151
|
Gumbiner-Russo LM, Rosenberg SM. Physical analyses of E. coli heteroduplex recombination products in vivo: on the prevalence of 5' and 3' patches. PLoS One 2007; 2:e1242. [PMID: 18043749 PMCID: PMC2082072 DOI: 10.1371/journal.pone.0001242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022] Open
Abstract
Background Homologous recombination in Escherichia coli creates patches (non-crossovers) or splices (half crossovers), each of which may have associated heteroduplex DNA. Heteroduplex patches have recombinant DNA in one strand of the duplex, with parental flanking markers. Which DNA strand is exchanged in heteroduplex patches reflects the molecular mechanism of recombination. Several models for the mechanism of E. coli RecBCD-mediated recombinational double-strand-end (DSE) repair specify that only the 3′-ending strand invades the homologous DNA, forming heteroduplex in that strand. There is, however, in vivo evidence that patches are found in both strands. Methodology/Principle Findings This paper re-examines heteroduplex-patch-strand polarity using phage λ and the λdv plasmid as DNA substrates recombined via the E. coli RecBCD system in vivo. These DNAs are mutant for λ recombination functions, including orf and rap, which were functional in previous studies. Heteroduplexes are isolated, separated on polyacrylamide gels, and quantified using Southern blots for heteroduplex analysis. This method reveals that heteroduplexes are still found in either 5′ or 3′ DNA strands in approximately equal amounts, even in the absence of orf and rap. Also observed is an independence of the RuvC Holliday-junction endonuclease on patch formation, and a slight but statistically significant alteration of patch polarity by recD mutation. Conclusions/Significance These results indicate that orf and rap did not contribute to the presence of patches, and imply that patches occurring in both DNA strands reflects the molecular mechanism of recombination in E. coli. Most importantly, the lack of a requirement for RuvC implies that endonucleolytic resolution of Holliday junctions is not necessary for heteroduplex-patch formation, contrary to predictions of all of the major previous models. This implies that patches are not an alternative resolution of the same intermediate that produces splices, and do not bear on models for splice formation. We consider two mechanisms that use DNA replication instead of endonucleolytic resolution for formation of heteroduplex patches in either DNA strand: synthesis-dependent-strand annealing and a strand-assimilation mechanism.
Collapse
Affiliation(s)
- Laura M. Gumbiner-Russo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
152
|
Lestini R, Michel B. UvrD controls the access of recombination proteins to blocked replication forks. EMBO J 2007; 26:3804-14. [PMID: 17641684 PMCID: PMC1952219 DOI: 10.1038/sj.emboj.7601804] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/28/2007] [Indexed: 11/08/2022] Open
Abstract
Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA.
Collapse
Affiliation(s)
- Roxane Lestini
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France
| | - Bénédicte Michel
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France
| |
Collapse
|
153
|
Abstract
The faithful segregation of homologous chromosomes during meiosis is dependent on the formation of physical connections (chiasma) that form following reciprocal exchange of DNA molecules during meiotic recombination. Here we review the current knowledge in the Caenorhabditis elegans meiotic recombination field. We discuss recent developments that have improved our understanding of the crucial steps that must precede the initiation and propagation of meiotic recombination. We summarize the pathways that impact on meiotic prophase entry and the current understanding of how chromosomes reorganize and interact to promote homologous chromosome pairing and subsequent synapsis. We pay particular attention to the mechanisms that contribute to meiotic DNA double-strand break (DSB) formation and strand exchange processes, and how the C. elegans system compares with other model organisms. Finally, we highlight current and future areas of research that are likely to further our understanding of the meiotic recombination process.
Collapse
Affiliation(s)
- Tatiana Garcia-Muse
- DNA Damage Response Laboratory, Clare Hall Laboratories, Cancer Research UK, Blanch Lane, South Mimms, EN6 3LD, UK
| | | |
Collapse
|
154
|
Sanchez H, Carrasco B, Cozar MC, Alonso JC. Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation. Mol Microbiol 2007; 65:920-35. [PMID: 17640277 DOI: 10.1111/j.1365-2958.2007.05835.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The absence of Bacillus subtilis RecG branch migration translocase causes a defect in cell proliferation, renders cells very sensitive to DNA-damaging agents and increases approximately 150-fold the amount of non-partitioned chromosomes. Inactivation of recF, addA, recH, recV or recU increases both the sensitivity to DNA-damaging agents and the chromosomal segregation defect of recG mutants. Deletion of recS or recN gene partially suppresses cell proliferation, DNA repair and segregation defects of DeltarecG cells, whereas deletion of recA only partially suppresses the segregation defect of DeltarecG cells. Deletion of recG and ripX render cells with very poor viability, extremely sensitive to DNA-damaging agents, and with a drastic segregation defect. After exposure to mitomycin C recG or ripX cells show a drastic defect in chromosome partitioning (approximately 40% of the cells), and this defect is even larger (approximately 60% of the cells) in recG ripX cells. Taken together, these data indicate that: (i) RecG defines a new epistatic group (eta), (ii) RecG is required for proper chromosomal segregation even in the presence of other proteins that process and resolve Holliday junctions, and (iii) different avenues could process Holliday junctions.
Collapse
Affiliation(s)
- Humberto Sanchez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
155
|
Bichara M, Pinet I, Lambert IB, Fuchs RPP. RecA-mediated excision repair: a novel mechanism for repairing DNA lesions at sites of arrested DNA synthesis. Mol Microbiol 2007; 65:218-29. [PMID: 17581130 DOI: 10.1111/j.1365-2958.2007.05790.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences. Monomodified single-stranded plasmids exhibit low survival in non-SOS induced E. coli cells; we show here that the presence of a homologous sequence enhances the survival of the damaged plasmid more than 10-fold in a RecA-dependent way. Remarkably, in an NER proficient strain, 80% of the surviving colonies result from the UvrA-dependent repair of the AAF lesion in a mechanism absolutely requiring RecA and RecF activity, while the remaining 20% of the surviving colonies result from homologous recombination mechanisms. These results uncover a novel mechanism - RecA-mediated excision repair - in which RecA-dependent pairing of the mono-modified single-stranded template with a complementary sequence allows its repair by the UvrABC excinuclease.
