151
|
Gonzales-Roybal G, Lim DA. Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet 2013; 4:194. [PMID: 24115953 PMCID: PMC3792351 DOI: 10.3389/fgene.2013.00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/12/2013] [Indexed: 01/30/2023] Open
Abstract
In specific regions of the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ) retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs - which possess many characteristics of mature, non-neurogenic astrocytes - maintain a "youthful" ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long non-coding RNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.
Collapse
Affiliation(s)
- Gabriel Gonzales-Roybal
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
| | - Daniel A. Lim
- Department of Neurological Surgery, University of California at San FranciscoSan Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San FranciscoSan Francisco, CA, USA
- Veterans Affairs Medical Center, University of California at San FranciscoSan Francisco, CA, USA
| |
Collapse
|
152
|
Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 2013; 49:204-11. [PMID: 23672216 DOI: 10.1165/rcmb.2013-0159rc] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of lung diseases and cancer caused by cigarette smoke is increasing. The molecular mechanisms of gene regulation induced by cigarette smoke that ultimately lead to cancer remain unclear. This report describes a novel long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) both in vitro and in vivo and is elevated in numerous lung cancer cell lines. We have termed this lncRNA the smoke and cancer-associated lncRNA-1 (SCAL1). This lncRNA is located in chromosome 5, and initial sequencing analysis reveals a transcript with four exons and three introns. The expression of SCAL1 is regulated transcriptionally by nuclear factor erythroid 2-related factor (NRF2), as determined by the small, interfering RNA (siRNA) knockdown of NRF2 and kelch-like ECH-associated protein 1 (KEAP1). A nuclear factor erythroid-derived 2 (NF-E2) motif was identified in the promoter region that shows binding to NRF2 after its activation. Functionally, the siRNA knockdown of SCAL1 in human bronchial epithelial cells shows a significant potentiation of cytotoxicity induced by CSE in vitro. Altogether, these results identify a novel and intriguing new noncoding RNA that may act downstream of NRF2 to regulate gene expression and mediate oxidative stress protection in airway epithelial cells.
Collapse
Affiliation(s)
- Philip Thai
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Science Facility, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
153
|
Akbari OS, Antoshechkin I, Hay BA, Ferree PM. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio. G3 (BETHESDA, MD.) 2013; 3:1597-605. [PMID: 23893741 PMCID: PMC3755920 DOI: 10.1534/g3.113.007583] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.
Collapse
Affiliation(s)
- Omar S. Akbari
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Igor Antoshechkin
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Bruce A. Hay
- Division of Biology, MC156-29, California Institute of Technology, Pasadena, California 91125
| | - Patrick M. Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711
| |
Collapse
|
154
|
Staedtler F, Hartmann N, Letzkus M, Bongiovanni S, Scherer A, Marc P, Johnson KJ, Schumacher MM. Robust and tissue-independent gender-specific transcript biomarkers. Biomarkers 2013; 18:436-45. [PMID: 23829492 DOI: 10.3109/1354750x.2013.811538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Correct gender assignment in humans at the molecular level is crucial in many scientific disciplines and applied areas. MATERIALS AND METHODS Candidate gender markers were identified through supervised statistical analysis of genome wide microarray expression data from human blood samples (N = 123, 58 female, 65 male) as a training set. The potential of the markers to predict undisclosed tissue donor gender was tested on microarray data from 13 healthy and 11 cancerous human tissue collections (internal) and external datasets from samples of varying tissue origin. The abundance of some genes in the marker panel was quantified by RT-PCR as alternative analytical technology. RESULTS We identified and qualified predictive, gender-specific transcript markers based on a set of five genes (RPS4Y1, EIF1AY, DDX3Y, KDM5D and XIST). CONCLUSION Gene expression marker panels can be used as a robust tissue- and platform-independent predictive approach for gender determination.
Collapse
Affiliation(s)
- Frank Staedtler
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341:1237973. [PMID: 23828888 DOI: 10.1126/science.1237973] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.
Collapse
|
156
|
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Global epigenomic reconfiguration during mammalian brain development. Science 2013; 341:1237905. [PMID: 23828890 PMCID: PMC3785061 DOI: 10.1126/science.1237905] [Citation(s) in RCA: 1375] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.
Collapse
Affiliation(s)
- Ryan Lister
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Plant Energy Biology [Australian Research Council Center of Excellence (CoE)] and Computational Systems Biology (Western Australia CoE), School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Eran A Mukamel
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Clare A Puddifoot
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicholas D Johnson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yun Huang
- La Jolla Institute for Allergy and Immunology and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Matthew D Schultz
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Bioinformatics Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Julian Tonti-Filippini
- Plant Energy Biology [Australian Research Council Center of Excellence (CoE)] and Computational Systems Biology (Western Australia CoE), School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Holger Heyn
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Shijun Hu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain.,InstitucióCatalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Fatemeh G Haghighi
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
157
|
Panova AV, Nekrasov ED, Lagarkova MA, Kiselev SL, Bogomazova AN. Late replication of the inactive x chromosome is independent of the compactness of chromosome territory in human pluripotent stem cells. Acta Naturae 2013; 5:54-61. [PMID: 23819036 PMCID: PMC3695353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi), as well as constitutive heterochromatin, replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs), the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome- specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus, the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However, the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.
Collapse
Affiliation(s)
- A V Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str., 3, Moscow, Russia, 119991
| | | | | | | | | |
Collapse
|
158
|
Dantzer F, Santoro R. The expanding role of PARPs in the establishment and maintenance of heterochromatin. FEBS J 2013; 280:3508-18. [DOI: 10.1111/febs.12368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/26/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Françoise Dantzer
- UMR7242; Centre National de la Recherche Scientifique Université de Strasbourg; Laboratoire d'Excellence Medalis; Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg; Ecole Supérieure de Biotechnologie de Strasbourg; Illkirch France
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology; University of Zürich; Zürich Switzerland
| |
Collapse
|
159
|
Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97:69-80. [PMID: 23756188 DOI: 10.1016/j.brainresbull.2013.06.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets.
