151
|
Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003; 185:2759-73. [PMID: 12700255 PMCID: PMC154410 DOI: 10.1128/jb.185.9.2759-2773.2003] [Citation(s) in RCA: 367] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Patrick Chain
- Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
We reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 and its enzymes. The strain can grow at temperatures up to the boiling point and also represents one of the simplest forms of life. As expected, all enzymes displayed remarkable thermostability, and we have determined some of the basic principles that govern this feature. To our delight, many of the enzymes exhibited unique biochemical properties and novel structures not found in mesophilic proteins. Here, we focus on a few enzymes that are useful in application, and whose three-dimensional structures are characteristic of thermostable enzymes.
Collapse
Affiliation(s)
- Tadayuki Imanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
153
|
Kalyuzhnaya MG, Lidstrom ME. QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 2003; 185:1229-35. [PMID: 12562792 PMCID: PMC142849 DOI: 10.1128/jb.185.4.1229-1235.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new gene, qscR, encoding a LysR-type transcriptional regulator that is a homolog of CbbR, has been characterized from the facultative methylotroph Methylobacterium extorquens AM1 and shown to be the major regulator of the serine cycle, the specific C1 assimilation pathway. The qscR mutant was shown to be unable to grow on C1 compounds, and it lacked the activity of serine-glyoxylate aminotransferase, a key enzyme of the serine cycle. Activities of other serine cycle enzymes were decreased during growth on C1 compounds compared to the activities found in wild-type M. extorquens AM1. Promoter fusion assays, as well as reverse transcription-PCR assays, have indicated that the serine cycle genes belong to three separate transcriptional units, sga-hpr-mtdA-fch, mtkA-mtkB-ppc-mcl, and gly. Gel retardation assays involving the purified QscR have demonstrated the specific binding of QscR to the DNA regions upstream of sga, mtkA, gly, and qscR. We conclude that QscR acts as a positive transcriptional regulator of most of the serine cycle enzymes and also as an autorepressor.
Collapse
Affiliation(s)
- Marina G Kalyuzhnaya
- Department of Chemical Engineering. Department of Microbiology, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
154
|
van Keulen G, Ridder ANJA, Dijkhuizen L, Meijer WG. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol 2003; 185:1245-52. [PMID: 12562794 PMCID: PMC142840 DOI: 10.1128/jb.185.4.1245-1252.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LysR-type transcriptional regulator CbbR controls the expression of the cbb and gap-pgk operons in Xanthobacter flavus, which encode the majority of the enzymes of the Calvin cycle required for autotrophic CO2 fixation. The cbb operon promoter of this chemoautotrophic bacterium contains three potential CbbR binding sites, two of which partially overlap. Site-directed mutagenesis and subsequent analysis of DNA binding by CbbR and cbb promoter activity were used to show that the potential CbbR binding sequences are functional. Inverted repeat IR1 is a high-affinity CbbR binding site. The main function of this repeat is to recruit CbbR to the cbb operon promoter. In addition, it is required for negative autoregulation of cbbR expression. IR3 represents the main low-affinity binding site of CbbR. Binding to IR3 occurs in a cooperative manner, since mutations preventing the binding of CbbR to IR1 also prevent binding to the low-affinity site. Although mutations in IR3 have a negative effect on the binding of CbbR to this site, they result in an increased promoter activity. This is most likely due to steric hindrance of RNA polymerase by CbbR since IR3 partially overlaps with the -35 region of the cbb operon promoter. Mutations in IR2 do not affect the DNA binding of CbbR in vitro but have a severe negative effect on the activity of the cbb operon promoter. This IR2 binding site is therefore critical for transcriptional activation by CbbR.