Collapse
Affiliation(s)
- Marc Bichara
- Dept. Intégrité du Génome de l'UMR 7175, CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch-Cedex, France.
| | | | | | | |
Collapse
|
156
|
Sharan SK, Kuznetsov SG. Resolving RAD51C function in late stages of homologous recombination. Cell Div 2007; 2:15. [PMID: 17547768 PMCID: PMC1892012 DOI: 10.1186/1747-1028-2-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
DNA double strand breaks are efficiently repaired by homologous recombination. One of the last steps of this process is resolution of Holliday junctions that are formed at the sites of genetic exchange between homologous DNA. Although various resolvases with Holliday junctions processing activity have been identified in bacteriophages, bacteria and archaebacteria, eukaryotic resolvases have been elusive. Recent biochemical evidence has revealed that RAD51C and XRCC3, members of the RAD51-like protein family, are involved in Holliday junction resolution in mammalian cells. However, purified recombinant RAD51C and XRCC3 proteins have not shown any Holliday junction resolution activity. In addition, these proteins did not reveal the presence of a nuclease domain, which raises doubts about their ability to function as a resolvase. Furthermore, oocytes from infertile Rad51C mutant mice exhibit precocious separation of sister chromatids at metaphase II, a phenotype that reflects a defect in sister chromatid cohesion, not a lack of Holliday junction resolution. Here we discuss a model to explain how a Holliday junction resolution defect can lead to sister chromatid separation in mouse oocytes. We also describe other recent in vitro and in vivo evidence supporting a late role for RAD51C in homologous recombination in mammalian cells, which is likely to be resolution of the Holliday junction.
Collapse
Affiliation(s)
- Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Sergey G Kuznetsov
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
157
|
Lanzov VA. RecA homologous DNA transferase: Functional activities and a search for homology by recombining DNA molecules. Mol Biol 2007. [DOI: 10.1134/s0026893307030077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Abstract
ATP-dependent chromatin remodeling complexes contain ATPases of the Swi/Snf superfamily and alter DNA accessibility of chromatin in an ATP-dependent manner. Recently characterized INO80 and SWR1 complexes belong to a subfamily of these chromatin remodelers and are characterized by a split ATPase domain in the core ATPase subunit and the presence of Rvb proteins. INO80 and SWR1 complexes are evolutionarily conserved from yeast to human and have been implicated in transcription regulation, as well as DNA repair. The individual components, assembly patterns, and molecular mechanisms of the INO80 class of chromatin remodeling complexes are discussed in this review.
Collapse
Affiliation(s)
- Yunhe Bao
- Department of Carcinogenesis, Science Park Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Xuetong Shen
- Department of Carcinogenesis, Science Park Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
159
|
Fujikane R, Shinagawa H, Ishino Y. The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication fork. Genes Cells 2007; 11:99-110. [PMID: 16436047 DOI: 10.1111/j.1365-2443.2006.00925.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The archaeal Hjm is a structure-specific DNA helicase, which was originally identified in the hyperthermophilic archaeon, Pyrococcus furiosus, by in vitro screening for Holliday junction migration activity. Further biochemical analyses of the Hjm protein from P. furiosus showed that this protein preferably binds to fork-related Y-structured DNAs and unwinds their double-stranded regions in vitro, just like the E. coli RecQ protein. Furthermore, genetic analyses showed that Hjm produced in E. coli cells partially complemented the defect of functions of RecQ in a recQ mutant E. coli strain. These results suggest that Hjm may be a functional counterpart of RecQ in Archaea, in which it is necessary for the maintenance of genome integrity, although the amino acid sequences are not conserved. The functional interaction of Hjm with PCNA for its helicase activity further suggests that the Hjm works at stalled replication forks, as a member of the reconstituted replisomes to restart replication.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
160
|
Ni M, Wang SY, Li JK, Ouyang Q. Simulating the temporal modulation of inducible DNA damage response in Escherichia coli. Biophys J 2007; 93:62-73. [PMID: 17434938 PMCID: PMC1914449 DOI: 10.1529/biophysj.106.090712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms make great efforts to maintain their genetic information integrity. However, DNA is vulnerable to many chemical or physical agents. To rescue the cell timely and effectively, the DNA damage response system must be well controlled. Recently, single cell experiments showing that after DNA damage, expression of the key DNA damage response regulatory protein oscillates with time. This phenomenon is observed both in eukaryotic and bacterial cells. We establish a model to simulate the DNA damage response (SOS response) in bacterial cell Escherichia coli. The simulation results are compared to the experimental data. Our simulation results suggest that the modulation observed in the experiment is due to the fluctuation of inducing signal, which is coupled with DNA replication. The inducing signal increases when replication is blocked by DNA damage and decreases when replication resumes.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology and Department of Physics, Peking University, Beijing, China
| | | | | | | |
Collapse
|
161
|
Voloshin ON, Camerini-Otero RD. The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem 2007; 282:18437-18447. [PMID: 17416902 DOI: 10.1074/jbc.m700376200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DinG protein is a DNA damage-inducible member of the helicase superfamily 2. Using a panel of synthetic substrates, we have systematically investigated structural requirements for DNA unwinding by DinG. We have found that the helicase does not unwind blunt-ended DNAs or substrates with 3'-ss tails. On the other hand, the 5'-ss tails of 11-15 nucleotides are sufficient to initiate DNA duplex unwinding; bifurcated substrates further facilitate helicase activity. DinG is active on 5'-flap structures; however, it is unable to unwind 3'-flaps. Similarly to the homologous Saccharomyces cerevisiae Rad3 helicase, DinG unwinds DNA.RNA duplexes. DinG is active on synthetic D-loops and R-loops. The ability of the enzyme to unwind D-loops formed on superhelical plasmid DNA by the E. coli recombinase RecA suggests that D-loops may be natural substrates for DinG. Although the availability of 5'-ssDNA tails is a strict requirement for duplex unwinding by DinG, the unwinding of D-loops can be initiated on substrates without any ss tails. Since DinG is DNA damage-inducible and is active on D-loops and forked structures, which mimic intermediates of homologous recombination and replication, we conclude that this helicase may be involved in recombinational DNA repair and the resumption of replication after DNA damage.
Collapse
Affiliation(s)
- Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
162
|
Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527-39. [PMID: 17302941 DOI: 10.1111/j.1567-1364.2006.00205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA. As both proteins also interact with chromatin, their role in recombination and repair through chromatin remodelling, and their evolutionary relationship to the bacterial homologue, is discussed.
