotopic Rat Hepatocellular Carcinoma Model: In Vivo and in Vitro Experimentation. J Vasc Interv Radiol 2020; 31:1475-1482.e2. [PMID: 32800663 DOI: 10.1016/j.jvir.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate the effects of hepatic artery embolization (HAE) on the expression of programmed cell death 1 ligand 1 (PD-L1) in an orthotopic rat hepatocellular carcinoma (HCC) model. MATERIALS AND METHODS A rat HCC model was established in Sprague-Dawley rats with the RH7777 cell line. Six animals each were assigned to receive HAE or sham treatment. Liver tissues were harvested 24 h after the procedure. Immunohistochemistry (IHC) was used to compare expression of PD-L1 and hypoxia-inducible factor (HIF)-1α in the intratumoral and peritumoral regions and normal liver tissue. In vitro cell culture study was performed for 24 h under normoxic and hypoxic conditions, and protein expression of PD-L1 and HIF-1α and the effects of HIF-1α inhibitors were assessed. RESULTS IHC showed that PD-L1- and HIF-1α-positive areas were significantly larger in the HAE group vs the sham group in intratumoral (P = .006 and P < .001, respectively) and peritumoral regions (both P < .001). The expression of PD-L1 positively correlated with HIF-1α expression in the intratumoral region (r2 = 0.551; P < .001). In vitro cell culture study revealed that protein expression of PD-L1 and HIF-1α were significantly higher when cells were incubated under hypoxic vs normoxic conditions (P = .028 and P = .010, respectively). PD-L1 expression was suppressed significantly when the HIF-1α inhibitor rapamycin was added to the culture medium (P = .024). CONCLUSIONS HAE enhances intratumoral and peritumoral PD-L1 expression in a rat HCC model. The HIF-1α pathway is a possible mechanism underlying increased intratumoral PD-L1 expression after HAE.
Collapse
Affiliation(s)
- Haruyuki Takaki
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Yutaka Hirata
- Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Eisuke Ueshima
- Department of Diagnostic and Interventional Radiology, Kobe University, Kobe, Japan
| | - Hiroshi Kodama
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Seiji Matsumoto
- Division of Thoracic Surgery and Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Reona Wada
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitomi Suzuki
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Suita Tokushukai Hospital, Osaka, Japan
| | - Koichiro Yamakado
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
169
|
Swartz HM, Flood AB, Schaner PE, Halpern H, Williams BB, Pogue BW, Gallez B, Vaupel P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol Rep 2020; 8:e14541. [PMID: 32786045 PMCID: PMC7422807 DOI: 10.14814/phy2.14541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Ann Barry Flood
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Howard Halpern
- Department Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Benjamin B Williams
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Bernard Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Peter Vaupel
- Department Radiation Oncology, University Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Center Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
170
|
Transcriptional Profiling and Biological Pathway(s) Analysis of Type 2 Diabetes Mellitus in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165866. [PMID: 32823525 PMCID: PMC7460550 DOI: 10.3390/ijerph17165866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson's Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.
Collapse
|
171
|
Zhao M, Chang J, Liu R, Liu Y, Qi J, Wang Y, Zhang X, Qiao L, Jin Y, An H, Ren L. miR-495 and miR-5688 are down-regulated in non-small cell lung cancer under hypoxia to maintain interleukin-11 expression. Cancer Commun (Lond) 2020; 40:435-452. [PMID: 32720740 PMCID: PMC7494068 DOI: 10.1002/cac2.12076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hypoxia is a hallmark of cancer and is associated with poor prognosis. However, the molecular mechanism by which hypoxia promotes tumor progression remains unclear. MicroRNAs dysregulation has been shown to play a critical role in the tumor and tumor microenvironment. Here, we investigated the roles of miR‐495 and miR‐5688 in human non‐small cell lung cancer (NSCLC) and their underlying mechanism. Methods The expression levels of miR‐495 and miR‐5688 in human NSCLC tissue specimens were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR). Deferoxamine (DFO) was used to determine whether the regulation of miR‐495 and miR‐5688 under hypoxia was dependent on hypoxia‐inducible factor 1‐alpha (HIF‐1α). Furthermore, the functions of miR‐495 and miR‐5688 in tumor progression were evaluated using colony formation, 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS), wound healing, transwell assays, and xenograft model. Two algorithms, PicTAR and Targetscan, were used to predict the target gene of these two miRNAs, and dual‐luciferase reporter assay was conducted to confirm the target. The unpaired two‐tailed t test, Pearson correlation analysis, and Fisher's exact probability test were performed for statistical analyses. Results Two miRNAs, miR‐495 and miR‐5688, were found to participate in NSCLC progression under hypoxia. They were down‐regulated in NSCLC tissues compared with normal tissues. We determined that hypoxia led to the down‐regulation of miR‐495 and miR‐5688 in NSCLC cells, which was independent of HIF‐1α and cellular metabolic energy. In addition, miR‐495 and miR‐5688 suppressed cell proliferation, migration, and invasion in vitro. The NSCLC xenograft model showed that miR‐495 and miR‐5688 inhibited tumor formation in vivo. Interestingly, we found that miR‐495 and miR‐5688 had the same target, interleukin‐11 (IL‐11). Recombinant human IL‐11 counteracted the effects of miR‐495 and miR‐5688 on NSCLC cells, suggesting that miR‐495 and miR‐5688 executed their tumor suppressive role by repressing IL‐11 expression. Conclusion We found that hypoxia down‐regulated the expression levels of miR‐495 and miR‐5688 in NSCLC to enhance IL‐11 expression and tumor progression, indicating that the miR‐495/miR‐5688/IL‐11 axis may serve as a therapeutic target and potential biomarker for NSCLC.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Jiao Chang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Ran Liu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yahui Liu
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Jin Qi
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Yanhui Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Xinwei Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Lu Qiao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Yu Jin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Haohua An
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin, 300060, P. R. China
| |
Collapse
|
172
|
Guo Q, Yang J, Chen Y, Jin X, Li Z, Wen X, Xia Q, Wang Y. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur J Pharmacol 2020; 884:173394. [PMID: 32730833 DOI: 10.1016/j.ejphar.2020.173394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Angiogenesis is essential for bone formation during skeletal development. HIF-1α and the HIF-responsive gene VEGF (vascular endothelial growth factor) are reported to be a key mechanism for coupling osteogenesis and angiogenesis. Salidroside (SAL), a major biologically active compound of Rhodiola rosea L., possesses diverse pharmacological effects. However, whether SAL can protect against bone loss via the HIF-1α/VEGF pathway, specifically by inducing angiogenesis-osteogenesis coupling in vivo, remains unknown. Therefore, in the present study, we employed primary human umbilical vein endothelial cells (HUVECs) and the permanent EA.hy926 human endothelial cell line to determine the cellular and molecular effects of SAL on vascular endothelial cells and the HIF-1α-VEGF signalling pathway in the coupling of angiogenesis-osteogenesis. The in vitro study revealed that the HUVECs and EA.hy926 cells treated with conditioned medium from osteoblast cells (MG-63 cells) treated with SAL or treated directly with SAL showed enhanced proliferation, migration and capillary structure formation. However, supplementation with an anti-VEGF antibody during the treatment of endothelial cells (ECs) significantly reversed the pro-angiogenic effect of SAL. Moreover, SAL upregulated HIF-1α expression and increased its transcriptional activity, consequently upregulating VEGF expression at the mRNA and protein levels. In addition, our in vivo analysis demonstrated that SAL can stimulate endothelial sprouting from metatarsal bones. Thus, our mechanistic study demonstrated that the pro-angiogenic effects of SAL involve HIF-1α-VEGF signalling by coordinating the coupling of angiogenesis-osteogenesis in the bone environment. Therefore, we have discovered an ideal molecule that simultaneously enhances angiogenesis and osteogenesis and thereby accelerates bone healing.