Collapse
Affiliation(s)
- Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
155
|
Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 2002; 68:4795-802. [PMID: 12324322 PMCID: PMC126446 DOI: 10.1128/aem.68.10.4795-4802.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H(2) or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark (14)CO(2) fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the gamma-PROTEOBACTERIA: Arsenite oxidation has never been reported for any members of this subgroup of the PROTEOBACTERIA:
Collapse
MESH Headings
- Anaerobiosis
- Arsenites/metabolism
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/metabolism
- Fresh Water/microbiology
- Microscopy, Electron, Scanning
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- Water Microbiology
Collapse
|
156
|
Maeda N, Kanai T, Atomi H, Imanaka T. The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability. J Biol Chem 2002; 277:31656-62. [PMID: 12070156 DOI: 10.1074/jbc.m203117200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously determined the crystal structure of a novel pentagonal ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Here we have carried out biochemical studies to identify the necessities and/or advantages of this intriguing pentagonal structure. The structure indicated the presence of three neighboring residues (Glu-63, Arg-66, and Asp-69), participating in ionic interactions within unique dimer-dimer interfaces. We constructed three single mutant proteins (E63S, R66S, and D69S) and one triple mutant protein (E63S/R66S/D69S) by replacing the charged residues with serine. The wild type (WT) and all mutant proteins were purified and subjected to gel permeation chromatography at various temperatures. WT and D69S proteins were decameric at all temperatures examined between 30 and 90 degrees C. The majority of E63S and R66S were decamers at 30 degrees C but were found to gradually disassemble with the elevation in temperature. E63S/R66S/D69S was found in a dimeric form even at 30 degrees C. An interesting correlation was found between the subunit assembly and thermostability of the proteins. Circular dichroism and differential scanning calorimetry analyses indicated that the denaturation temperatures of dimeric enzymes (E63S, R66S, and E63S/R66S/D69S) were approximately 95 degrees C, whereas those of the enzymes retaining a decameric structure (WT and D69S) were approximately 110 degrees C. Disassembly into tetramer or dimer units did not alter the slopes of the Arrhenius plots, indicating that the decameric structure had no effect on catalytic performance per se. The results indicate that the decameric assembly of Tk-Rubisco contributes to enhance the thermostability of the enzyme. Taking into account the growth temperature of strain KOD1 (65-100 degrees C), the decameric structure of Tk-Rubisco can be considered essential for the stable presence of the enzyme in the host cells. This study provides an interesting example in which the thermostability of a protein can be enhanced by formation of a unique quaternary structure not found in mesophilic enzymes.
Collapse
Affiliation(s)
- Norihiro Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
157
|
Havemann GD, Sampson EM, Bobik TA. PduA is a shell protein of polyhedral organelles involved in coenzyme B(12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. J Bacteriol 2002; 184:1253-61. [PMID: 11844753 PMCID: PMC134856 DOI: 10.1128/jb.184.5.1253-1261.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica forms polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. These organelles are thought to consist of a proteinaceous shell that encases coenzyme B(12)-dependent diol dehydratase and perhaps other enzymes involved in 1,2-propanediol degradation. The function of these organelles is unknown, and no detailed studies of their structure have been reported. Genes needed for organelle formation and for 1,2-propanediol degradation are located at the 1,2-propanediol utilization (pdu) locus, but the specific genes involved in organelle formation have not been identified. Here, we show that the pduA gene encodes a shell protein required for the formation of polyhedral organelles involved in coenzyme B(12)-dependent 1,2-propanediol degradation. A His(6)-PduA fusion protein was purified from a recombinant Escherichia coli strain and used for the preparation of polyclonal antibodies. The anti-PduA antibodies obtained were partially purified by a subtraction procedure and used to demonstrate that the PduA protein localized to the shell of the polyhedral organelles. In addition, electron microscopy studies established that strains with nonpolar pduA mutations were unable to form organelles. These results show that the pduA gene is essential for organelle formation and indicate that the PduA protein is a structural component of the shell of these organelles. Physiological studies of nonpolar pduA mutants were also conducted. Such mutants grew similarly to the wild-type strain at low concentrations of 1,2-propanediol but exhibited a period of interrupted growth in the presence of higher concentrations of this growth substrate. Growth tests also showed that a nonpolar pduA deletion mutant grew faster than the wild-type strain at low vitamin B(12) concentrations. These results suggest that the polyhedral organelles formed by S. enterica during growth on 1,2-propanediol are not involved in the concentration of 1,2-propanediol or coenzyme B(12), but are consistent with the hypothesis that these organelles moderate aldehyde production to minimize toxicity.
Collapse
Affiliation(s)
- Gregory D Havemann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
158
|
Hayashi NR, Igarashi Y. ATP binding and hydrolysis and autophosphorylation of CbbQ encoded by the gene located downstream of RubisCO genes. Biochem Biophys Res Commun 2002; 290:1434-40. [PMID: 11820782 DOI: 10.1006/bbrc.2002.6366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CbbQ is encoded by the gene located downstream of ribulose 1,5-bisphosphate carboxylase/oxygenase genes (cbbLS) in the thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus. The protein possesses two nucleotide-binding motifs in its amino acid sequence, and it posttranslationally activates RubisCO. We present ATP hydrolysis and binding of CbbQ. CbbQ releases P(i) from ATP only in the presence of Mg(2+). CbbQ interacts with an 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate in the presence or absence of Mg(2+). The interaction with Mg(2+) and/or a nucleotide induces a conformational change in CbbQ. Autophosphorylation of CbbQ occurs only in the absence of Mg(2+).