Collapse
Affiliation(s)
- Slobodanka Radovic
- Yeast Molecular Genetics Group, ICGEB, Area Science Park - W, Trieste, Italy
| | | | | | | |
Collapse
|
163
|
Van La M, Barbry P, Raoult D, Renesto P. Molecular basis of Tropheryma whipplei doxycycline susceptibility examined by transcriptional profiling. J Antimicrob Chemother 2007; 59:370-7. [PMID: 17289769 DOI: 10.1093/jac/dkl507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES AND METHODS Tropheryma whipplei is a poorly studied bacterium responsible for Whipple's disease. In this study, its susceptibility to doxycycline was investigated at a transcriptional level using a whole-genome DNA microarray. RESULTS Exposure of T. whipplei to the MIC of doxycycline (0.5 mg/L) induced antibiotic-specific primary expression profiles, while indirect effects were detected at 10 x MIC. In contrast to what was observed for several microorganisms exposed to antibiotics, the heat-shock proteins were not affected. Consistent with the mode of action of this translation inhibitor, genes encoding for ribosomal proteins and translation factors were differentially transcribed. This analysis also evidenced the regulation of genes that should account for cell growth arrest. Long-term survival of non-replicating bacteria is likely to be ensured by an increased level of ppGpp, the nucleotide effector of the stringent response. The gene expression profile observed with 10 x MIC was mainly characterized by the up-regulation of ABC transporters that possibly form efflux and detoxification systems, through which T. whipplei may limit the effects of this bacteriostatic compound. Obtained microarray data showed good agreement with real-time quantitative PCR (R2 = 0.969). CONCLUSIONS This work represents the first comprehensive genomic approach providing insights into the expression signature triggered by the exposure of T. whipplei to antibiotics.
Collapse
Affiliation(s)
- My Van La
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | | | | | | |
Collapse
|
164
|
Slocum SL, Buss JA, Kimura Y, Bianco PR. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 2007; 367:647-64. [PMID: 17292398 PMCID: PMC1913479 DOI: 10.1016/j.jmb.2007.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 12/29/2006] [Accepted: 01/02/2007] [Indexed: 02/07/2023]
Abstract
RecG is a member of the superfamily 2 helicase family. Its possible role in vivo is ATP hydrolysis driven regression of stalled replication forks. To gain mechanistic insight into how this is achieved, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of RecG in vitro. The results demonstrate an overwhelming preference for negatively supercoiled DNA ((-)scDNA) as a cofactor for the hydrolysis of ATP. In the presence of (-)scDNA the catalytic efficiency of RecG and the processivity (as revealed through heparin trapping), were higher than on any other cofactor examined. The activity of RecG on (-)scDNA was not due to the presence of single-stranded regions functioning as loading sites for the enzyme as relaxed circular DNA treated with DNA gyrase, resulted in the highest levels of ATPase activity. Relaxation of (-)scDNA by a topoisomerase resulted in a 12-fold decrease in ATPase activity, comparable to that observed on both linear double-stranded (ds)DNA and (+)scDNA. In addition to the elevated activity in the presence of (-)scDNA, RecG also has high activity on model 4Y-substrates (i.e. chicken foot structures). This is due largely to the high apparent affinity of the enzyme for this DNA substrate, which is 46-fold higher than a 2Y-substrate (i.e. a three-way with two single-stranded (ss)DNA arms). Finally, the enzyme exhibited significant, but lower activity on ssDNA. This activity was enhanced by the Escherichia coli stranded DNA-binding protein (SSB) protein, which occurs through stabilizing of the binding of RecG to ssDNA. Stabilization is not afforded by the bacteriophage gene 32 protein, indicating a species specific, protein-protein interaction is involved. These results combine to provide significant insight into the manner and timing of the interaction of RecG with DNA at stalled replication forks.
Collapse
Affiliation(s)
- Stephen L. Slocum
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214 USA
| | - Jackson A. Buss
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| | - Yuji Kimura
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| | - Piero R. Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214 USA
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| |
Collapse
|
165
|
Genetics of recombination in the model bacterium Escherichia coli. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
166
|
|
167
|
Tripathi P, Anuradha S, Ghosal G, Muniyappa K. Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution. J Mol Biol 2006; 364:599-611. [PMID: 17027027 DOI: 10.1016/j.jmb.2006.08.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/27/2006] [Accepted: 08/31/2006] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
Collapse
Affiliation(s)
- Pankaj Tripathi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
168
|
Stohl EA, Seifert HS. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol 2006; 188:7645-51. [PMID: 16936020 PMCID: PMC1636252 DOI: 10.1128/jb.00801-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The strict human pathogen Neisseria gonorrhoeae is exposed to oxidative damage during infection. N. gonorrhoeae has many defenses that have been demonstrated to counteract oxidative damage. However, recN is the only DNA repair and recombination gene upregulated in response to hydrogen peroxide (H(2)O(2)) by microarray analysis and subsequently shown to be important for oxidative damage protection. We therefore tested the importance of RecA and DNA recombination and repair enzymes in conferring resistance to H(2)O(2) damage. recA mutants, as well as RecBCD (recB, recC, and recD) and RecF-like pathway mutants (recJ, recO, and recQ), all showed decreased resistance to H(2)O(2). Holliday junction processing mutants (ruvA, ruvC, and recG) showed decreased resistance to H(2)O(2) resistance as well. Finally, we show that RecA protein levels did not increase as a result of H(2)O(2) treatment. We propose that RecA, recombinational DNA repair, and branch migration are all important for H(2)O(2) resistance in N. gonorrhoeae but that constitutive levels of these enzymes are sufficient for providing protection against oxidative damage by H(2)O(2).
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | |
Collapse
|
169
|
Lionnet T, Dawid A, Bigot S, Barre FX, Saleh OA, Heslot F, Allemand JF, Bensimon D, Croquette V. DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res 2006; 34:4232-44. [PMID: 16935884 PMCID: PMC1616950 DOI: 10.1093/nar/gkl451] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling.