Collapse
Affiliation(s)
- Ping Wu
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China
| | | | | | | | | | | |
Collapse
|
160
|
Reddy DSP, Sherlin HJ, Ramani P, Prakash PA. Determination of sex by exfoliative cytology using acridine orange confocal microscopy: A short study. J Forensic Dent Sci 2013; 4:66-9. [PMID: 23741144 PMCID: PMC3669479 DOI: 10.4103/0975-1475.109887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context: Establishing individuality is an imperative aspect in any investigation procedure. Sometimes, in identifying an individual, it becomes necessary to determine the sex of that particular individual. Combining rapidity with reliability, an innovative idea has been put forward using a confocal microscope in exfoliative cytology. In the present study, we have determined the sex of the individual from buccal mucosal scrapings. The exfoliative cells were observed for Barr bodies under a confocal microscope, and the percentage of Barr-body-positive cells was determined. Aims: The main objective of this study is to assess confocal microscopy for the determination of sex by observing Barr bodies in the exfoliative cells of both men and women. Settings and Design: Samples of buccal mucosa smears were made followed by acridine orange staining. The stained slides were observed under a confocal microscope and the data obtained was subjected for statistical analysis, especially for mean and standard deviation. Materials and Methods: Samples of buccal mucosa smears from 20 men and 20 women were obtained by scraping with flat wooden sticks (exfoliative cytology). The smears were fixed in 100% alcohol for 15 min, followed by acridine orange (AO) staining as described by Von Bertalanffy et al. Smears stained with AO were examined under a confocal microscope and the percentage of Barr-body-positive cells was determined. Statistical Analysis Used: Data obtained was subjected for statistical analysis, especially for mean and standard deviation. Results: Two non-overlapping ranges for the percentage of Barr-body-positive cells have been obtained for men and women. It was observed that in the male samples, the percentage of Barr-body-positive cells ranged from 0-3%. In the female samples, the percentage of Barr-body-positive cells ranged from 18-72%, and all the females showed the presence of Barr bodies. Conclusion: The study showed that the presence of Barr body in buccal mucosal cells can be demonstrated with a fair degree of accuracy using acridine orange confocal microscopy. The sex of the individual can be determined accurately with other advantages offered, such as the rapidity of processing and screening a specimen that results in saving of time.
Collapse
Affiliation(s)
- D Shyam Prasad Reddy
- Department of Oral and Maxillofacial Pathology, Kamineni Institute of Dental Sciences, Narketpally, Nalgonda, Andhra Pradesh, India
| | | | | | | |
Collapse
|
161
|
Gagniuc P, Ionescu-Tirgoviste C. Gene promoters show chromosome-specificity and reveal chromosome territories in humans. BMC Genomics 2013; 14:278. [PMID: 23617842 PMCID: PMC3668249 DOI: 10.1186/1471-2164-14-278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background Gene promoters have guided evolution processes for millions of years. It seems that they were the main engine responsible for the integration of different mutations favorable for the environmental conditions. In cooperation with different transcription factors and other biochemical components, these regulatory regions dictate the synthesis frequency of RNA molecules. Predominantly in the last decade, it has become clear that nuclear organization impacts upon gene regulation. To fully understand the connections between Homo sapiens chromosomes and their gene promoters, we analyzed 1200 promoter sequences using our Kappa Index of Coincidence method. Results In order to measure the structural similarity of gene promoters, we used two-dimensional image-based patterns obtained through Kappa Index of Coincidence (Kappa IC) and (C+G)% values. The center of weight of each promoter pattern indicated a structure similarity between promoters of each chromosome. Furthermore, the proximity of chromosomes seems to be in accordance to the structural similarity of their gene promoters. The arrangement of chromosomes according to Kappa IC values of promoters, shows a striking symmetry between the chromosome length and the structure of promoters located on them. High Kappa IC and (C+G)% values of gene promoters were also directly associated with the most frequent genetic diseases. Taking into consideration these observations, a general hypothesis for the evolutionary dynamics of the genome has been proposed. In this hypothesis, heterochromatin and euchromatin domains exchange DNA sequences according to a difference in the rate of Slipped Strand Mispairing and point mutations. Conclusions In this paper we showed that gene promoters appear to be specific to each chromosome. Furthermore, the proximity between chromosomes seems to be in accordance to the structural similarity of their gene promoters. Our findings are based on comprehensive data from Transcriptional Regulatory Element Database and a new computer model whose core is using Kappa index of coincidence.
Collapse
Affiliation(s)
- Paul Gagniuc
- Institute of Genetics, University of Bucharest, Bucharest, Romania.
| | | |
Collapse
|
162
|
Manoukian S, Verderio P, Tabano S, Colapietro P, Pizzamiglio S, Grati FR, Calvello M, Peissel B, Burn J, Pensotti V, Allemani C, Sirchia SM, Radice P, Miozzo M. X chromosome inactivation pattern in BRCA gene mutation carriers. Eur J Cancer 2013; 49:1136-41. [PMID: 23146957 DOI: 10.1016/j.ejca.2012.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/12/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
An association of preferential X chromosome inactivation (XCI) with BRCA gene status and breast/ovarian cancer risk has been reported. We evaluated XCI in a large group of BRCA mutation carriers compared to non-carriers and investigated associations between preferential XCI (⩾90:10) and age, mutated gene, cancer development and chemotherapy. XCI was analysed by human androgen receptor (HUMARA) assay and pyrosequencing in 437 BRCA1 or BRCA2 mutation carriers and 445 age-matched controls. The distribution of XCI patterns in the two groups was compared by logistic regression analysis. The association between preferential XCI and selected variables was investigated in both univariate and multivariate fashion. In univariate analyses preferential XCI was not significantly associated with the probability of being a BRCA mutation carrier, nor with cancer status, whereas chemotherapeutic regime and age both showed a significant association. In multivariate analysis only age maintained significance (odds ratio, 1.056; 95% confidence interval, 1.016-1.096). Our findings do not support the usefulness of XCI analysis for the identification of BRCA mutation carriers and cancer risk assessment. The increasing preferential XCI frequency with ageing and the association with chemotherapy justify extending the investigation to other categories of female cancer patients to identify possible X-linked loci implicated in cell survival.
Collapse
Affiliation(s)
- Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Since the early twentieth century, inheritance was seen as the inheritance of genes. Concurrent with the acceptance of the genetic theory of inheritance was the rejection of the idea that the cytoplasm of the oocyte could also play a role in inheritance and a corresponding devaluation of embryology as a discipline critical for understanding human development. Development, and variation in development, came to be viewed solely as matters of genetic inheritance and genetic variation. We now know that inheritance is a matter of both genetic and cytoplasmic inheritance. A growing awareness of the centrality of the cytoplasm in explaining both human development and phenotypic variation has been promoted by two contemporaneous developments: the continuing elaboration of the molecular mechanisms of epigenetics and the global rise of artificial reproductive technologies. I review recent developments in the ongoing elaboration of the role of the cytoplasm in human inheritance and development.