Collapse
Affiliation(s)
- Nobuhiro R Hayashi
- Department of Biotechnology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | |
Collapse
|
159
|
Utåker JB, Andersen K, Aakra A, Moen B, Nes IF. Phylogeny and functional expression of ribulose 1,5-bisphosphate carboxylase/oxygenase from the autotrophic ammonia-oxidizing bacterium Nitrosospira sp. isolate 40KI. J Bacteriol 2002; 184:468-78. [PMID: 11751824 PMCID: PMC139566 DOI: 10.1128/jb.184.2.468-478.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Accepted: 10/11/2001] [Indexed: 11/20/2022] Open
Abstract
The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO(2) by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the beta and gamma subgroups of the class Proteobacteria are also presented. All except one of the beta-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other beta-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.
Collapse
Affiliation(s)
- Janne B Utåker
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, N-1432 As, Norway.
| | | | | | | | | |
Collapse
|
160
|
|
161
|
Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 2001; 67:5351-61. [PMID: 11722879 PMCID: PMC93316 DOI: 10.1128/aem.67.12.5351-5361.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- G C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5043, USA.
| | | | | | | | | | | |
Collapse
|
162
|
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2001; 98:9889-94. [PMID: 11481431 PMCID: PMC55548 DOI: 10.1073/pnas.161294698] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N(2)-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.
Collapse
Affiliation(s)
- T M Finan
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Atomi H, Ezaki S, Imanaka T. Ribulose-1,5-bisphosphate carboxylase/oxygenase from Thermococcus kodakaraensis KOD1. Methods Enzymol 2001; 331:353-65. [PMID: 11265476 DOI: 10.1016/s0076-6879(01)31070-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- H Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
164
|
Abstract
Although the debate continues, the concept of global warming as a consequence of the increased production of 'greenhouse gases' via human activities is now widely accepted. The role of microbes, especially the prokaryotes, in the formation, trapping and retention of 'greenhouse gases' has, for the most part, been overlooked. The future requires that we pay close attention to these organisms for possible solutions to adverse global changes.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | | | |
Collapse
|
165
|
Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K. Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry. Structure 2001; 9:473-81. [PMID: 11435112 DOI: 10.1016/s0969-2126(01)00608-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the key enzyme of the Calvin-Benson cycle and catalyzes the primary reaction of CO2 fixation in plants, algae, and bacteria. Rubiscos have been so far classified into two types. Type I is composed of eight large subunits (L subunits) and eight small subunits (S subunits) with tetragonal symmetry (L8S8), but type II is usually composed only of two L subunits (L2). Recently, some genuinely active Rubiscos of unknown physiological function have been reported from archaea. RESULTS The crystal structure of Rubisco from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (Tk-Rubisco) was determined at 2.8 A resolution. The enzyme is composed only of L subunits and showed a novel (L2)5 decameric structure. Compared to previously known type I enzymes, each L2 dimer is inclined approximately 16 degrees to form a toroid-shaped decamer with its unique L2-L2 interfaces. Differential scanning calorimetry (DSC), circular dichroism (CD), and gel permeation chromatography (GPC) showed that Tk-Rubisco maintains its secondary structure and decameric assembly even at high temperatures. CONCLUSIONS The present study provides the first structure of an archaeal Rubisco, an unprecedented (L2)5 decamer. Biochemical studies indicate that Tk-Rubisco maintains its decameric structure at high temperatures. The structure is distinct from type I and type II Rubiscos and strongly supports that Tk-Rubisco should be classified as a novel type III Rubisco.
Collapse
Affiliation(s)
- K Kitano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
166
|
Terazono K, Hayashi NR, Igarashi Y. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol Lett 2001; 198:151-7. [PMID: 11430407 DOI: 10.1111/j.1574-6968.2001.tb10635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cbbR encoding the LysR-type transcriptional regulator is located downstream of cbbLSQOYA and this gene is located upstream of cbbFPT in divergent transcription. The two promoter regions with LysR-binding sites are located in the cbbL upstream region and in the cbbR-cbbF intergenic region. Electrophoretic mobility shift assays using a cell extract of Escherichia coli harboring a plasmid containing cbbR and the DNA fragments of promoter regions indicated that CbbR binds in both regions. NADPH caused differences in the complex of CbbR and DNA.