Collapse
Affiliation(s)
- Timothée Lionnet
- Laboratoire de Physique Statistique de l' Ecole Normale Supérieure, UMR 8550 CNRS24 rue Lhomond, 75231 Paris Cedex 05, France
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
| | - Alexandre Dawid
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
- Laboratoire Pierre Aigrain, Ecole Normale SupérieureUMR 8551 CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Sarah Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS UMR5100Toulouse, France
| | - François-Xavier Barre
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS UMR5100Toulouse, France
- Centre de Génétique Moléculaire, CNRS UPR2167Gif-sur-Yvette, France
| | - Omar A. Saleh
- Laboratoire de Physique Statistique de l' Ecole Normale Supérieure, UMR 8550 CNRS24 rue Lhomond, 75231 Paris Cedex 05, France
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
| | - François Heslot
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
- Laboratoire Pierre Aigrain, Ecole Normale SupérieureUMR 8551 CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Jean-François Allemand
- Laboratoire de Physique Statistique de l' Ecole Normale Supérieure, UMR 8550 CNRS24 rue Lhomond, 75231 Paris Cedex 05, France
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
| | - David Bensimon
- Laboratoire de Physique Statistique de l' Ecole Normale Supérieure, UMR 8550 CNRS24 rue Lhomond, 75231 Paris Cedex 05, France
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
| | - Vincent Croquette
- Laboratoire de Physique Statistique de l' Ecole Normale Supérieure, UMR 8550 CNRS24 rue Lhomond, 75231 Paris Cedex 05, France
- Département de Biologie, Ecole Normale Supérieure46 rue d'Ulm, 75231 Paris Cedex, 05, France
- To whom correspondence should be addressed at Laboratoire de Physique Statisque de l’ Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France. Tel: 33 1 44 32 34 92; Fax: 33 1 44 32 34 33;
| |
Collapse
|
170
|
Han YW, Tani T, Hayashi M, Hishida T, Iwasaki H, Shinagawa H, Harada Y. Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvA-RuvB protein complex. Proc Natl Acad Sci U S A 2006; 103:11544-8. [PMID: 16864792 PMCID: PMC1544206 DOI: 10.1073/pnas.0600753103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli RuvA-RuvB complex promotes branch migration of Holliday junction DNA, which is the central intermediate of homologous recombination. Like many DNA motor proteins, it is suggested that RuvA-RuvB promotes branch migration by driving helical rotation of the DNA. To clarify the RuvA-RuvB-mediated branch migration mechanism in more detail, we observed DNA rotation during Holliday junction branch migration by attaching a bead to one end of cruciform DNA that was fixed to a glass surface at the opposite end. Bead rotation was observed when RuvA, RuvB, and ATP were added to the solution. We measured the rotational rates of the beads caused by RuvA-RuvB-mediated branch migration at various ATP concentrations. The data provided a K(m) value of 65 microM and a V(max) value of 1.6 revolutions per second, which corresponds to 8.3 bp per second. This real-time observation of the DNA rotation not only allows us to measure the kinetics of the RuvA-RuvB-mediated branch migration, but also opens the possibility of elucidating the branch migration mechanism in detail.
Collapse
Affiliation(s)
- Yong-Woon Han
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Tomomi Tani
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Masahito Hayashi
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Takashi Hishida
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Iwasaki
- Graduate School of Integrated Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideo Shinagawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan; and
- BioAcademia, Inc., Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yoshie Harada
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
171
|
Bugreev DV, Mazina OM, Mazin AV. Rad54 protein promotes branch migration of Holliday junctions. Nature 2006; 442:590-3. [PMID: 16862129 DOI: 10.1038/nature04889] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/10/2006] [Indexed: 11/09/2022]
Abstract
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | |
Collapse
|
172
|
Lo YC, Paffett KS, Amit O, Clikeman JA, Sterk R, Brenneman MA, Nickoloff JA. Sgs1 regulates gene conversion tract lengths and crossovers independently of its helicase activity. Mol Cell Biol 2006; 26:4086-94. [PMID: 16705162 PMCID: PMC1489077 DOI: 10.1128/mcb.00136-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RecQ helicases maintain genome stability and suppress tumors in higher eukaryotes through roles in replication and DNA repair. The yeast RecQ homolog Sgs1 interacts with Top3 topoisomerase and Rmi1. In vitro, Sgs1 binds to and branch migrates Holliday junctions (HJs) and the human RecQ homolog BLM, with Top3alpha, resolves synthetic double HJs in a noncrossover sense. Sgs1 suppresses crossovers during the homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Crossovers are associated with long gene conversion tracts, suggesting a model in which Sgs1 helicase catalyzes reverse branch migration and convergence of double HJs for noncrossover resolution by Top3. Consistent with this model, we show that allelic crossovers and gene conversion tract lengths are increased in sgs1Delta. However, crossover and tract length suppression was independent of Sgs1 helicase activity, which argues against helicase-dependent HJ convergence. HJs may converge passively by a "random walk," and Sgs1 may play a structural role in stimulating Top3-dependent resolution. In addition to the new helicase-independent functions for Sgs1 in crossover and tract length control, we define three new helicase-dependent functions, including the suppression of chromosome loss, chromosome missegregation, and synthetic lethality in srs2Delta. We propose that Sgs1 has helicase-dependent functions in replication and helicase-independent functions in DSB repair by HR.
Collapse
Affiliation(s)
- Yi-Chen Lo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J. REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 2006; 1:e40. [PMID: 16189551 PMCID: PMC1231718 DOI: 10.1371/journal.pgen.0010040] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022] Open
Abstract
Crossovers ensure the accurate segregation of homologous chromosomes from one another during meiosis. Here, we describe the identity and function of the Drosophila melanogaster gene recombination defective (rec), which is required for most meiotic crossing over. We show that rec encodes a member of the mini-chromosome maintenance (MCM) protein family. Six MCM proteins (MCM2–7) are essential for DNA replication and are found in all eukaryotes. REC is the Drosophila ortholog of the recently identified seventh member of this family, MCM8. Our phylogenetic analysis reveals the existence of yet another family member, MCM9, and shows that MCM8 and MCM9 arose early in eukaryotic evolution, though one or both have been lost in multiple eukaryotic lineages. Drosophila has lost MCM9 but retained MCM8, represented by REC. We used genetic and molecular methods to study the function of REC in meiotic recombination. Epistasis experiments suggest that REC acts after the Rad51 ortholog SPN-A but before the endonuclease MEI-9. Although crossovers are reduced by 95% in rec mutants, the frequency of noncrossover gene conversion is significantly increased. Interestingly, gene conversion tracts in rec mutants are about half the length of tracts in wild-type flies. To account for these phenotypes, we propose that REC facilitates repair synthesis during meiotic recombination. In the absence of REC, synthesis does not proceed far enough to allow formation of an intermediate that can give rise to crossovers, and recombination proceeds via synthesis-dependent strand annealing to generate only noncrossover products. Most of our cells have two copies of each chromosome. For sexual reproduction, these must separate from one another to produce sperm or eggs with one copy of each chromosome. This occurs during meiosis, when chromosomes pair and exchange DNA segments. This exchange— meiotic recombination—creates physical linkages between chromosome pairs and is also a source of genetic diversity. To learn more about the process of meiotic recombination, the authors characterized the gene recombination defective (rec) from the fruit fly Drosophila melanogaster. Molecular analysis revealed that rec is related to a large family of genes found in all animals, plants, and protists. These genes are thought to be important in DNA replication, but rec appears to have a novel function. The authors found that mutants lacking rec are unable to copy enough DNA during meiotic recombination to form linkages between chromosomes. This results in chromosomes segregating randomly during meiosis, so that most eggs have an incorrect number or composition of chromosomes.