Collapse
Affiliation(s)
- Evan Charney
- Sanford School of Public Policy, Duke University, Durham, NC, USA.
| |
Collapse
|
164
|
Ma H, Hao Y, Dong X, Gong Q, Chen J, Zhang J, Tian W. Molecular mechanisms and function prediction of long noncoding RNA. ScientificWorldJournal 2012; 2012:541786. [PMID: 23319885 PMCID: PMC3540756 DOI: 10.1100/2012/541786] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 12/25/2022] Open
Abstract
The central dogma of gene expression considers RNA as the carrier of genetic information from DNA to protein. However, it has become more and more clear that RNA plays more important roles than simply being the information carrier. Recently, whole genome transcriptomic analyses have identified large numbers of dynamically expressed long noncoding RNAs (lncRNAs), many of which are involved in a variety of biological functions. Even so, the functions and molecular mechanisms of most lncRNAs still remain elusive. Therefore, it is necessary to develop computational methods to predict the function of lncRNAs in order to accelerate the study of lncRNAs. Here, we review the recent progress in the identification of lncRNAs, the molecular functions and mechanisms of lncRNAs, and the computational methods for predicting the function of lncRNAs.
Collapse
Affiliation(s)
- Handong Ma
- Institute of Biostatistics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 2004333, China
| | | | | | | | | | | | | |
Collapse
|
165
|
Li Y, Tan T, Zong L, He D, Tao W, Liang Q. Study of methylation of histone H3 lysine 9 and H3 lysine 27 during X chromosome inactivation in three types of cells. Chromosome Res 2012; 20:769-78. [PMID: 22956184 DOI: 10.1007/s10577-012-9311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/21/2022]
Abstract
Histone methylation is one epigenetic modification of an inactive X chromosome (Xi). Histone H3 lysine 9 dimethylation (H3K9me) and histone H3 lysine 27 trimethylation (H3K27me) are both associated with the chromatin of gene-silenced regions in the X chromosome and with X inactivation. Studies have shown that H3K9me is supposedly an early mark on the X chromosome during inactivation. Here, we examined the distribution and enrichment profiles of H3K9me and H3K27me by indirect immunofluorescence. We found that H3K9me appears to have a broad distribution throughout the whole genome, but is specific, to a certain extent, to the Xi in WI38 cells. In contrast, H3K27me is highly specific to the entire Xi, which differs significantly from other areas of the nucleus. Thus, H3K27me is more suitable as an epigenetic mark than H3K9me. The chromatin immunoprecipitation analyses also showed that H3K27me predominates on the inactive genes of the X chromosome. Additionally, we compared the levels of H3K9me and H3K27me in four X-linked genes and two autosomal genes between the normal cells (WI38) and the tumor cells (HeLa). The results revealed that the methylation levels of the inactive genes (POLA and OCRL) in tumor cells (HeLa) were lower than those in normal cells (WI38) and that the methylation levels of the Xi inactivation-avoidance genes (SMCX and ZFX) and autosomal genes (Myc and β-actin) varied widely in tumor cells (HeLa). These events may be significant for cancer cell development and contribute to the characteristics of tumor cells.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | | | |
Collapse
|
166
|
Yu G, Yao W, Wang J, Ma X, Xiao W, Li H, Xia D, Yang Y, Deng K, Xiao H, Wang B, Guo X, Guan W, Hu Z, Bai Y, Xu H, Liu J, Zhang X, Ye Z. LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS One 2012; 7:e42377. [PMID: 22879955 PMCID: PMC3412851 DOI: 10.1371/journal.pone.0042377] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/04/2012] [Indexed: 12/23/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of cancers. In this study, we described lncRNAs profiles in 6 pairs of human renal clear cell carcinoma (RCCC) and the corresponding adjacent nontumorous tissues (NT) by microarray. Methodology/Principal Findings With abundant and varied probes accounting 33,045 LncRNAs in our microarray, the number of lncRNAs that expressed at a certain level could be detected is 17157. From the data we found there were thousands of lncRNAs that differentially expressed (≥2 fold-change) in RCCC tissues compared with NT and 916 lncRNAs differentially expressed in five or more of six RCCC samples. Compared with NT, many lncRNAs were significantly up-regulated or down-regulated in RCCC. Our data showed that down-regulated lncRNAs were more common than up-regulated ones. ENST00000456816, X91348, BC029135, NR_024418 were evaluated by qPCR in sixty-three pairs of RCCC and NT samples. The four lncRNAs were aberrantly expressed in RCCC compared with matched histologically normal renal tissues. Conclusions/Significance Our study is the first one to determine genome-wide lncRNAs expression patterns in RCCC by microarray. The results displayed that clusters of lncRNAs were aberrantly expressed in RCCC compared with NT samples, which revealed that lncRNAs differentially expressed in tumor tissues and normal tissues may exert a partial or key role in tumor development. Taken together, this study may provide potential targets for future treatment of RCCC and novel insights into cancer biology.
Collapse
Affiliation(s)
- Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Xin Ma
- Department of Urology, PLA General Hospital, Military Postgraduate Medical College, Beijing, China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Zhang
- Department of Urology, PLA General Hospital, Military Postgraduate Medical College, Beijing, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
167
|
Abstract
Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.
Collapse
|
168
|
Long non-coding RNA in epigenetic gene silencing. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
169
|
Abstract
Assisted reproductive technologies (ART) offer revolutionary infertility treatments for millions of childless couples around the world. Currently, ART accounts for 1 to 3% of annual births in industrialized countries and continues to expand rapidly. Except for an increased incidence of premature births, these technologies are considered safe. However, new evidence published during the past decade has suggested an increased incidence of imprinting disorders in children conceived by ART. Specifically, an increased risk was reported for Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Silver-Russell syndrome, and retinoblastoma. In contrast, some studies have found no association between ART and BWS, AS, Prader-Willi syndrome, transient neonatal diabetes mellitus, and retinoblastoma. The variability in ART protocols and the rarity of imprinting disorders complicate determining the causative relationship between ART and an increased incidence of imprinting disorders. Nevertheless, compelling experimental data from animal studies also suggest a link between increased imprinting disorders and ART. Further comprehensive, appropriately powered studies are needed to better address the magnitude of the risk for ART-associated imprinting disorders. Large longitudinal studies are particularly critical to evaluate long-term effects of ART not only during the perinatal period but also into adulthood. An important consideration is to determine if the implicated association between ART and imprinting disorders is actually related to the procedures or to infertility itself.