Collapse
Affiliation(s)
- Qiaoyun Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Yumeng Chen
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Zongmin Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China; Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police Forces, Shanghai, China
| | - Xiaochang Wen
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Qun Xia
- Department of Orthopaedics, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
173
|
Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel) 2020; 9:E656. [PMID: 32722013 PMCID: PMC7464156 DOI: 10.3390/antiox9080656] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
High-intensity exercise/training, especially interval exercise/training, has gained popularity in recent years. Hypoxic training was introduced to elite athletes half a century ago and has recently been adopted by the general public. In the current review, we have summarised the molecular adaptive responses of skeletal muscle to high-intensity exercise/training, focusing on mitochondrial biogenesis, angiogenesis, and muscle fibre composition. The literature suggests that (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) PGC-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1-alpha (HIF1-α) might be the main mediators of skeletal muscle adaptations to high-intensity exercises in hypoxia. Exercise is known to be anti-inflammatory, while the effects of hypoxia on inflammatory signalling are more complex. The anti-inflammatory effects of a single session of exercise might result from the release of anti-inflammatory myokines and other cytokines, as well as the downregulation of Toll-like receptor signalling, while training-induced anti-inflammatory effects may be due to reductions in abdominal and visceral fat (which are main sources of pro-inflammatory cytokines). Hypoxia can lead to inflammation, and inflammation can result in tissue hypoxia. However, the hypoxic factor HIF1-α is essential for preventing excessive inflammation. Disease-induced hypoxia is related to an upregulation of inflammatory signalling, but the effects of exercise-induced hypoxia on inflammation are less conclusive. The effects of high-intensity exercise under hypoxia on skeletal muscle molecular adaptations and inflammatory signalling have not been fully explored and are worth investigating in future studies. Understanding these effects will lead to a more comprehensive scientific basis for maximising the benefits of high-intensity exercise.
Collapse
Affiliation(s)
- Jia Li
- College of Physical Education, Southwest University, Chongqing 400715, China;
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - Muhammed M. Atakan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
174
|
Lourenço BN, Coleman AE, Schmiedt CW, Brown CA, Rissi DR, Stanton JB, Giguère S, Berghaus RD, Brown SA, Tarigo JL. Profibrotic gene transcription in renal tissues from cats with ischemia-induced chronic kidney disease. Am J Vet Res 2020; 81:180-189. [PMID: 31985291 DOI: 10.2460/ajvr.81.2.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize transcription of profibrotic mediators in renal tissues of cats with ischemia-induced chronic kidney disease (CKD). SAMPLE Banked renal tissues from 6 cats with experimentally induced CKD (RI group) and 8 healthy control cats. PROCEDURES For cats of the RI group, both kidneys were harvested 6 months after ischemia was induced for 90 minutes in 1 kidney. For control cats, the right kidney was evaluated. All kidney specimens were histologically examined for fibrosis, inflammation, and tubular atrophy. Renal tissue homogenates underwent reverse transcription quantitative PCR assay evaluation to characterize gene transcription of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase (MMP)-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), transforming growth factor-β1, and vascular endothelial growth factor A. Gene transcription and histologic lesions were compared among ischemic and contralateral kidneys of the RI group and control kidneys. RESULTS Ischemic kidneys had greater transcript levels of MMP-7, MMP-9, and transforming growth factor-β1 relative to control kidneys and of MMP-2 relative to contralateral kidneys. Transcription of TIMP-1 was upregulated and that of vascular endothelial growth factor A was downregulated in ischemic and contralateral kidneys relative to control kidneys. Transcription of HIF-1α did not differ among kidney groups. For ischemic kidneys, there were strong positive correlations between transcription of HIF-1α, MMP-2, MMP-7, and TIMP-1 and severity of fibrosis. CONCLUSIONS AND CLINICAL RELEVANCE Transcription of genes involved in profibrotic pathways remained altered in both kidneys 6 months after transient renal ischemia. This suggested that a single unilateral renal insult can have lasting effects on both kidneys.
Collapse
|
175
|
Neurobiology of Recovery of Motor Function after Stroke: The Central Nervous System Biomarker Effects of Constraint-Induced Movement Therapy. Neural Plast 2020; 2020:9484298. [PMID: 32617098 PMCID: PMC7312560 DOI: 10.1155/2020/9484298] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recovery of motor function after stroke involves many biomarkers. This review attempts to identify the biomarker effects responsible for recovery of motor function following the use of Constraint-Induced Movement Therapy (CIMT) and discuss their implications for research and practice. From the studies reviewed, the biomarker effects identified include improved perfusion of motor areas and brain glucose metabolism; increased expression of proteins, namely, Brain-Derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and Growth-Associated Protein 43 (GAP-43); and decreased level of Gamma-Aminobutyric Acid (GABA). Others include increased cortical activation, increased motor map size, and decreased interhemispheric inhibition of the ipsilesional hemisphere by the contralesional hemisphere. Interestingly, the biomarker effects correlated well with improved motor function. However, some of the biomarker effects have not yet been investigated in humans, and they require that CIMT starts early on poststroke. In addition, one study seems to suggest the combined use of CIMT with other rehabilitation techniques such as Transcortical Direct Stimulation (tDCs) in patients with chronic stroke to achieve the biomarker effects. Unfortunately, there are few studies in humans that implemented CIMT during early poststroke. Thus, it is important that more studies in humans are carried out to determine the biomarker effects of CIMT especially early on poststroke, when there is a greater opportunity for recovery. Furthermore, it should be noted that these effects are mainly in ischaemic stroke.