Collapse
Affiliation(s)
- Hunter L Blanton
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah J Radford
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan McMahan
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hutton M Kearney
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
174
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
175
|
Lopez CR, Yang S, Deibler RW, Ray SA, Pennington JM, Digate RJ, Hastings PJ, Rosenberg SM, Zechiedrich EL. A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol 2006; 58:80-101. [PMID: 16164551 DOI: 10.1111/j.1365-2958.2005.04812.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The physiological role of topoisomerase III is unclear for any organism. We show here that the removal of topoisomerase III in temperature sensitive topoisomerase IV mutants in Escherichia coli results in inviability at the permissive temperature. The removal of topoisomerase III has no effect on the accumulation of catenated intermediates of DNA replication, even when topoisomerase IV activity is removed. Either recQ or recA null mutations, but not helD null or lexA3, partially rescued the synthetic lethality of the double topoisomerase III/IV mutant, indicating a role for topoisomerase III in recombination. We find a bias against deleting the gene encoding topoisomerase III in ruvC53 or DeltaruvABC backgrounds compared with the isogenic wild-type strains. The topoisomerase III RuvC double mutants that can be constructed are five- to 10-fold more sensitive to UV irradiation and mitomycin C treatment and are twofold less efficient in transduction efficiency than ruvC53 mutants. The overexpression of ruvABC allows the construction of the topoisomerase III/IV double mutant. These data are consistent with a role for topoisomerase III in disentangling recombination intermediates as an alternative to RuvABC to maintain the stability of the genome.
Collapse
Affiliation(s)
- Christopher R Lopez
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Nishino T, Ishino Y, Morikawa K. Structure-specific DNA nucleases: structural basis for 3D-scissors. Curr Opin Struct Biol 2006; 16:60-7. [PMID: 16439110 DOI: 10.1016/j.sbi.2006.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/10/2006] [Indexed: 11/16/2022]
Abstract
Structure-specific DNA nucleases play important roles in various DNA transactions such as DNA replication, repair and recombination. These enzymes recognize loops and branched DNA structures. Recent structural studies have provided detailed insights into the functions of these enzymes. Structures of Holliday junction resolvase revealed that nucleases are broadly diverged in the way in which they fold, however, are required to form homodimers with large basic patches of protein surfaces, which are complementary to DNA tertiary structures. Many nucleases maintain structure-specific recognition modes, which involve particular domain arrangements through conformal changes of flexible loops or have a separate DNA binding domain. Nucleases, such as FEN-1 and archaeal XPF, are bound to proliferating cell nuclear antigen through a common motif, and thereby actualize their inherent activities.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
177
|
Baharoglu Z, Petranovic M, Flores MJ, Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 2006; 25:596-604. [PMID: 16424908 PMCID: PMC1383526 DOI: 10.1038/sj.emboj.7600941] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/14/2005] [Indexed: 12/28/2022] Open
Abstract
Inactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR). We show that the RuvAB complex is required for the formation of a RusA substrate in the polymerase III mutants dnaEts and holD, affected for the Pol III catalytic subunit and clamp loader, and in the helicase mutant rep. This finding reveals that the recombination enzyme RuvAB targets forks in vivo and we propose that it directly converts forks into HJs. In contrast, RFR occurs in the absence of RuvAB in the dnaNts mutant, affected for the processivity clamp of Pol III, and in the priA mutant, defective for replication restart. This suggests alternative pathways of RFR.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
- Present address: Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Mirjana Petranovic
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Maria-Jose Flores
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
- Present address: Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- Centre de génétique Moléculaire, CNRS Bâtiment 26, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France. Tel.: +33 1 69 82 32 29; Fax: +33 1 69 82 31 40; E-mail:
| |
Collapse
|
178
|
Rass U, West SC. Synthetic junctions as tools to identify and characterize Holliday junction resolvases. Methods Enzymol 2006; 408:485-501. [PMID: 16793388 DOI: 10.1016/s0076-6879(06)08030-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Genetic exchanges between chromosomes can lead to the formation of DNA intermediates known as Holliday junctions. The structure of these intermediates has been determined both biochemically and structurally, and their interactions with Holliday junction processing enzymes have been well characterized. A number of proteins, from both prokaryotic and eukaryotic sources, have been identified that promote the nucleolytic resolution of junctions. To facilitate these studies, synthetic DNA substrates that mimic true Holliday junctions have been developed. These now provide an important resource for both the identification and the characterization of novel Holliday junction resolvase activities. This chapter describes methods detailing the preparation and use of synthetic Holliday junctions and how they are best utilized in the study of proteins that might exhibit resolvase activity. Additionally, a method is described that can be used to rapidly screen a TAP-tagged library of proteins for resolvase activity without a need for conventional purification procedures.
Collapse
Affiliation(s)
- Ulrich Rass
- Cancer Research United Kingdom, London Research Institutem Clare Hall Laboratories, South Mimms, Hertfordshire
| | | |
Collapse
|
179
|
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005; 187:7655-66. [PMID: 16267290 PMCID: PMC1280312 DOI: 10.1128/jb.187.22.7655-7666.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.
Collapse
Affiliation(s)
- Nora Au
- Department of Chemistry, Williams College, Williamstown, MA 01267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Kaplan DL, O'Donnell M. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J Mol Biol 2005; 355:473-90. [PMID: 16324713 DOI: 10.1016/j.jmb.2005.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/25/2022]
Abstract
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Rockefeller University, Laboratory of DNA Replication, New York, NY 10021, USA.
| | | |
Collapse
|
181
|
LeRoy G, Carroll R, Kyin S, Seki M, Cole MD. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res 2005; 33:6251-7. [PMID: 16260474 PMCID: PMC1275589 DOI: 10.1093/nar/gki929] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/10/2005] [Accepted: 10/10/2005] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination provides an effective way to repair DNA double-strand breaks (DSBs) and is required for genetic recombination. During the process of homologous recombination, a heteroduplex DNA structure, or a 'Holliday junction' (HJ), is formed. The movement, or branch migration, of this junction is necessary for recombination to proceed correctly. In prokaryotes, the RecQ protein or the RuvA/RuvB protein complex can promote ATP-dependent branch migration of Holliday junctions. Much less is known about the processing of Holliday junctions in eukaryotes. Here, we identify RecQL1 as a predominant ATP-dependent, HJ branch migrator present in human nuclear extracts. A reduction in the level of RecQL1 induced by RNA interference in HeLa cells leads to an increase in sister chromatid exchange. We propose that RecQL1 is involved in the processing of Holliday junctions in human cells.