Collapse
Affiliation(s)
- Ali Eroglu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | |
Collapse
|
170
|
Abstract
Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.
Collapse
Affiliation(s)
- Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mandy Kain
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
171
|
Abstract
It is clear that RNA has a diverse set of functions and is more than just a messenger between gene and protein. The mammalian genome is extensively transcribed, giving rise to thousands of non-coding transcripts. Whether all of these transcripts are functional is debated, but it is evident that there are many functional large non-coding RNAs (ncRNAs). Recent studies have begun to explore the functional diversity and mechanistic role of these large ncRNAs. Here we synthesize these studies to provide an emerging model whereby large ncRNAs might achieve regulatory specificity through modularity, assembling diverse combinations of proteins and possibly RNA and DNA interactions.
Collapse
Affiliation(s)
- Mitchell Guttman
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
172
|
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43:904-14. [PMID: 21925379 DOI: 10.1016/j.molcel.2011.08.018] [Citation(s) in RCA: 3479] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 02/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. Here we discuss the emerging archetypes of molecular functions that lncRNAs execute-as signals, decoys, guides, and scaffolds. For each archetype, examples from several disparate biological contexts illustrate the commonality of the molecular mechanisms, and these mechanistic views provide useful explanations and predictions of biological outcomes. These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution. As new lncRNAs are being discovered at a rapid pace, the molecular mechanisms of lncRNAs are likely to be enriched and diversified.
Collapse
Affiliation(s)
- Kevin C Wang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
173
|
Andersen KL, Nielsen H. Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila. Nucleic Acids Res 2011; 40:1267-81. [PMID: 21967850 PMCID: PMC3273799 DOI: 10.1093/nar/gkr792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ciliate Tetrahymena thermophila is an important eukaryotic model organism that has been used in pioneering studies of general phenomena, such as ribozymes, telomeres, chromatin structure and genome reorganization. Recent work has shown that Tetrahymena has many classes of small RNA molecules expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-sized (40-500 nt) RNAs expressed from the Tetrahymena genome, we created a size-fractionated cDNA library from macronuclear RNA and analyzed 80 RNAs, most of which were previously unknown. The most abundant class was small nucleolar RNAs (snoRNAs), many of which are formed by an unusual maturation pathway. The modifications guided by the snoRNAs were analyzed bioinformatically and experimentally and many Tetrahymena-specific modifications were found, including several in an essential, but not conserved domain of ribosomal RNA. Of particular interest, we detected two methylations in the 5'-end of U6 small nuclear RNA (snRNA) that has an unusual structure in Tetrahymena. Further, we found a candidate for the first U8 outside metazoans, and an unusual U14 candidate. In addition, a number of candidates for new non-coding RNAs were characterized by expression analysis at different growth conditions.
Collapse
Affiliation(s)
- Kasper L Andersen
- Department of Cellular and Molecular Medicine and Center for Non-coding RNA in Technology and Health, The Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200N, Denmark
| | | |
Collapse
|
174
|
Rapicavoli NA, Poth EM, Zhu H, Blackshaw S. The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev 2011; 6:32. [PMID: 21936910 PMCID: PMC3191369 DOI: 10.1186/1749-8104-6-32] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/21/2011] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Thousands of different long non-coding RNAs are expressed during embryonic development, but the function of these molecules remains largely unexplored. RESULTS Here we characterize the expression and function of Six3OS, a long non-coding RNA that is transcribed from the distal promoter region of the gene encoding the homeodomain transcription factor Six3. Overexpression and knockdown analysis of Six3OS reveals that it plays an essential role in regulating retinal cell specification. We further observe that Six3OS regulates Six3 activity in developing retina, but does not do so by modulating Six3 expression. Finally, we show that Six3OS binds directly to Ezh2 and Eya family members, indicating that Six3OS can act as a molecular scaffold to recruit histone modification enzymes to Six3 target genes. CONCLUSIONS Our findings demonstrate a novel mechanism by which promoter-associated long non-coding RNAs can modulate the activity of their associated protein coding genes, and highlight the importance of this diverse class of molecules in the control of neural development.
Collapse
Affiliation(s)
- Nicole A Rapicavoli
- Department of Neuroscience, Neurology and Ophthalmology, Center for High-Throughput Biology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway Avenue, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute and Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erin M Poth
- Department of Neuroscience, Neurology and Ophthalmology, Center for High-Throughput Biology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway Avenue, Baltimore, MD 21287, USA
| | - Heng Zhu
- Department of Pharmacology and Center for High-Throughput Biology, Johns Hopkins University School of Medicine, 733 N. Broadway Avenue, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Department of Neuroscience, Neurology and Ophthalmology, Center for High-Throughput Biology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway Avenue, Baltimore, MD 21287, USA
| |
Collapse
|
175
|
Diverse factors are involved in maintaining X chromosome inactivation. Proc Natl Acad Sci U S A 2011; 108:16699-704. [PMID: 21940502 DOI: 10.1073/pnas.1107616108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X chromosome inactivation (XCI) is the most dramatic example of epigenetic silencing in eukaryotes. Once established, the inactivated X chromosome (Xi) remains silenced throughout subsequent cell divisions. Though the initiation of XCI has been studied extensively, the protein factors involved in Xi silencing and maintenance are largely unknown. Here we report the discovery of a diverse set of 32 proteins involved in maintenance of Xi silencing through a genome-wide RNAi screen. In addition, we describe the mechanistic roles of two proteins--origin recognition complex 2 (Orc2) and heterochromatin protein 1 (HP1α)--in Xi silencing. Immunofluorescence studies indicate that Orc2 and HP1α localize on Xi in mouse cells. Depletion of Orc2 by shRNA leads to the loss of both Orc2 and HP1α localization on Xi. Furthermore, the silencing of genes on Xi is disrupted in both Orc2- and HP1α-depleted cells. Finally, we show, using ChIP assay, that the localization of HP1α and Orc2 to the promoter regions of Xi-silenced genes is interdependent. These findings reveal a diverse set of proteins involved in Xi silencing, show how Orc2 and HP1α impact Xi silencing, and provide a basis for future studies on the maintenance of Xi silencing.