Collapse
|
176
|
Kim I, Park JW. Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Lett 2020; 489:41-49. [PMID: 32522693 DOI: 10.1016/j.canlet.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying hypoxia-driven chromatin remodeling is a long-lasting question. For the last two decades, this question has been resolved in part. It is now widely agreed that hypoxia dynamically changes the methylation status of histones to control gene expression. Hypoxia-inducible factor (HIF) plays a central role in cellular responses to hypoxia through transcriptional activation of numerous genes. At least in part, the hypoxic regulation of histone methylation is attributed to the HIF-mediated expression of histone modifying enzymes. Protein hydroxylation and histone demethylation have emerged as the oxygen sensing processes because they are catalyzed by a family of 2-oxoglutarate (2OG)-dependent dioxygenases whose activities depend upon the ambient oxygen level. Recently, it has been extensively investigated that the 2OG dioxygenases oxygen-dependently regulate histone methylation. Nowadays, the hypoxic change in the histone methylation status is regarded as an important event to drive malignant behaviors of cancer cells. In this review, we introduced and summarized the cellular processes that govern hypoxia-driven regulation of histone methylation in the context of cancer biology. We also discussed the emerging roles of histone methyltransferases and demethylases in epigenetic response to hypoxia.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Wan Park
- Department of Pharmacology, Cancer Research Institute, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
177
|
Chen J, Shen Y, Wang J, Ouyang G, Kang J, Lv W, Yang L, He S. Analysis of Multiplicity of Hypoxia-Inducible Factors in the Evolution of Triplophysa Fish (Osteichthyes: Nemacheilinae) Reveals Hypoxic Environments Adaptation to Tibetan Plateau. Front Genet 2020; 11:433. [PMID: 32477402 PMCID: PMC7235411 DOI: 10.3389/fgene.2020.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
HIF (Hypoxia-inducible factor) gene family members function as master regulators of cellular and systemic oxygen homeostasis during changes in oxygen availability. Qinghai-Tibet Plateau is a natural laboratory for for long-term hypoxia and cold adaptation. In this context, T. scleroptera that is restricted to >3500 m high-altitude freshwater rivers was selected as the model to compare with a representative species from the plain, P. dabryanus. We cloned different HIF-α and carried out a phylogenetic analysis from invertebrates to vertebrates for identifying HIF-α genes and analyzing their evolutionary history. Intriguingly, the HIF-α has undergone gene duplications might be due to whole-genome duplication (WGD) events during evolution. PAML analysis indicated that HIF-1αA was subjected to positive selection acted on specific sites in Triplophysa lineages. To investigate the relationship between hypoxia adaptation and the regulation of HIF-α stability by pVHL in plateau and plain fish, a series of experiments were carried out. Comparison the luciferase transcriptional activity and protein levels of HIF-αs and the differing interactions of HIF-αs with pVHL, show clear differences between plateau and plain fish. T. scleroptera pVHL could enhance HIF-α transcriptional activity under hypoxia, and functional validation through pVHL protein mutagenesis showed that these mutations increased the stability of HIF-α and its hetero dimerization affinity to ARNT. Our research shows that missense mutations of pVHL induced evolutionary molecular adaptation in Triplophysa fishes living in high altitude hypoxic environments.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
178
|
Ali A, Watanabe Y, Galasso M, Watanabe T, Chen M, Fan E, Brochard L, Ramadan K, Ribeiro RVP, Stansfield W, Gokhale H, Gazzalle A, Waddell T, Liu M, Keshavjee S, Cypel M. An extracellular oxygen carrier during prolonged pulmonary preservation improves post-transplant lung function. J Heart Lung Transplant 2020; 39:595-603. [PMID: 32334946 DOI: 10.1016/j.healun.2020.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The use of a novel extracellular oxygen carrier (EOC) preservation additive known as HEMO2Life has recently been shown to lead to a superior preservation of different types of solid organs. Our study aimed to investigate the effect of this EOC on extending lung preservation time and its mechanism of action. METHODS Donor pigs were randomly allocated to either of the following 2 groups (n = 6 per group): (1) 36 hours cold preservation or (2) 36 hours cold preservation with 1 g/liter of EOC. The lungs were evaluated through 12 hours of normothermic ex vivo lung perfusion (EVLP) followed by a left-single lung transplant into a recipient pig. Grafts were reperfused for 4 hours, followed by right pulmonary artery clamping to assess graft oxygenation function. RESULTS During EVLP assessment, EOC-treated lungs showed improvements in physiologic parameters, whereas the control lungs deteriorated. After a total of 48 hours of preservation (36 hours cold + 12 hours normothermic EVLP), transplanted grafts in the treatment group displayed significantly better oxygenation than in the controls (PaO2/FiO2: 437 ± 36 mm Hg vs 343 ± 27 mm Hg, p = 0.041). In addition, the use of EOC led to significantly less edema formation (wet-to-dry ratio: 4.95 ± 0.29 vs 6.05 ± 0.33, p = 0.026), less apoptotic cell death (p = 0.041), improved tight junction preservation (p = 0.002), and lower levels of circulating IL-6 within recipient plasma (p = 0.004) compared with non-use of EOC in the control group after transplantation. CONCLUSION The use of an EOC during an extended pulmonary preservation period led to significantly superior early post-transplant lung function.
Collapse
Affiliation(s)
- Aadil Ali
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Yui Watanabe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Marcos Galasso
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Eddy Fan
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Divisions of Respirology and Critical Care Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Khaled Ramadan
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Rafaela Vanin Pinto Ribeiro
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - William Stansfield
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Hemant Gokhale
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Anajara Gazzalle
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
179
|
Saieva L, Barreca MM, Zichittella C, Prado MG, Tripodi M, Alessandro R, Conigliaro A. Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β Activity in Colorectal Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21113832. [PMID: 32481626 PMCID: PMC7312749 DOI: 10.3390/ijms21113832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibition, in hypoxic cells, hampered β-catenin nuclear localization and its transcriptional activity, while lncH19 silencing did not induce the same effects. Interestingly, our data revealed that miRNA inhibition in hypoxic cells restored the activity of Glycogen Synthase Kinase 3β (GSK-3β) reducing the amount of P-Ser9 kinase, thus unveiling a role of the miR-675-5p in controlling GSK-3β activity. Bioinformatics analyses highlighted the serine/threonine-protein phosphatases PPP2CA, responsible for GSK-3β activation, among the miR-675-5p targets, thus indicating the molecular mediator through which miR-675-5p may control β-catenin nuclear localization. In conclusion, here we demonstrated that the inhibition of the hypoxia-induced non-coding RNA miR-675-5p hampered the nuclear localization of β-catenin by regulating GSK-3β activity, thus proposing the miR-675-5p as a new therapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Laura Saieva
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Maria Giulia Prado
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome Italy; (M.G.P.); (M.T.)