Collapse
Affiliation(s)
- Gary LeRoy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544-1014, USA.
| | | | | | | | | |
Collapse
|
182
|
Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 2005; 57:97-110. [PMID: 15948952 DOI: 10.1111/j.1365-2958.2005.04677.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rapidly dividing bacterial cells, the machinery for repair of DNA double-strand breaks has to contend not only with the forces driving replication and transmission of the DNA but also its transcription. By exploiting I-SceI homing endonuclease to break the Escherichia coli chromosome at one or more defined locations, we have been able to investigate how these processes are co-ordinated and repair is accomplished. When breaks are induced at a single site, the SOS-inducible RecN protein and the transcription factor DksA combine to promote efficient repair. When induced at two or more, distantly located sites, RecN becomes almost indispensable. Many cells that do survive have extensive deletions of sequences flanking the break, with end points often coinciding with imperfect repeat elements. These findings herald a much greater complexity for chromosome repair than suggested by current mechanistic models and reveal a role for RecN in protecting the chromosome from break-induced chromosome rearrangements.
Collapse
Affiliation(s)
- Tom R Meddows
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
183
|
Abstract
The inactivation of a replication protein causes the disassembly of the replication machinery and creates a need for replication reactivation. In several replication mutants, restart occurs after the fork has been isomerized into a four-armed junction, a reaction called replication fork reversal. The repair helicase UvrD is essential for replication fork reversal upon inactivation of the polymerase (DnaE) or the beta-clamp (DnaN) subunits of the Escherichia coli polymerase III, and for the viability of dnaEts and dnaNts mutants at semi-permissive temperature. We show here that the inactivation of recA, recFOR, recJ or recQ recombination genes suppresses the requirement for UvrD for replication fork reversal and suppresses the lethality conferred by uvrD inactivation to Pol IIIts mutants at semi-permissive temperature. We propose that RecA binds inappropriately to blocked replication forks in the dnaEts and dnaNts mutants in a RecQ- RecJ- RecFOR-dependent way and that UvrD acts by removing RecA or a RecA-made structure, allowing replication fork reversal. This work thus reveals the existence of a futile reaction of RecA binding to blocked replication forks, that requires the action of UvrD for fork-clearing and proper replication restart.
Collapse
Affiliation(s)
- Maria-José Florés
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
184
|
Carrasco B, Ayora S, Lurz R, Alonso JC. Bacillus subtilis RecU Holliday-junction resolvase modulates RecA activities. Nucleic Acids Res 2005; 33:3942-52. [PMID: 16024744 PMCID: PMC1176016 DOI: 10.1093/nar/gki713] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. However, RecU inhibited the RecA-mediated three-strand exchange reaction and ssDNA-dependent dATP or rATP hydrolysis. The addition of an SSB protein did not reverse the negative effect exerted by RecU on RecA function. Annealing of circular ssDNA and homologous linear 3′-tailed double-stranded DNA by RecU was not affected by the addition of RecA both in the presence and in the absence of SSB. We propose that RecU modulates RecA activities by promoting RecA-catalyzed strand invasion and inhibiting RecA-mediated branch migration, by preventing RecA filament disassembly, and suggest a potential mechanism for the control of resolvasome assembly.
Collapse
Affiliation(s)
- Begoña Carrasco
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Biología MolecularC/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rudi Lurz
- Max-Planck-Institut für molekulare GenetikIhnestrasse 73, D-14195, Germany
| | - Juan C. Alonso
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSICC/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
185
|
Ohnishi T, Hishida T, Harada Y, Iwasaki H, Shinagawa H. Structure-function analysis of the three domains of RuvB DNA motor protein. J Biol Chem 2005; 280:30504-10. [PMID: 15972826 DOI: 10.1074/jbc.m502400200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RuvB protein forms two hexameric rings that bind to the RuvA tetramer at DNA Holliday junctions. The RuvAB complex utilizes the energy of ATP hydrolysis to promote branch migration of Holliday junctions. The crystal structure of RuvB from Thermus thermophilus (Tth) HB8 showed that each RuvB monomer has three domains (N, M, and C). This study is a structure-function analysis of the three domains of RuvB. The results show that domain N is involved in RuvA-RuvB and RuvB-RuvB subunit interactions, domains N and M are required for ATP hydrolysis and ATP binding-induced hexamer formation, and domain C plays an essential role in DNA binding. The side chain of Arg-318 is essential for DNA binding and may directly interact with DNA. The data also provide evidence that coordinated ATP-dependent interactions between domains N, M, and C play an essential role during formation of the RuvAB Holliday junction ternary complex.
Collapse
Affiliation(s)
- Takayuki Ohnishi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
186
|
Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure 2005; 13:143-53. [PMID: 15642269 DOI: 10.1016/j.str.2004.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 10/26/2022]
Abstract
DNA and RNA frequently form various branched intermediates that are important for the transmission of genetic information. Helicases play pivotal roles in the processing of these transient intermediates during nucleic acid metabolism. The archaeal Hef helicase/ nuclease is a representative protein that processes flap- or fork-DNA structures, and, intriguingly, its C-terminal half belongs to the XPF/Mus81 nuclease family. Here, we report the crystal structure of the helicase domain of the Hef protein from Pyrococcus furiosus. The structure reveals a novel helical insertion between the two conserved helicase core domains. This positively charged extra region, structurally similar to the "thumb" domain of DNA polymerase, plays critical roles in fork recognition. The Hef helicase/nuclease exhibits sequence similarity to the Mph1 helicase from Saccharomyces cerevisiae; XPF/Rad1, involved in DNA repair; and a putative Hef homolog identified in mammals. Hence, our findings provide a structural basis for the functional mechanisms of this helicase/nuclease family.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
187
|
McKinney SA, Freeman ADJ, Lilley DMJ, Ha T. Observing spontaneous branch migration of Holliday junctions one step at a time. Proc Natl Acad Sci U S A 2005; 102:5715-20. [PMID: 15824311 PMCID: PMC556122 DOI: 10.1073/pnas.0409328102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination occurs between homologous DNA molecules via a four-way (Holliday) junction intermediate. This ancient and ubiquitous process is important for the repair of double-stranded breaks, the restart of stalled replication forks, and the creation of genetic diversity. Once formed, the four-way junction alone can undergo the stepwise exchange of base pairs known as spontaneous branch migration. Conventional ensemble assays, useful for finding average migration rates over long sequences, have been unable to examine the affect of sequence and structure on the migration process. Here, we present a single-molecule spontaneous branch migration assay with single-base pair resolution in a study of individual DNA junctions that can undergo one step of migration. Junctions exhibit markedly different dynamics of exchange between stacking conformers depending on the point of strand exchange, allowing the moment at which branch migration occurs to be detected. The free energy landscape of spontaneous branch migration is found to be highly nonuniform and governed by two types of sequence-dependent barriers, with unmediated local migration being up to 10 times more rapid than the previously deduced average rate.