Collapse
|
176
|
Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays 2011; 33:830-9. [PMID: 21915889 PMCID: PMC3258546 DOI: 10.1002/bies.201100084] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/16/2022]
Abstract
Common themes are emerging in the molecular mechanisms of long non-coding RNA-mediated gene repression. Long non-coding RNAs (lncRNAs) participate in targeted gene silencing through chromatin remodelling, nuclear reorganisation, formation of a silencing domain and precise control over the entry of genes into silent compartments. The similarities suggest that these are fundamental processes of transcription regulation governed by lncRNAs. These findings have paved the way for analogous investigations on other lncRNAs and chromatin remodelling enzymes. Here we discuss these common mechanisms and provide our view on other molecules that warrant similar investigations. We also present our concepts on the possible mechanisms that may facilitate the exit of genes from the silencing domains and their potential therapeutic applications. Finally, we point to future areas of research and put forward our recommendations for improvements in resources and applications of existing technologies towards targeted outcomes in this active area of research.
Collapse
Affiliation(s)
- Alka Saxena
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro Cho, Tsurumi Ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
177
|
lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477:295-300. [PMID: 21874018 PMCID: PMC3175327 DOI: 10.1038/nature10398] [Citation(s) in RCA: 1569] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/26/2011] [Indexed: 12/19/2022]
Abstract
Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.
Collapse
|
178
|
XCI in preimplantation mouse and human embryos: first there is remodelling…. Hum Genet 2011; 130:203-15. [PMID: 21647603 PMCID: PMC3132436 DOI: 10.1007/s00439-011-1014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 12/21/2022]
Abstract
Female eutherians silence one of their X chromosomes to accomplish an equal dose of X-linked gene expression compared with males. The mouse is the most widely used animal model in XCI research and has proven to be of great significance for understanding the complex mechanism of X-linked dosage compensation. Although the basic principles of XCI are similar in mouse and humans, differences exist in the timing of XCI initiation, the genetic elements involved in XCI regulation and the form of XCI in specific tissues. Therefore, the mouse has its limitations as a model to understand early human XCI and analysis of human tissues is required. In this review, we describe these differences with respect to initiation of XCI in human and mouse preimplantation embryos, the extra-embryonic tissues and the in vitro model of the epiblast: the embryonic stem cells.
Collapse
|
179
|
Hoki Y, Ikeda R, Mise N, Sakata Y, Ohhata T, Sasaki H, Abe K, Sado T. Incomplete X-inactivation initiated by a hypomorphic Xist allele in the mouse. Development 2011; 138:2649-59. [PMID: 21613321 DOI: 10.1242/dev.061226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
X chromosome inactivation (X-inactivation) in female mammals is triggered by differential upregulation of the Xist gene on one of the two X chromosomes and subsequent coating of the X in cis with its non-coding transcripts. Although targeted mutation has clearly shown that Xist is essential for X-inactivation in cis, the molecular mechanism by which Xist RNA induces chromosome silencing is largely unknown. Here, we demonstrate that an Xist mutant generated previously in mouse by gene targeting, Xist(IVS), is unique in that it partially retains the capacity to silence the X chromosome. Although Xist(IVS) is differentially upregulated and its mutated transcript coats the X chromosome in cis in embryonic and extra-embryonic tissues, X-inactivation thus initiated does not seem to be fully established. The state of such incomplete inactivation is probably unstable and the mutated X is apparently reactivated in a subset of extra-embryonic tissues and, perhaps, early epiblastic cells. Xist(IVS), which can be referred to as a partial loss-of-function mutation, would provide an opportunity to dissect the molecular mechanism of Xist RNA-mediated chromosome silencing.
Collapse
Affiliation(s)
- Yuko Hoki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Bornert F, Choquet P, Gros CI, Aubertin G, Perrin-Schmitt F, Clauss F, Lesot H, Constantinesco A, Schmittbuhl M. Subtle Morphological Changes in the Mandible of Tabby Mice Revealed by Micro-CT Imaging and Elliptical Fourier Quantification. Front Physiol 2011; 2:15. [PMID: 21541253 PMCID: PMC3082932 DOI: 10.3389/fphys.2011.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/26/2011] [Indexed: 11/13/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) is a genetic disorder due to a mutation of the EDA gene and is mainly characterized by an impaired formation of hair, teeth and sweat glands, and craniofacial dysmorphologies. Although tooth abnormalities in Tabby (Ta) mutant mice - the murine model of XLHED - have been extensively studied, characterization of the craniofacial complex, and more specifically the mandibular morphology has received less attention. From 3D micro-CT reconstructions of the left mandible, the mandibular outline observed in lateral view, was quantified using 2D elliptical Fourier analysis. Comparisons between Ta specimens and their wild-type controls were carried out showing significant shape differences between mouse strains enabling a clear distinction between hemizygous Ta specimens and the other mouse groups (WT and heterozygous Eda(Ta/+) specimens). Morphological differences associated with HED correspond not only to global mandibular features (restrained development of that bone along dorsoventral axis), but also to subtle aspects such as the marked backward projection of the coronoid process or the narrowing of the mandibular condylar neck. These modifications provide for the first time, evidence of a predominant effect of the Ta mutation on the mandibular morphology. These findings parallel the well described abnormalities of jugal tooth row and skeletal defects in Ta mice, and underline the role played by EDA-A in the reciprocal epithelial-mesenchymal interactions that are of critical importance in normal dental and craniofacial development.
Collapse
Affiliation(s)
- Fabien Bornert
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 977, University of Strasbourg Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Williams LH, Kalantry S, Starmer J, Magnuson T. Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass. Development 2011; 138:2049-57. [PMID: 21471155 DOI: 10.1242/dev.061176] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Repression of Xist RNA expression is considered a prerequisite to reversal of X-chromosome inactivation (XCI) in the mouse inner cell mass (ICM), and reactivation of X-linked genes is thought to follow loss of Xist RNA coating and heterochromatic markers of inactivation, such as methylation of histone H3. We analyzed X-chromosome activity in developing ICMs and show that reactivation of gene expression from the inactive-X initiates in the presence of Xist coating and H3K27me3. Furthermore, depletion of Xist RNA coating through forced upregulation of NANOG does not result in altered reactivation kinetics. Taken together, our observations suggest that in the ICM, X-linked gene transcription and Xist coating are uncoupled. These data fundamentally alter our perception of the reactivation process and support the existence of a mechanism to reactivate Xp-linked genes in the ICM that operates independently of loss of Xist RNA and H3K27me3 from the imprinted inactive-X.