| | - Marco Tripodi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome Italy; (M.G.P.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00161 Rome, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (L.S.); (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
180
|
Xue X, Xue S, Wan W, Li J, Shi H. HIF-1α interacts with Kindlin-2 and influences breast cancer elasticity: A study based on shear wave elastography imaging. Cancer Med 2020; 9:4971-4979. [PMID: 32436609 PMCID: PMC7367621 DOI: 10.1002/cam4.3130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer was the most frequent and the second most deadly cancer in women in 2018 in China; thus, early diagnosis of breast cancer is important. Studies have reported that tissue stiffness promotes cancer progression through increased collagen or fibrosis. Shear wave elastography (SWE) is a technique for measuring tissue stiffness. However, the mechanisms underlying cancer tissue stiffness or fibrosis are not entirely clear. Hypoxia‐inducible factor 1 (HIF‐1α) is expressed in response to hypoxia and contributes to tumor progression and metastasis. Kindlin‐2 is an important co‐activator of integrin. We have reported that Kindlin‐2 influences breast cancer stiffness and metastasis. In this study, SWE was used to determine the maximum elasticity (Emax) of patients before operation or core needle biopsy. The specimens were used for staining. Knockdown, overexpression, co‐immunoprecipitation, and immunofluorescence assays were used to explore the relationship between HIF‐1α and Kindlin‐2. We found that HIF‐1α and Kindlin‐2 were highly expressed in invasive breast cancer and that the expression levels of HIF‐1α and Kindlin‐2 were correlated with Emax. HIF‐1α interacts with Kindlin‐2. Besides, HIF‐1α and Kindlin‐2 influence the expression of P4HA1, an important protein in collagen biogenesis through the integrin/FAK pathway. Our study first identified a new mechanism of invasive breast cancer stiffness by linking HIF‐1α and Kindlin‐2 to collagen biogenesis. Therefore, based on SWE, Emax could be a physical biomarker of invasive breast cancer for early, noninvasive diagnosis, and HIF‐1α and Kindlin‐2 could be pathological markers for early diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Ultrasound, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaowei Xue
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbo Wan
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junlai Li
- Department of Ultrasound, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaiyin Shi
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
181
|
Hall JE, Lawrence ES, Simonson TS, Fox K. Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Front Genet 2020; 11:471. [PMID: 32528523 PMCID: PMC7247851 DOI: 10.3389/fgene.2020.00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human populations at high altitude exhibit both unique physiological responses and strong genetic signatures of selection thought to compensate for the decreased availability of oxygen in each breath of air. With the increased availability of genomic information from Tibetans, Andeans, and Ethiopians, much progress has been made to elucidate genetic adaptations to chronic hypoxia that have occurred throughout hundreds of generations in these populations. In this perspectives piece, we discuss specific hypoxia-pathway variants that have been identified in high-altitude populations and methods for functional investigation, which may be used to determine the underlying causal factors that afford adaptation to high altitude.
Collapse
Affiliation(s)
- James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Keolu Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
182
|
Moya EA, Go A, CB K, Fu Z, TS S, FL P. Neuronal HIF-1α in the nucleus tractus solitarius contributes to ventilatory acclimatization to hypoxia. J Physiol 2020; 598:2021-2034. [PMID: 32026480 PMCID: PMC7230006 DOI: 10.1113/jp279331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS We hypothesized that hypoxia inducible factor 1α (HIF-1α) in CNS respiratory centres is necessary for ventilatory acclimatization to hypoxia (VAH); VAH is a time-dependent increase in baseline ventilation and the hypoxic ventilatory response (HVR) occurring over days to weeks of chronic sustained hypoxia (CH). Constitutive deletion of HIF-1α in CNS neurons in transgenic mice tended to blunt the increase in HVR that occurs in wild-type mice with CH. Conditional deletion of HIF-1α in glutamatergic neurons of the nucleus tractus solitarius during CH significantly decreased ventilation in acute hypoxia but not normoxia in CH mice. These effects are not explained by changes in metabolic rate, nor CO2 , and there were no changes in the HVR in normoxic mice. HIF-1α mediated changes in gene expression in CNS respiratory centres are necessary in addition to plasticity of arterial chemoreceptors for normal VAH. ABSTRACT Chronic hypoxia (CH) produces a time-dependent increase of resting ventilation and the hypoxic ventilatory response (HVR) that is called ventilatory acclimatization to hypoxia (VAH). VAH involves plasticity in arterial chemoreceptors and the CNS [e.g. nucleus tractus solitarius (NTS)], although the signals for this plasticity are not known. We hypothesized that hypoxia inducible factor 1α (HIF-1α), an O2 -sensitive transcription factor, is necessary in the NTS for normal VAH. We tested this in two mouse models using loxP-Cre gene deletion. First, HIF-1α was constitutively deleted in CNS neurons (CNS-HIF-1α-/- ) by breeding HIF-1α floxed mice with mice expressing Cre-recombinase driven by the calcium/calmodulin-dependent protein kinase IIα promoter. Second, HIF-1α was deleted in NTS neurons in adult mice (NTS-HIF-1α-/- ) by microinjecting adeno-associated virus that expressed Cre-recombinase in HIF-1α floxed mice. In normoxic control mice, HIF-1α deletion in the CNS or NTS did not affect ventilation, nor the acute HVR (10-15 min hypoxic exposure). In mice acclimatized to CH for 1 week, ventilation in hypoxia was blunted in CNS-HIF-1α-/- and significantly decreased in NTS-HIF-1α-/- compared to control mice (P < 0.0001). These changes were not explained by differences in metabolic rate or CO2 . Immunofluorescence showed that HIF-1α deletion in NTS-HIF-1α-/- was restricted to glutamatergic neurons. The results indicate that HIF-1α is a necessary signal for VAH and the previously described plasticity in glutamatergic neurotransmission in the NTS with CH. HIF-1α deletion had no effect on the increase in normoxic ventilation with acclimatization to CH, indicating this is a distinct mechanism from the increased HVR with VAH.