Collapse
Affiliation(s)
- K Terazono
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
167
|
Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S. Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 2001; 183:1891-8. [PMID: 11222586 PMCID: PMC95083 DOI: 10.1128/jb.183.6.1891-1898.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cmpABCD operon of Synechococcus sp. strain PCC 7942, encoding a high-affinity bicarbonate transporter, is transcribed only under CO2-limited conditions. In Synechocystis sp. strain PCC 6803, the slr0040, slr0041, slr0043, and slr0044 genes, forming an operon with a putative porin gene (slr0042), were identified as the cmpA, cmpB, cmpC, and cmpD genes, respectively, on the basis of their strong similarities to the corresponding Synechococcus cmp genes and their induction under low CO2 conditions. Immediately upstream of and transcribed divergently from the Synechocystis cmp operon is a gene (sll0030) encoding a homolog of CbbR, a LysR family transcriptional regulator of the CO2 fixation operons of chemoautotrophic and purple photosynthetic bacteria. Inactivation of sll0030, but not of another closely related cbbR homolog (sll1594), abolished low CO2 induction of cmp operon expression. Gel retardation assays showed specific binding of the Sll0030 protein to the sll0030-cmpA intergenic region, suggesting that the protein activates transcription of the cmp operon by interacting with its regulatory region. A cbbR homolog similar to sll0030 and sll1594 was cloned from Synechococcus sp. strain PCC 7942 and shown to be involved in the low CO2-induced activation of the cmp operon. We hence designated the Synechocystis sll0030 gene and the Synechococcus cbbR homolog cmpR. In the mutants of the cbbR homologs, upregulation of ribulose-1,5-bisphosphate carboxylase/oxygenase operon expression by CO2 limitation was either unaffected (strain PCC 6803) or enhanced (strain PCC 7942), suggesting existence of other low CO2-responsive transcriptional regulator(s) in cyanobacteria.
Collapse
Affiliation(s)
- T Omata
- Laboratory of Molecular Plant Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
168
|
van Keulen G, Dijkhuizen L, Meijer WG. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus. J Bacteriol 2000; 182:4637-9. [PMID: 10913100 PMCID: PMC94638 DOI: 10.1128/jb.182.16.4637-4639.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of reduced and oxidized nicotinamide adenine dinucleotides were determined in Xanthobacter flavus during a transition from heterotrophic to autotrophic growth. Excess reducing equivalents are rapidly dissipated following induction of the Calvin cycle, indicating that the Calvin cycle serves as a sink for excess reducing equivalents. The physiological data support the conclusion previously derived from molecular studies in that expression of the Calvin cycle genes is controlled by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
169
|
Lee SW, Cooksey DA. Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl Environ Microbiol 2000; 66:2764-72. [PMID: 10877766 PMCID: PMC92071 DOI: 10.1128/aem.66.7.2764-2772.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 04/10/2000] [Indexed: 01/28/2023] Open
Abstract
In vivo expression technology (IVET) was employed to study colonization of Phytophthora parasitica by a biological control bacterium, Pseudomonas putida 06909, based on a new selection marker. The pyrB gene, which encodes aspartate transcarbamoylase, an enzyme used for pyrimidine biosynthesis, was cloned from P. putida 06909. A pyrB-disrupted mutant did not grow in pyrimidine-deficient media unless it was complemented with pyrBC' behind an active promoter. Thirty clones obtained from P. putida 06909 that were expressed on fungal hyphae but not on culture media were isolated by IVET based on the promoterless transcriptional fusion between pyrBC' and lacZ. Nineteen of these clones were induced during late-stage bacterial growth in vitro, while 11 of the clones were expressed only when they were inoculated onto fungal hyphae. Restriction analysis of these 11 clones revealed that there were five unique clones. Sequence analyses of three of the five unique clones showed that the 3' ends of the clones fused to pyrB were similar to genes encoding diacylglycerol kinase (DAGK), bacterial ABC transporters, and outer membrane porins. The sequences of the two other clones were not similar to the sequences of any of the genes in the database used. A LuxR family response regulator was found upstream of DAGK, and a LysR family response regulator was found upstream of the ABC transporter. The location of the inducible promoter of two clones suggested that DAGK and the ABC transporter are induced and may play a role in colonization of the fungus P. parasitica by P. putida 06909.