Collapse
Affiliation(s)
- Lucy H Williams
- Department of Genetics, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | | | | | | |
Collapse
|
182
|
Makhlouf M, Rougeulle C. Linking X chromosome inactivation to pluripotency: Necessity or fate? Trends Mol Med 2011; 17:329-36. [PMID: 21411371 DOI: 10.1016/j.molmed.2011.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 01/19/2023]
Abstract
Silencing one X chromosome is essential for the development of female mammals, but the regulation of this process appears to vary between species. In the mouse, which has thus far been the leading model system in the field, X chromosome inactivation (XCI) is tightly coupled to pluripotency and the underlying mechanisms have just begun to be deciphered. However, mechanistic aspects of XCI regulation in other species have yet to be thoroughly investigated. Here we review current knowledge of the developmental regulation of XCI in mice and humans and discuss the extent to which the intimate link between XCI and pluripotency extends beyond rodents.
Collapse
Affiliation(s)
- Mélanie Makhlouf
- UMR7216 Epigenetics and Cell Fate, CNRS/Université Paris Diderot, 35 rue Hélène Brion, 75013 Paris, France
| | | |
Collapse
|
183
|
Smrt RD, Pfeiffer RL, Zhao X. Age-dependent expression of MeCP2 in a heterozygous mosaic mouse model. Hum Mol Genet 2011; 20:1834-43. [PMID: 21330301 DOI: 10.1093/hmg/ddr066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Functional deficiency of the X-linked methyl-CPG binding protein 2 (MeCP2) leads to the neurodevelopmental disorder Rett syndrome (RTT). Due to random X-chromosome inactivation (XCI), most RTT patients are females who are heterozygous for the MECP2 mutation and therefore mosaic in MeCP2 deficiency. Some MECP2 heterozygote females are found to have unbalanced XCI, which may affect the severity of neurological symptoms seen in these patients; however, whether MeCP2 deficiency affects XCI in the postnatal and adult brain is unclear. Here we developed a novel MeCP2 mosaic mouse model in which the X chromosome containing the wild-type Mecp2 expresses a green fluorescent protein (GFP) transgene, while the X chromosome harboring the mutant Mecp2 does not. Due to random XCI, the neurons in the female MeCP2 mosaic mice express either wild-type MeCP2 (GFP+) or mutant MeCP2 (GFP-), and the two can be distinguished by GFP fluorescence. Using this mouse model, we evaluated XCI in female heterozygote mice from 3 to 9 months after birth. We found that MeCP2 deficiency does not affect XCI at 3 months of age, but does alter the proportion of wild-type MeCP2-expressing neurons at later ages, suggesting that MeCP2 impacts XCI patterns in an age-dependent manner. Given the important function of MeCP2 in neuronal development, our data could shed light on how MeCP2 deficiency affects postnatal brain functions and the dynamic changes in the neurological symptoms of RTT.
Collapse
Affiliation(s)
- Richard D Smrt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
184
|
New lessons from random X-chromosome inactivation in the mouse. J Mol Biol 2011; 409:62-9. [PMID: 21329697 DOI: 10.1016/j.jmb.2011.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
X-chromosome inactivation (XCI) ensures dosage compensation in mammals. Random XCI is a process where a single X chromosome is silenced in each cell of the epiblast of mouse female embryos. Operating at the level of an entire chromosome, XCI is a major paradigm for epigenetic processes. Here we review the most recent discoveries concerning the role of long noncoding RNAs, pluripotency factors, and chromosome structure in random XCI.
Collapse
|
185
|
Gontan C, Jonkers I, Gribnau J. Long Noncoding RNAs and X Chromosome Inactivation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:43-64. [PMID: 21287133 DOI: 10.1007/978-3-642-16502-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In female somatic cells, one of the two X chromosomes is inactivated to equalize the dose of sex-linked gene products between female and male cells. X chromosome inactivation X chromosome inactivation (XCI) is initiated very early during development and requires Xist Xist , which is a noncoding X-linked gene. Upon initiation of XCI, Xist-RNA spreads along the X chromosome in cis, and Xist spreading is required for the recruitment of different chromatin remodeling complexes involved in the establishment and maintenance of the inactive X chromosome. Because XCI acts chromosomewise, Xist-mediated silencing has served as an important paradigm to study the function of noncoding RNAs (ncRNA) in gene silencing. In this chapter, we describe the current knowledge about the structure and function of Xist. We also discuss the important cis- and trans-regulatory elements and proteins in the initiation, establishment, and maintenance of XCI. In addition, we highlight new findings with other ncRNAs involved in gene repression and discuss these findings in relation to Xist-mediated gene silencing.
Collapse
Affiliation(s)
- Cristina Gontan
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
186
|
Koya SK, Meller VH. roX RNAs and Genome Regulation in Drosophila Melanogaster. LONG NON-CODING RNAS 2011; 51:147-60. [DOI: 10.1007/978-3-642-16502-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
187
|
Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 2011; 3:a003756. [PMID: 20573714 DOI: 10.1101/cshperspect.a003756] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major surprise arising from genome-wide analyses has been the observation that the majority of the genome is transcribed, generating noncoding RNAs (ncRNAs). It is still an open question whether some or all of these ncRNAs constitute functional networks regulating gene transcriptional programs. However, in light of recent discoveries and given the diversity and flexibility of long ncRNAs and their abilities to nucleate molecular complexes and to form spatially compact arrays of complexes, it becomes likely that many or most ncRNAs act as sensors and integrators of a wide variety of regulated transcriptional responses and probably epigenetic events. Because many RNA-binding proteins, on binding RNAs, show distinct allosteric conformational alterations, we suggest that a ncRNA/RNA-binding protein-based strategy, perhaps in concert with several other mechanistic strategies, serves to integrate transcriptional, as well as RNA processing, regulatory programs.