Collapse
Affiliation(s)
- Sean A McKinney
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
188
|
Fujikane R, Komori K, Shinagawa H, Ishino Y. Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem 2005; 280:12351-8. [PMID: 15677450 DOI: 10.1074/jbc.m413417200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the branch migration activity in archaea, we fractionated Pyrococcus furiosus cell extracts by several chromatography and assayed for ATP-dependent resolution of synthetic Holliday junctions. The target activity was identified in the column fractions, and the optimal reaction conditions for the branch migration activity were determined using the partially purified fraction. We successfully cloned the corresponding gene by screening a heat-stable protein library made by P. furiosus genomic DNA. The gene, hjm (Holliday junction migration), encodes a protein composed of 720 amino acids. The Hjm protein is conserved in Archaea and belongs to the helicase superfamily 2. A homology search revealed that Hjm shares sequence similarity with the human PolTheta, HEL308, and Drosophila Mus308 proteins, which are involved in a DNA repair, whereas no similar sequences were found in bacteria and yeast. The Hjm helicase may play a central role in the repair systems of organisms living in extreme environments.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
189
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
190
|
Abstract
In 1964, the geneticist Robin Holliday proposed a mechanism of DNA-strand exchange that attempted to explain gene-conversion events that occur during meiosis in fungi. His proposal marked the birthday of the now famous cross-stranded DNA structure, or Holliday junction. To understand the importance of the Holliday model we must look back in the history of science beyond the last 40 years, to a time when theories of heredity were being proposed by Gregor Johann Mendel.
Collapse
Affiliation(s)
- Yilun Liu
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
191
|
Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 2004; 32:6321-6. [PMID: 15576358 DOI: 10.1093/nar/gkh973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three integrated genomic context methods were used to annotate uncharacterized proteins in 102 bacterial genomes. Of 7853 orthologous groups with unknown function containing 45,110 proteins, 1738 groups could be linked to functionally associated partners. In many cases, those partners are uncharacterized themselves (hinting at newly identified modules) or have been described in general terms only. However, we were able to assign pathways, cellular processes or physical complexes for 273 groups (encompassing 3624 previously functionally uncharacterized proteins).
Collapse
|
192
|
Abstract
The bacterial SOS regulon is strongly induced in response to DNA damage from exogenous agents such as UV radiation and nalidixic acid. However, certain mutants with defects in DNA replication, recombination, or repair exhibit a partially constitutive SOS response. These mutants presumably suffer frequent replication fork failure, or perhaps they have difficulty rescuing forks that failed due to endogenous sources of DNA damage. In an effort to understand more clearly the endogenous sources of DNA damage and the nature of replication fork failure and rescue, we undertook a systematic screen for Escherichia coli mutants that constitutively express the SOS regulon. We identified mutant strains with transposon insertions in 42 genes that caused increased expression from a dinD1::lacZ reporter construct. Most of these also displayed significant increases in basal levels of RecA protein, confirming an effect on the SOS system. As expected, this collection includes genes, such as lexA, dam, rep, xerCD, recG, and polA, which have previously been shown to cause an SOS constitutive phenotype when inactivated. The collection also includes 28 genes or open reading frames that were not previously identified as SOS constitutive, including dcd, ftsE, ftsX, purF, tdcE, and tynA. Further study of these SOS constitutive mutants should be useful in understanding the multiple causes of endogenous DNA damage. This study also provides a quantitative comparison of the extent of SOS expression caused by inactivation of many different genes in a common genetic background.
Collapse
Affiliation(s)
- Erin K O'Reilly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
193
|
Mashimo K, Nagata Y, Kawata M, Iwasaki H, Yamamoto K. Role of the RuvAB protein in avoiding spontaneous formation of deletion mutations in the Escherichia coli K-12 endogenous tonB gene. Biochem Biophys Res Commun 2004; 323:197-203. [PMID: 15351721 DOI: 10.1016/j.bbrc.2004.08.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Indexed: 11/17/2022]
Abstract
The endogenous tonB gene of Escherichia coli was used as a target for spontaneous deletion mutations which were isolated from ruvAB-, recG-, and ruvC- cells. The rates of tonB mutation were essentially the same in ruv+, ruvAB-, recG-, and ruvC- cells. We analyzed tonB mutants by sequencing. In the ruv+, recG-, and ruvC- strains, the spectra were different from those obtained from the ruvAB- cells, where deletions dominated followed by IS insertions, base substitutions, and frameshifts, in that order. We then analyzed the tonB-trp large deletion, due to simultaneous mutations of the trp operon, and found that the frequency in ruvAB- was higher than those in ruv+, recG-, and ruvC- cells. To characterize deletion formation further, we analyzed all the tonB mutants from one colicin plate. Seven deletions were identified at five sites from the 45 tonB mutants of ruv+ cells and 24 deletions at 11 sites from the 43 tonB mutants of ruvAB- cells. Thus, the ruvAB- strain is a deletion mutator. We discuss the role of RuvAB in avoiding deletions.
Collapse
Affiliation(s)
- Kazumi Mashimo
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
194
|
Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem 2004; 280:3365-75. [PMID: 15556943 DOI: 10.1074/jbc.m409256200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear. To investigate the role of RuvA octamerization, we introduced three amino acid substitutions designed to disrupt the E. coli RuvA tetramer-tetramer interface as identified by structural studies. The mutant RuvA was tetrameric and interacted with both RuvB and junction DNA but, as predicted, formed complex I only at protein concentrations up to 500 nm. We present biochemical and surface plasmon resonance evidence for functional and physical interactions of the mutant RuvA with RuvB and RuvC on synthetic junctions. The mutant RuvA with RuvB showed DNA helicase activity and could support branch migration of synthetic four-way and three-way junctions. However, junction binding and the efficiency of branch migration of four-way junctions were affected. The activity of the RuvA mutant was consistent with a RuvAB complex driven by one RuvB hexamer only and lead us to propose that one RuvA tetramer can only support the activity of one RuvB hexamer. Significantly, the mutant failed to complement the UV sensitivity of E. coli DeltaruvA cells. These results indicate strongly that RuvA octamerization is essential for the full biological activity of RuvABC.