Collapse
Affiliation(s)
- Esteban A. Moya
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, 8340589, Chile
| | - A Go
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Kim CB
- Providence Medical Institute, Torrance, California, 90503, USA
| | - Z Fu
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Simonson TS
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| | - Powell FL
- Section of Physiology, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, 92093-0623, USA
| |
Collapse
|
183
|
Nie H, Wang H, Jiang K, Yan X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genomics 2020; 21:318. [PMID: 32326883 PMCID: PMC7181582 DOI: 10.1186/s12864-020-6734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia is an important environmental stressor in aquatic ecosystems, with increasingly impacts on global biodiversity. Benthic communities are the most sensitive parts of the coastal ecosystem to eutrophication and resulting hypoxia. As a filter-feeding organism living in the seafloor sediment, Ruditapes philippinarum represents an excellent “sentinel” species to assess the quality of marine environment. In order to gain insight into the molecular response and acclimatization mechanisms to hypoxia stress in marine invertebrates, we examined hypoxia-induced changes in immune-related gene expression and gene pathways involved in hypoxia regulation of R. philippinarum. Results We investigated the response of the Manila clam R. philippinarum to hypoxia under experimental conditions and focused on the analysis of the differential expression patterns of specific genes associated with hypoxia response by RNA-seq and time course qPCR analysis. A total of 75 genes were captured significantly differentially expressed, and were categorized into antioxidant/oxidative stress response, chaperones/heat shock proteins, immune alteration, and cell proliferation/apoptosis. Fourteen hypoxia responsive genes were validated significantly up/down regulated at different time 0, 2, 5, and 8 d in gills of R. philippinarum in hypoxia challenged group. Functional enrichment analysis revealed the HIF signaling pathway and NF-κB signaling pathway play pivotal roles in hypoxia tolerance and resistance in R. philippinarum. Conclusion The HIF signaling pathway and NF-κB signaling pathway play a critical role in hypoxia tolerance and resistance in Manila clam. The immune and defense related genes and pathways obtained here gain a fundamental understanding of the hypoxia stress in marine bivalves and provide important insights into the physiological acclimation, immune response and defense activity under hypoxia challenge. The reduced metabolism is a consequence of counterbalancing investments in immune defense against other physiological processes.
Collapse
Affiliation(s)
- Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Huamin Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
184
|
Single-cell O 2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells. Proc Natl Acad Sci U S A 2020; 117:10067-10078. [PMID: 32321831 PMCID: PMC7211990 DOI: 10.1073/pnas.1916641117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood is routinely tested for gas-carrying capacity (total hemoglobin), but this cannot determine the speed at which red blood cells (RBCs) exchange gases. Such information is critical for evaluating the physiological fitness of RBCs, which have very limited capillary transit times (<1 s) for turning over substantial volumes of gas. We developed a method to quantify gas exchange in individual RBCs and used it to show that restricted diffusion, imposed by hemoglobin crowding, is a major barrier to gas flows. Consequently, hematological disorders manifesting a change in cell shape or hemoglobin concentration have uncharted implications on gas exchange, which we illustrate using inherited anemias. With its single-cell resolution, the method can identify physiologically inferior subpopulations, providing a clinically useful appraisal of blood quality. Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.
Collapse
|
185
|
Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J. Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 2020; 45:101770. [PMID: 32276221 DOI: 10.1016/j.scr.2020.101770] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 - 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.
Collapse
Affiliation(s)
- Josef Večeřa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Veronika Šumberová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Pánská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Mašek
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Emma Rachel Andersson
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden; Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
186
|
Wu ST, Liu B, Ai ZZ, Hong ZC, You PT, Wu HZ, Yang YF. Esculetin Inhibits Cancer Cell Glycolysis by Binding Tumor PGK2, GPD2, and GPI. Front Pharmacol 2020; 11:379. [PMID: 32292350 PMCID: PMC7118906 DOI: 10.3389/fphar.2020.00379] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Glycolysis can improve the tolerance of tissue cells to hypoxia, and its intermediates provide raw materials for the synthesis and metabolism of the tumor cells. If it can inhibit the activity of glycolysis-related enzymes and control the energy metabolism of tumor, it can be targeted for the treatment of malignant tumor. The target proteins phosphoglycerate kinase 2 (PGK2), glycerol-3-phosphate dehydrogenase (GPD2), and glucose-6-phosphate isomerase (GPI) were screened by combining transcriptome, proteomics, and reverse docking. We detected the binding constant of the active compound using microscale thermophoresis (MST). It was found that esculetin bound well with three potential target proteins. Esculetin significantly inhibited the rate of glycolysis, manifested by differences of cellular lactate production and glucose consumption in HepG2 cells with or without esculetin. It was found that GPD2 bound strongly to GPI, revealing the direct interaction between the two glycolysis-related proteins. Animal tests have further demonstrated that esculetin may have anticancer effects by affecting the activity of PGK2, GPD2, and GPI. The results of this study demonstrated that esculetin can affect the glucose metabolism by binding to glycolytic proteins, thus playing an anti-tumor role, and these proteins which have direct interactions are potential novel targets for tumor treatment by esculetin.
Collapse
Affiliation(s)
- Song-Tao Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Zhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Zong-Chao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng-Tao You
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China.,Collaborative Innovation Center of Traditional Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
187
|
Kaneko H, Kaitsuka T, Tomizawa K. Response to Stimulations Inducing Circadian Rhythm in Human Induced Pluripotent Stem Cells. Cells 2020; 9:cells9030620. [PMID: 32143467 PMCID: PMC7140533 DOI: 10.3390/cells9030620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
Regenerative medicine and disease modeling are expanding rapidly, through the development of human-induced pluripotent stem cells (hiPSCs). Many exogeneous supplements are often used for the directed differentiation of hiPSCs to specific lineages, such as chemicals and hormones. Some of these are known to synchronize the circadian clock, like forskolin (Frk) and dexamethasone (Dex); however, the response to these stimulations has not been fully elucidated for hiPSCs. In this study, we examined the response of clock genes to synchronizing stimulation, and compared it with fully differentiated cells, U2OS, and fibroblasts. The expression of clock genes did not show circadian rhythms in hiPSCs with Frk and Dex, which could be due to the significantly low levels of BMAL1. On the other hand, a circadian-like rhythm of D-box binding protein (DBP) expression was observed in hiPSCs by culturing them in an environment with a simulated body temperature. However, the inhibition of temperature-inducible factors, which are involved in temperature rhythm-induced synchronization, could not repress the expression of such rhythms, while the inhibition of HIF-1α significantly repressed them. In summary, we suggest that clock genes do not respond to the synchronizing agents in hiPSCs; instead, a unique circadian-like rhythm is induced by the temperature rhythm.