Collapse
Affiliation(s)
- Xiangting Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
188
|
Evaluation of x-inactivation status and cytogenetic stability of human dermal fibroblasts after long-term culture. Int J Cell Biol 2010; 2010:289653. [PMID: 21234375 PMCID: PMC3017890 DOI: 10.1155/2010/289653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/28/2010] [Indexed: 11/18/2022] Open
Abstract
Human primary fibroblasts are a popular type of somatic cells for the production of induced pluripotent stem (iPS) cells. Here we characterized biological properties of primary fibroblasts in terms of cell-growth rate, cytogenetic stability, and the number of inactive X chromosomes during long-term passaging. We produced eight lines of female human dermal fibroblasts (HDFs) and found normal karyotype and expected pattern of X chromosome inactivation (XCI) at low passages (Passage P1-5). However, four out of the eight HDF lines at high passage numbers (≥ P10) exhibited duplicated hallmarks of inactive X chromosome including two punctuate signals of histone H3 lysine 27 trimethylation (H3K27me3) and X inactive-specific transcript (XIST) RNA signals in approximately 8.5–18.5% of the cells. Our data suggest that the copy number of inactive X chromosomes in a subset of female HDF is increased by a two-fold. Consistently, DNA fluorescent in situ hybridization (FISH) identified 3-4 copies of X chromosomes in one nucleus in this subset of cells with two inactive Xs. We conclude that female HDF cultures exhibit a higher risk of genetic anomalies such as carrying an increased number of X chromosomes including both active and inactive X chromosomes at a high passage (≥ P10).
Collapse
|
189
|
Abstract
Autoimmune diseases appear to have multiple contributing factors including genetics, epigenetics, environmental factors, and aging. The predominance of females among patients with autoimmune diseases suggests possible involvement of the X chromosome and X chromosome inactivation. X chromosome inactivation is an epigenetic event resulting in multiple levels of control for modulation of the expression of X-linked genes in normal female cells such that there remains only one active X chromosome in the cell. The extent of this control is unique among the chromosomes and has the potential for problems when regulation is disrupted. Here we discuss the X chromosome inactivation process and how the X chromosome and X chromosome inactivation may be involved in development of autoimmune disorders.
Collapse
Affiliation(s)
- Wesley H Brooks
- Experimental HTS, Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612-9416, USA.
| |
Collapse
|
190
|
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29:3082-3093. [PMID: 20729808 PMCID: PMC2944070 DOI: 10.1038/emboj.2010.199] [Citation(s) in RCA: 587] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/16/2010] [Indexed: 12/19/2022] Open
Abstract
A growing number of long nuclear-retained non-coding RNAs (ncRNAs) have recently been described. However, few functions have been elucidated for these ncRNAs. Here, we have characterized the function of one such ncRNA, identified as metastasis-associated lung adenocarcinoma transcript 1 (Malat1). Malat1 RNA is expressed in numerous tissues and is highly abundant in neurons. It is enriched in nuclear speckles only when RNA polymerase II-dependent transcription is active. Knock-down studies revealed that Malat1 modulates the recruitment of SR family pre-mRNA-splicing factors to the transcription site of a transgene array. DNA microarray analysis in Malat1-depleted neuroblastoma cells indicates that Malat1 controls the expression of genes involved not only in nuclear processes, but also in synapse function. In cultured hippocampal neurons, knock-down of Malat1 decreases synaptic density, whereas its over-expression results in a cell-autonomous increase in synaptic density. Our results suggest that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance.
Collapse
Affiliation(s)
- Delphine Bernard
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Kannanganattu V Prasanth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Sabrina Colasse
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | - Zhenyu Xuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Frédéric Sedel
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Laurent Jourdren
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, Paris, France
| | - Fanny Coulpier
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, Paris, France
| | - Antoine Triller
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | - Alain Bessis
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| |
Collapse
|
191
|
Wong CCY, Caspi A, Williams B, Craig IW, Houts R, Ambler A, Moffitt TE, Mill J. A longitudinal study of epigenetic variation in twins. Epigenetics 2010; 5:516-26. [PMID: 20505345 DOI: 10.4161/epi.5.6.12226] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a key epigenetic mechanism involved in the developmental regulation of gene expression. Alterations in DNA methylation are established contributors to inter-individual phenotypic variation and have been associated with disease susceptibility. The degree to which changes in loci-specific DNA methylation are under the influence of heritable and environmental factors is largely unknown. In this study, we quantitatively measured DNA methylation across the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene (MAOA) using DNA sampled at both ages 5 and 10 years in 46 MZ twin-pairs and 45 DZ twin-pairs (total n=182). Our data suggest that DNA methylation differences are apparent already in early childhood, even between genetically identical individuals, and that individual differences in methylation are not stable over time. Our longitudinal-developmental study suggests that environmental influences are important factors accounting for interindividual DNA methylation differences, and that these influences differ across the genome. The observation of dynamic changes in DNA methylation over time highlights the importance of longitudinal research designs for epigenetic research.
Collapse
Affiliation(s)
- Chloe Chung Yi Wong
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Kim K, Kim SH, Lépine F, Cho YH, Lee GR. Global gene expression analysis on the target genes of PQS and HHQ in J774A.1 monocyte/macrophage cells. Microb Pathog 2010; 49:174-80. [PMID: 20595074 DOI: 10.1016/j.micpath.2010.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/24/2023]
Abstract
We have previously shown that PQS and HHQ, two quorum sensing molecules, can down-regulate host the innate immune responses and that this is mediated through the NF-kappaB pathway. In this study, to search for a comprehensive set of genes regulated by these quorum sensing molecules, we performed a global gene expression analysis using DNA microarray in J774A.1 monocyte/macrophage cells line. The expression of these genes was confirmed by RT-PCR. We found that PQS and HHQ down-regulated the expression of genes involved in immune responses and transcription as well as other functions, some of which are downstream of NF-kappaB pathway consistent with our previous results. PQS and HHQ inhibited LPS-induced morphological change and nitric oxide production, suggesting that they inhibit macrophage activation. However, PQS and HHQ did not affect apoptosis, suggesting that their effects on immune system are not from general alteration of cell function. This study provides insight how the quorum sensing molecules influence host cells.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
193
|
Ferreira A, Machado G, Diesel T, Carvalho J, Rumpf R, Melo E, Dode M, Franco M. Allele-specific expression of the MAOA gene and X chromosome inactivation in in vitro produced bovine embryos. Mol Reprod Dev 2010; 77:615-21. [DOI: 10.1002/mrd.21192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
194
|
Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC DEVELOPMENTAL BIOLOGY 2010; 10:49. [PMID: 20459797 PMCID: PMC2876091 DOI: 10.1186/1471-213x-10-49] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/11/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent work has identified that many long mRNA-like noncoding RNAs (lncRNAs) are expressed in the developing nervous system. Despite their abundance, the function of these ncRNAs has remained largely unexplored. We have investigated the highly abundant lncRNA RNCR2 in regulation of mouse retinal cell differentiation. RESULTS We find that the RNCR2 is selectively expressed in a subset of both mitotic progenitors and postmitotic retinal precursor cells. ShRNA-mediated knockdown of RNCR2 results in an increase of both amacrine cells and Müller glia, indicating a role for this lncRNA in regulating retinal cell fate specification. We further report that RNCR2 RNA, which is normally nuclear-retained, can be exported from the nucleus when fused to an IRES-GFP sequence. Overexpression of RNCR2-IRES-GFP phenocopies the effects of shRNA-mediated knockdown of RNCR2, implying that forced mislocalization of RNCR2 induces a dominant-negative phenotype. Finally, we use the IRES-GFP fusion approach to identify specific domains of RNCR2 that are required for repressing both amacrine and Müller glial differentiation. CONCLUSION These data demonstrate that the lncRNA RNCR2 plays a critical role in regulating mammalian retinal cell fate specification. Furthermore, we present a novel approach for generating dominant-negative constructs of lncRNAs, which may be generally useful in the functional analysis of this class of molecules.