Collapse
Affiliation(s)
- Cyril V Privezentzev
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
195
|
Kaplan DL, O'Donnell M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol Cell 2004; 15:453-65. [PMID: 15304224 DOI: 10.1016/j.molcel.2004.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/10/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
DnaB is the primary replicative helicase in Escherichia coli. We show here that DnaB can unwind two duplex arms simultaneously for an extended distance provided that two protein rings are positioned on opposite sides of the duplex arms. A putative eukaryotic replication fork helicase, Mcm4,6,7, performs a similar activity. Double-ringed melting of duplexes may function at a replication fork in vivo. This mechanism may apply to RuvB, since the proteins share mechanistic similarities. Thus, two RuvB hexamers may function in coordination at a Holliday junction to overcome regions of DNA heterology and DNA lesions. Furthermore, DnaB can actively translocate along DNA while encircling three DNA strands. Therefore, if DnaB encounters a D loop during fork progression, it will encircle the invading strand and may convert the recombinative invading strand to a daughter lagging strand. Finally, we present evidence that the DNA binding site of DnaB is buried inside its central channel.
Collapse
|
196
|
Flores MJ, Bidnenko V, Michel B. The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants. EMBO Rep 2004; 5:983-8. [PMID: 15375374 PMCID: PMC1299159 DOI: 10.1038/sj.embor.7400262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 08/03/2004] [Accepted: 08/26/2004] [Indexed: 11/09/2022] Open
Abstract
Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, whereas its partners in DNA repair (UvrA/B and MutL/S) are not. We conclude that UvrD participates in replication fork reversal in E. coli.
Collapse
Affiliation(s)
- Maria Jose Flores
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
- Present address: Unité d'Ecologie et de Physiologie du Système Digestif, INRA, 78352 Jouy en Josas cedex, France
| | - Vladimir Bidnenko
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
| | - Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
- Tel: +33 1 34 65 25 14; Fax: +33 1 34 65 25 21; E-mail:
| |
Collapse
|
197
|
Joo C, McKinney SA, Lilley DMJ, Ha T. Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J Mol Biol 2004; 341:739-51. [PMID: 15288783 DOI: 10.1016/j.jmb.2004.06.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 05/24/2004] [Accepted: 06/07/2004] [Indexed: 11/28/2022]
Abstract
The four-way DNA (Holliday) junction is an essential intermediate in DNA recombination, and its dynamic characteristics are likely to be important in its cellular processing. In our previous study we observed transitions between two antiparallel stacked conformations using a single-molecule fluorescence approach. The magnesium concentration-dependent rates of transitions between stacking conformers suggested that an unstacked open structure, which is stable in the absence of metal ions, is an intermediate. Here, we sought to detect possible rare species such as open and parallel conformations and further characterized ionic effects. The hypothesized open intermediate cannot be resolved directly due to the limited time resolution and sensitivity, but our study suggests that the open form is achieved very frequently, hundreds of times per second under physiologically relevant conditions. Therefore despite being a minority species, its frequent formation raises the probability that it could become stabilized by protein binding. By contrast, we cannot detect even a transient existence of the junctions in a parallel form, and the probability of such forms with a lifetime greater than 5 ms is less than 0.01%. Stacking conformer transitions are observable in the presence of sodium or hexammine cobalt (III) ions as well as magnesium ions, but the transition rates are higher for lower valence ions at the same concentrations. This further supports the notion that electrostatic stabilization of the stacked structures dictates the interconversion rates between different structural forms.
Collapse
Affiliation(s)
- Chirlmin Joo
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
198
|
Michel B, Grompone G, Florès MJ, Bidnenko V. Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 2004; 101:12783-8. [PMID: 15328417 PMCID: PMC516472 DOI: 10.1073/pnas.0401586101] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Impairment of replication fork progression is a serious threat to living organisms and a potential source of genome instability. Studies in prokaryotes have provided evidence that inactivated replication forks can restart by the reassembly of the replication machinery. Several strategies for the processing of inactivated replication forks before replisome reassembly have been described. Most of these require the action of recombination proteins, with different proteins being implicated, depending on the cause of fork arrest. The action of recombination proteins at blocked forks is not necessarily accompanied by a strand-exchange reaction and may prevent rather than repair fork breakage. These various restart pathways may reflect different structures at stalled forks. We review here the different strategies of fork processing elicited by different kinds of replication impairments in prokaryotes and the variety of roles played by recombination proteins in these processes.
Collapse
Affiliation(s)
- Bénédicte Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | |
Collapse
|
199
|
Dickman MJ, Sedelnikova SE, Rafferty JB, Hornby DP. Rapid analysis of protein-nucleic acid complexes using MALDI TOF mass spectrometry and ion pair reverse phase liquid chromatography. ACTA ACUST UNITED AC 2004; 58:39-48. [PMID: 14597187 DOI: 10.1016/s0165-022x(03)00146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The RuvABC resolvasome of Escherichia coli typifies nucleoprotein complexes involved in genetic transactions. This molecular assembly catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have used matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) to rapidly identify the binding of RuvA to an immobilised synthetic Holliday junction; unambiguous identification was verified using tryptic digest of the bound protein. In conjunction with a novel fluorescent-based technique incorporating ion pair reverse phase liquid chromatography, a "footprint" of the RuvA:Holliday complex was obtained. These two complementary techniques offer a generic approach to the analysis of nucleoprotein complexes.
Collapse
Affiliation(s)
- Mark J Dickman
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
200
|
Dawid A, Croquette V, Grigoriev M, Heslot F. Single-molecule study of RuvAB-mediated Holliday-junction migration. Proc Natl Acad Sci U S A 2004; 101:11611-6. [PMID: 15292508 PMCID: PMC511028 DOI: 10.1073/pnas.0404369101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Branch migration of Holliday junctions is an important step of genetic recombination and DNA repair. In Escherichia coli, this process is driven by the RuvAB complex acting as a molecular motor. Using magnetic tweezers, we studied the RuvAB-directed migration of individual Holliday junctions formed between two approximately 6-kb DNA molecules of identical sequence, and we measured the migration rate at 37 degrees C and 1 mM ATP. We directly demonstrate that RuvAB is a highly processive DNA motor protein that is able to drive continuous and unidirectional branch migration of Holliday junctions at a well defined average speed over several kilobases through homologous sequences. We observed directional inversions of the migration at the DNA molecule boundaries leading to forth-and-back migration of the branch point and allowing us to measure the migration rate in the presence of negative or positive loads. The average migration rate at zero load was found to be approximately 43 bp/sec. Furthermore, the load dependence of the migration rate is small, within the force range of -3.4 pN (hindering force) to +3.4 pN (assisting force).
Collapse
Affiliation(s)
- A Dawid
- Laboratoire Pierre Aigrain, Unité Mixte de Recherche 8551, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|