Collapse
Affiliation(s)
| | - Taku Kaitsuka
- Correspondence: (T.K.); (K.T.); Tel.: +81-96-373-5051 (T.K.); +81-96-373-5050 (K.T.)
| | - Kazuhito Tomizawa
- Correspondence: (T.K.); (K.T.); Tel.: +81-96-373-5051 (T.K.); +81-96-373-5050 (K.T.)
| |
Collapse
|
188
|
Intrabody against prolyl hydroxylase 2 ameliorates acetaminophen-induced acute liver injury in mice via concomitant promotion of angiogenesis and redox homeostasis. Biomed Pharmacother 2020; 123:109783. [DOI: 10.1016/j.biopha.2019.109783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022] Open
|
189
|
Cao Z, He S, Peng Y, Liao X, Lu H. Nanocurcumin Inhibits Angiogenesis via Down-regulating hif1a/VEGF-A Signaling in Zebrafish. Curr Neurovasc Res 2020; 17:147-154. [PMID: 32031071 DOI: 10.2174/1567202617666200207130039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Curcumin has anti-inflammatory, antioxidant and anticancer properties. Despite the considerable evidence showing that curcumin is an efficacious and safe compound for multiple medicinal benefits, there are some demerits with respect to the therapeutic effectiveness of curcumin, namely, poor stability and solubility, and its role in angiogenesis in vivo is still not yet clear. More recently, the biodegradable polymer nanoparticles have been developed. This offers promise for the therapeutic effectiveness of curcumin by increasing its bioavailability, solubility and retention time. METHODS Here, we compared the medicinal effectiveness of curcumin and nanocurcumin (NC), and found that nanocurcumin can inhibit angiogenesis more effectively than curcumin in zebrafish. Tests of proliferation and apoptosis showed no difference between nanocurcumin-treated and wildtype embryos. RESULTS qPCR and in situ hybridization experiments indicated that the VEGF signaling pathway genes, vegfa, VEGF-C and flt4 were all down-regulated after nanocurcumin treatment, and vegfa over-expression rescued the vascular defective phenotype. Moreover, hif1a expression also decreased and hif1a over-expression also rescued the vascular defective phenotype but the Notch signaling pathway had no difference after nanocurcumin treatment. CONCLUSION These results indicate that nano curcumin inhibits angiogenesis in zebrafish by downregulating hif1a/vegfa signaling pathway. Hence, our work reveals the key role of nanocurcumin in angiogenesis in vivo.
Collapse
Affiliation(s)
- Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Shicong He
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| |
Collapse
|
190
|
Karimi S, Arabi A, Shahraki T, Safi S. Von Hippel-Lindau Disease and the Eye. J Ophthalmic Vis Res 2020; 15:78-94. [PMID: 32095212 PMCID: PMC7001024 DOI: 10.18502/jovr.v15i1.5950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Retinal hemangioblastoma (also referred to as retinal capillary hemangioma) is a benign lesion originating from the endothelial and glial components of the neurosensory retina and optic nerve head. Historically known as a manifestation of the von Hippel-Lindau (VHL) disease, it can be seen as an isolated finding or in association with some rare ocular conditions. In addition to characteristic ophthalmoscopic features, results of numerous ancillary tests including angiography, ultrasound, optical coherence tomography, and genetic tests may support the diagnosis and differentiate it from similar conditions. Because of serious life-threatening complications of VHL disease, every ocular approach to retinal hemangioblastomas should be in relationship with additional multidisciplinary diagnostic and therapeutic efforts. In addition, any patient with actual or probable diagnosis of VHL disease should be screened for ocular involvement. Unfavorable visual loss can occur early, and ocular complications of VHL range from exudative retinopathy to tractional retinal detachment, neovascular glaucoma, and phthisis bulbi. Accordingly, various treatment methods have been tested with overall acceptable responses, including photocoagulation, cryotherapy, photodynamic therapy, plaque radiotherapy, vitrectomy, and more novel intravitreal injections of anti-vascular endothelial growth factors and propranolol.
Collapse
Affiliation(s)
- Saeed Karimi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Arabi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Toktam Shahraki
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
191
|
Ferreira F, Luxardi G, Reid B, Ma L, Raghunathan V, Zhao M. Real-time physiological measurements of oxygen using a non-invasive self-referencing optical fiber microsensor. Nat Protoc 2020; 15:207-235. [PMID: 31925402 PMCID: PMC7980673 DOI: 10.1038/s41596-019-0231-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Reactive molecular oxygen (O2) plays important roles in bioenergetics and metabolism and is implicated in biochemical pathways underlying angiogenesis, fertilization, wound healing and regeneration. Here we describe how to use the scanning micro-optrode technique (SMOT) to measure extracellular fluxes of dissolved O2. The self-referencing O2-specific micro-optrode (also termed micro-optode and optical fiber microsensor) is a tapered optical fiber with an O2-sensitive fluorophore coated onto the tip. The O2 concentration is quantified by fluorescence quenching of the fluorophore emission upon excitation with blue-green light. The micro-optrode presents high spatial and temporal resolutions with improved signal-to-noise ratio (in the picomole range). In this protocol, we provide step-by-step instructions for micro-optrode calibration, validation, example applications and data analysis. We describe how to use the technique for cells (Xenopus oocyte), tissues (Xenopus epithelium and rat cornea), organs (Xenopus gills and mouse skin) and appendages (Xenopus tail), and provide recommendations on how to adapt the approach to different model systems. The basic, user-friendly system presented here can be readily installed to reliably and accurately measure physiological O2 fluxes in a wide spectrum of biological models and physiological responses. The full protocol can be performed in ~4 h.
Collapse
Affiliation(s)
- Fernando Ferreira
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Davis, CA, USA.
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Braga, Portugal.
| | - Guillaume Luxardi
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Davis, CA, USA
| | - Brian Reid
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Davis, CA, USA
| | - Li Ma
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Davis, CA, USA
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Davis, CA, USA.
- Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
192
|
Machado M, Arenas F, Svendsen JC, Azeredo R, Pfeifer LJ, Wilson JM, Costas B. Effects of Water Acidification on Senegalese Sole Solea senegalensis Health Status and Metabolic Rate: Implications for Immune Responses and Energy Use. Front Physiol 2020; 11:26. [PMID: 32082190 PMCID: PMC7005922 DOI: 10.3389/fphys.2020.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing water CO2, aquatic hypercapnia, leads to higher physiological pCO2 levels in fish, resulting in an acidosis and compensatory acid-base regulatory response. Senegalese sole is currently farmed in super-intensive recirculating water systems where significant accumulation of CO2 in the water may occur. Moreover, anthropogenic releases of CO2 into the atmosphere are linked to ocean acidification. The present study was designed to assess the effects of acute (4 and 24 h) and prolonged exposure (4 weeks) to CO2 driven acidification (i.e., pH 7.9, 7.6, and 7.3) from normocapnic seawater (pH 8.1) on the innate immune status, gill acid-base ion transporter expression and metabolic rate of juvenile Senegalese sole. The acute exposure to severe hypercapnia clearly affected gill physiology as observed by an increase of NHE3b positive ionocytes and a decrease of cell shape factor. Nonetheless only small physiological adjustments were observed at the systemic level with (1) a modulation of both plasma and skin humoral parameters and (2) an increased expression of HIF-1 expression pointing to an adjustment to the acidic environment even after a short period (i.e., hours). On the other hand, upon prolonged exposure, the expression of several pro-inflammatory and stress related genes was amplified and gill cell shape factor was aggravated with the continued increase of NHE3b positive ionocytes, ultimately impacting fish growth. While these findings indicate limited effects on energy use, deteriorating immune system conditions suggest that Senegalese sole is vulnerable to changes in CO2 and may be affected in aquaculture where a pH drop is more prominent. Further studies are required to investigate how larval and adult Senegalese sole are affected by changes in CO2.