Collapse
Affiliation(s)
- Nicole A Rapicavoli
- Department of Neuroscience, Neurology and Ophthalmology, Center for High-Throughput Biology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N, Broadway Avenue, Baltimore, MD, USA
| | | | | |
Collapse
|
195
|
Abstract
The X-linked region now known as the "X-inactivation center" (Xic) was once dominated by protein-coding genes but, with the rise of Eutherian mammals some 150-200 million years ago, became infiltrated by genes that produce long noncoding RNA (ncRNA). Some of the noncoding genes have been shown to play crucial roles during X-chromosome inactivation (XCI), including the targeting of chromatin modifiers to the X. The rapid establishment of ncRNA hints at a possible preference for long transcripts in some aspects of epigenetic regulation. This article discusses the role of RNA in XCI and considers the advantages RNA offers in delivering allelic, cis-limited, and locus-specific control. Unlike proteins and small RNAs, long ncRNAs are tethered to the site of transcription and effectively tag the allele of origin. Furthermore, long ncRNAs are drawn from larger sequence space than proteins and can mark a unique region in a complex genome. Thus, like their small RNA cousins, long ncRNAs may emerge as versatile and powerful regulators of the epigenome.
Collapse
|
196
|
Wistuba J. Animal models for Klinefelter's syndrome and their relevance for the clinic. Mol Hum Reprod 2010; 16:375-85. [DOI: 10.1093/molehr/gaq024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
197
|
Abstract
Living systems use RNA sequences known as riboswitches to detect the concentrations of small-molecule metabolites within cells and to regulate the expression of genes that produce these metabolites. Like their natural counterparts, synthetic riboswitches also regulate gene expression in response to small molecules. Because synthetic riboswitches can be engineered to respond to nonendogenous small molecules, they are powerful tools for chemical and synthetic biologists interested in understanding and reprogramming cellular behavior. In this review, we present an overview of natural riboswitches, highlight recent studies toward developing synthetic riboswitches and provide an overview of emerging applications of these RNA switches in chemical biology.
Collapse
Affiliation(s)
- Shana Topp
- Department of Chemistry and the Center for Fundamental and Applied Molecular Evolution, Emory University, Atlanta, Georgia 30322
| | - Justin P. Gallivan
- Department of Chemistry and the Center for Fundamental and Applied Molecular Evolution, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
198
|
Abstract
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion ( approximately 15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, approximately 80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.
Collapse
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA.
| | | |
Collapse
|
199
|
Su J, Zhang Y, Lv J, Liu H, Tang X, Wang F, Qi Y, Feng Y, Li X. CpG_MI: a novel approach for identifying functional CpG islands in mammalian genomes. Nucleic Acids Res 2009; 38:e6. [PMID: 19854943 PMCID: PMC2800233 DOI: 10.1093/nar/gkp882] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CpG islands (CGIs) are CpG-rich regions compared to CpG-depleted bulk DNA of mammalian genomes and are generally regarded as the epigenetic regulatory regions in association with unmethylation, promoter activity and histone modifications. Accurate identification of CpG islands with epigenetic regulatory function in bulk genomes is of wide interest. Here, the common features of functional CGIs are identified using an average mutual information method to differentiate functional CGIs from the remaining CGIs. A new approach (CpG mutual information, CpG_MI) was further explored to identify functional CGIs based on the cumulative mutual information of physical distances between two neighboring CpGs. Compared to current approaches, CpG_MI achieved the highest prediction accuracy. This approach also identified new functional CGIs overlapping with gene promoter regions which were missed by other algorithms. Nearly all CGIs identified by CpG_MI overlapped with histone modification marks. CpG_MI could also be used to identify potential functional CGIs in other mammalian genomes, as the CpG dinucleotide contents and cumulative mutual information distributions are almost the same among six mammalian genomes in our analysis. It is a reliable quantitative tool for the identification of functional CGIs from bulk genomes and helps in understanding the relationships between genomic functional elements and epigenomic modifications.
Collapse
Affiliation(s)
- Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Nagano T, Fraser P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome 2009; 20:557-62. [PMID: 19727951 DOI: 10.1007/s00335-009-9218-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) such as Xist, Air, and Kcnq1ot1 are required for epigenetic silencing of multiple genes in cis within large chromosomal domains, including distant genes located hundreds of kilobase pairs away. Recent evidence suggests that all three of these lncRNAs are functional and that they silence gene expression, in part, through an intimate interaction with chromatin. Here we provide an overview of lncRNA-dependent gene silencing, focusing on recent findings for the Air and Kcnq1ot1 lncRNAs. We review molecular evidence indicating that these lncRNAs interact with chromatin and correlate their presence with specific histone modifications associated with gene silencing. A general model for a lncRNA-dependent gene-silencing mechanism is presented based on the apparent ability of lncRNAs to recruit histone-modifying activities to chromatin. However, alternate mechanisms may be required to explain the silencing of some lncRNA-dependent genes. Finally, we discuss unanswered questions and future perspectives associated with these enigmatic lncRNA molecules.
Collapse
Affiliation(s)
- Takashi Nagano
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB223AT, UK.
| | | |
Collapse
|