Collapse
Affiliation(s)
- Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Francisco Arenas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Jon C Svendsen
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.,National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Louis J Pfeifer
- Biology Department, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.,Biology Department, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
193
|
Criscuoli M, Ulivieri C, Filippi I, Monaci S, Guerrini G, Crifò B, De Tommaso D, Pelicci G, Baldari CT, Taylor CT, Carraro F, Naldini A. The Shc protein Rai enhances T-cell survival under hypoxia. J Cell Physiol 2020; 235:8058-8070. [PMID: 31944299 DOI: 10.1002/jcp.29461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai-/- mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai-/- mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.
Collapse
Affiliation(s)
- Mattia Criscuoli
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Irene Filippi
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Istituto Toscano Tumori, Firenze, Italy
| | - Sara Monaci
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuditta Guerrini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bianca Crifò
- Department of Systems Biology, UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Department of Translational Medicine, Piemonte Orientale University "Amedeo Avogadro", Novara, Italy
| | | | - Cormac T Taylor
- Department of Systems Biology, UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Fabio Carraro
- Istituto Toscano Tumori, Firenze, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
194
|
Vettukattil JJ. Target Oxygen Levels and Critical Care of the Newborn. Curr Pediatr Rev 2020; 16:2-5. [PMID: 31622221 DOI: 10.2174/1573396315666191016094828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Despite our growing experience in the medical care of extremely preterm infants and critically ill neonates, there are serious gaps in the understanding and clinical application of the adaptive physiology of the newborn. Neonatal physiology is often misinterpreted and considered similar to that of adult physiology. The human psyche has been seriously influenced, both from an evolutionary and survival point of view, by the cause and effect of hypoxemia which is considered as a warning sign of impending death. Within this context, it is unimaginable for even the highly trained professionals to consider saturation as low as 65% as acceptable. However, all available data suggests that newborns can thrive in a hypoxemic environment as they are conditioned to withstand extreme low saturations in the fetal environment. An approach utilizing the benefits of the hypoxic conditioning would prompt the practice of optimal targeted oxygen saturation range in the clinical management of the newborn. Our current understanding of cyanotic congenital heart disease and the physiology of single ventricle circulation, where oxygen saturation in mid 70s is acceptable, is supported by clinical and animal studies. This article argues the need to challenge our current acceptable target oxygen saturation in the newborn and provides the reasoning behind accepting lower target oxygen levels in the critically ill newborn. Challenging the current practice is expected to open a debate paving the way to understand the risks of high target oxygen levels in the newborn compared with the benefits of permissive hypoxia in avoiding the associated morbidity and mortality of oxygen radical injury.
Collapse
Affiliation(s)
- Joseph J Vettukattil
- Congenital Heart Center, Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, MI, United States.,Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI
| |
Collapse
|
195
|
Wu D, Cao W, Xiang D, Hu YP, Luo B, Chen P. Exercise induces tissue hypoxia and HIF-1α redistribution in the small intestine. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:82-89. [PMID: 31921483 PMCID: PMC6943782 DOI: 10.1016/j.jshs.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exercise induces blood flow redistribution among tissues, leading to splanchnic hypoperfusion. Intestinal epithelial cells are positioned between the anaerobic lumen and the highly metabolic lamina propria with an oxygen gradient. Hypoxia-inducible factor (HIF)-1α is pivotal in the transcriptional response to the oxygen flux. METHODS In this study, the pimonidazole hydrochloride staining was applied to observe the tissue hypoxia in different organs, which might be affected by the blood flow redistribution. The HIF-1α luciferase reporter ROSA26 oxygen-dependent degradation domain (ODD)-Luc/+ mouse model (ODD domain-Luc; female, n = 3-6/group) was used to detect the HIF-1α expression in the intestine. We used 3 swimming models: moderate exercise for 30 min, heavy-intensity exercise bearing 5% bodyweight for 1.5 h, and long-time exercise for 3 h. RESULTS We found that 1 session of swimming at different intensities could induce tissue hypoxia redistribution in the small intestine, colon, liver and kidney, but not in the spleen, heart, and skeletal muscle. Our data showed that exercise exacerbated the extent of physiological hypoxia in the small intestine. Next, using ODD-Luc mice, we found that moderate exercise increased the in vivo HIF-1α level in the small intestine. The post-exercise HIF-1α level was gradually decreased in a time-dependent manner. Interestingly, the redistribution of tissue hypoxia and the increase of HIF-1α expression were not related to the exercise intensity and duration. CONCLUSION This study provided evidence that the small intestine is the primary target organ for exercise-induced tissue hypoxia and HIF-1α redistribution, suggesting that HIF-1α may be a potential target for the regulation of gastrointestinal functions after exercise.
Collapse
Affiliation(s)
- Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Dao Xiang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai 200432, China
| | - Yi-Ping Hu
- Department of Cell Biology, Second Military Medical University, Shanghai 200432, China
| | - Beibei Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|
196
|
Park JW, Sung MS, Ha JY, Guo Y, Piao H, Heo H, Park SW. Neuroprotective Effect of Brazilian Green Propolis on Retinal Ganglion Cells in Ischemic Mouse Retina. Curr Eye Res 2019; 45:955-964. [PMID: 31842625 DOI: 10.1080/02713683.2019.1705493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The current study was undertaken to investigate whether Brazilian green propolis (BGP) can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and examined the possible mechanisms underlying this neuroprotection. MATERIALS AND METHODS C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to establish retinal ischemia-reperfusion injury. Mice then received saline or BGP (200 mg/kg) intraperitoneally once daily until sacrifice. The expression of hypoxia-inducing factor (HIF)-1α and glial fibrillary acidic protein (GFAP) and the level of histone acetylation were assessed at 1, 3, and 7 days after injury. The expression of Bax, Bcl-2, p53, NF-κB, Nrf2, and HO-1 were also analyzed at 3 days after injury. The neuroprotective effect of BGP treatment on RGC survival was evaluated using Brn3a immunohistochemical staining. RESULTS The expression of HIF-1α and GFAP was increased and the level of histone acetylation decreased in saline-treated ischemic retinas within 7 days. BGP treatment effectively attenuated the elevated expression of HIF-1α, GFAP, Bax, NF-κB and p53. The expression of Bcl-2, Nrf2, HO-1 and the level of histone acetylation increased by BGP treatment, resulting in a significant difference between BGP-treated and saline-treated retinas. Immunohistochemical staining for Brn3a also revealed that BGP treatment protected against RGC loss in ischemic retina. CONCLUSIONS Our results suggest that BGP has a neuroprotective effect on RGCs through the upregulation of histone acetylation, downregulation of apoptotic stimuli, and suppression of NF-κB mediated inflammatory pathway in ischemic retina. These findings suggest that BGP is a potential neuroprotective agent against RGC loss under oxidative stress.
Collapse
Affiliation(s)
| | - Mi Sun Sung
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Jun Young Ha
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Yue Guo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Helong Piao
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Hwan Heo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Sang Woo Park
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| |
Collapse
|
197
|
Park J, Youn DH, Kang J, Ahn KS, Kwak HJ, Um JY. Taeumjowi-tang, a Traditional Korean Sasang Remedy, Improves Obesity-Atopic Dermatitis Comorbidity by Regulating Hypoxia-Inducible Factor 1 Alpha. Front Pharmacol 2019; 10:1458. [PMID: 31920651 PMCID: PMC6933016 DOI: 10.3389/fphar.2019.01458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is an inflammatory disease of the skin, resulting from an immune dysfunction, that often occurs as a comorbidity of obesity. This investigation evaluated the capacity of Taeumjowi-tang (TJT), a Korean herbal formulation from the Sasang medical tradition to influence prognostic features of AD and obesity in a mouse model. Here, obesity and AD were induced by a high-fat diet (HFD) and 1-fluoro-2,4-dinitrobenzene (DNFB). Following an 8-week HFD regimen and 4 weeks of DNFB administration, the comorbid (CO) group manifested increased body weight and AD-like lesions, as compared to normal control (NC) mice, while TJT administration diminished these symptoms of obesity and AD. Specifically, TJT treatment reduced epidermal thickness and eosinophil/mast cell infiltration, along with reduction in immunoglobulin E, interleukin (IL)-4, IL-6, and tumor necrosis factor-alpha (TNF-α). It was additionally demonstrated that TJT suppresses HFD/DNFB-associated increase of the inflammation-related nuclear factor-kappa beta (NF-κB) and mitogen activated protein kinase. Moreover, significantly increased levels of hypoxia inducible factor-1 alpha (HIF-1α) protein was observed in CO group versus controls, an increase significantly down-regulated by TJT-treatment. These outcomes suggest that TJT may prove useful in clinical management of obesity-AD comorbidity treatment, an effect that may be due to regulation of HIF-1α expression.
Collapse
Affiliation(s)
- Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, South Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Comorbidity Research Institute, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
198
|
Hypoxia and exercise interactions on skeletal muscle insulin sensitivity in obese subjects with metabolic syndrome: results of a randomized controlled trial. Int J Obes (Lond) 2019; 44:1119-1128. [PMID: 31819201 DOI: 10.1038/s41366-019-0504-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Physical activity improves insulin sensitivity in obesity. Hypoxia training is claimed to augment this effect. We tested the hypothesis that normobaric hypoxia training would improve insulin sensitivity in obese patients with metabolic syndrome. METHODS In a randomized controlled trial, 23 obese men with metabolic syndrome who were not informed of the FiO2 conditions underwent a 6-week physical exercise intervention under ambient (n = 11; FiO2 21%) conditions or hypoxia (n = 12; FiO2 15%) using a normobaric hypoxic chamber. Three 60-min sessions of interval training were performed each week at 60% of individual V̇O2max. Assessment of myocellular insulin sensitivity by euglycemic hyperinsulinemic clamp was performed in 21 of these subjects before and after 6 weeks of training. Comprehensive phenotyping also included biopsies of subcutaneous adipose tissues. RESULTS The intermittent moderate physical exercise protocol did not substantially change the myocellular insulin sensitivity within 6 weeks under normoxic conditions (ISIClamp: 0.035 (IQR 0.016-0.075) vs. 0.037 (IQR 0.026-0.056) mg* kg-1 *min-1/(mU* l-1); p = 0.767). In contrast, ISIClamp improved during hypoxia training (0.028 (IQR 0.018-0.035) vs. 0.038 (IQR 0.024-0.060) mg * kg-1 *min-1/(mU *l-1); p < 0.05). Between group comparison of ISIClamp change revealed a small difference between groups (Cohen's d = 0.26). Within the hypoxic group, improvement of ISIClamp during training was associated with individual increase of circulating vascular endothelial growth factor (VEGF) levels (r = 0.678, p = 0.015), even if mean VEGF levels were not modified by any training condition. Atrial natriuretic peptide (ANP) system components were not associated with increased ISIClamp during hypoxic training. CONCLUSIONS Physical training under hypoxic conditions could partially augment the favorable effects of exercise alone on myocellular insulin sensitivity in obese men with metabolic syndrome. Concomitant changes in VEGF might represent an underlying pathophysiological mechanism.
Collapse
|
199
|
Polycythemia with Renal Cell Carcinoma and Normal Erythropoietin Level. Case Rep Urol 2019; 2019:3792514. [PMID: 31934488 PMCID: PMC6942735 DOI: 10.1155/2019/3792514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
A 61-year-old obese Caucasian male with past medical history of smoking, hypertension, chronic obstructive pulmonary disease (COPD), and sleep apnea presented to the hematology clinic with polycythemia. Despite the newly-diagnosed polycythemia, the patient denied any significant symptoms or history of blood clots. Further evaluation with computerized tomography (CT) and ultrasound showed a large renal mass suspicious for renal cell carcinoma of the right kidney. An incidental abdominal aortic aneurysm (AAA) measuring was also appreciated on imaging. Subsequent histological sections of the tumor showed cell renal cell carcinoma. Though previously reported, the concomitant finding of an AAA with renal cell carcinoma with a normal erythropoietin levels is surprising. Given the surgical complications associated with concomitant conditions with renal cell carcinoma, further investigation into paraneoplastic syndromes secondary to renal cell carcinoma remains open to investigation.
Collapse
|
200
|
López-Rodríguez DM, Kirillov V, Krug LT, Mesri EA, Andreansky S. A role of hypoxia-inducible factor 1 alpha in Murine Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency. PLoS Pathog 2019; 15:e1008192. [PMID: 31809522 PMCID: PMC6975554 DOI: 10.1371/journal.ppat.1008192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/22/2020] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Darlah M. López-Rodríguez
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- IV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Enrique A. Mesri
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samita Andreansky
- Department of Microbiology and Immunology and Miami Center for AIDS Research, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|