Collapse
Affiliation(s)
- S W Lee
- Department of Plant Pathology, University of California, Riverside, California 92521-0122, USA
| | | |
Collapse
|
170
|
Abstract
Molecular phylogenetic studies reveal that many endosymbioses between bacteria and invertebrate hosts result from ancient infections followed by strict vertical transmission within host lineages. Endosymbionts display a distinctive constellation of genetic properties including AT-biased base composition, accelerated sequence evolution, and, at least sometimes, small genome size; these features suggest increased genetic drift. Molecular genetic characterization also has revealed adaptive, host-beneficial traits such as amplification of genes underlying nutrient provision.
Collapse
Affiliation(s)
- N A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
171
|
|
172
|
Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T. Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 1999; 293:57-66. [PMID: 10512715 DOI: 10.1006/jmbi.1999.3145] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported the presence of a highly active, carboxylase-specific ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in a hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1. In this study, structural analysis of Pk -Rubisco has been performed. Phylogenetic analysis of Rubiscos indicated that archaeal Rubiscos, including Pk -Rubisco, were distinct from previously reported type I and type II enzymes in terms of primary structure. In order to investigate the existence of small subunits in native Pk -Rubisco, immunoprecipitation and native-PAGE experiments were performed. No specific protein other than the expected large subunit of Pk -Rubisco was detected when the cell-free extracts of P. kodakaraensis KOD1 were immunoprecipitated with polyclonal antibodies against the recombinant enzyme. Furthermore, native and recombinant Pk -Rubiscos exhibited identical mobilities on native-PAGE. These results indicated that native Pk -Rubisco consisted solely of large subunits. Electron micrographs of purified recombinant Pk -Rubisco displayed pentagonal ring-like assemblies of the molecules. Crystals of Pk -Rubisco obtained from ammonium sulfate solutions diffracted X-rays beyond 2.8 A resolution. The self-rotation function of the diffraction data showed the existence of 5-fold and 2-fold axes, which are located perpendicularly to each other. These results, along with the molecular mass of Pk -Rubisco estimated from gel filtration, strongly suggest that Pk -Rubisco is a decamer composed only of large subunits, with pentagonal ring-like structure. This is the first report of a decameric assembly of Rubisco, which is thought to belong to neither type I nor type II Rubiscos.
Collapse
Affiliation(s)
- N Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
173
|
Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 1999; 181:5967-75. [PMID: 10498708 PMCID: PMC103623 DOI: 10.1128/jb.181.19.5967-5975.1999] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 contains genes needed for the coenzyme B(12)-dependent catabolism of 1,2-propanediol. Here the completed DNA sequence of the pdu operon is presented. Analyses of previously unpublished pdu DNA sequence substantiated previous studies indicating that the pdu operon was acquired by horizontal gene transfer and allowed the identification of 16 hypothetical genes. This brings the total number of genes in the pdu operon to 21 and the total number of genes at the pdu locus to 23. Of these, six encode proteins of unknown function and are not closely related to sequences of known function found in GenBank. Two encode proteins involved in transport and regulation. Six probably encode enzymes needed for the pathway of 1,2-propanediol degradation. Two encode proteins related to those used for the reactivation of adenosylcobalamin (AdoCbl)-dependent diol dehydratase. Five encode proteins related to those involved in the formation of polyhedral organelles known as carboxysomes, and two encode proteins that appear distantly related to those involved in carboxysome formation. In addition, it is shown that S. enterica forms polyhedral bodies that are involved in the degradation of 1,2-propanediol. Polyhedra are formed during either aerobic or anaerobic growth on propanediol, but not during growth on other carbon sources. Genetic tests demonstrate that genes of the pdu operon are required for polyhedral body formation, and immunoelectron microscopy shows that AdoCbl-dependent diol dehydratase is associated with these polyhedra. This is the first evidence for a B(12)-dependent enzyme associated with a polyhedral body. It is proposed that the polyhedra consist of AdoCbl-dependent diol dehydratase (and perhaps other proteins) encased within a protein shell that is related to the shell of carboxysomes. The specific function of these unusual polyhedral bodies was not determined, but some possibilities are discussed.
Collapse
Affiliation(s)
- T A Bobik
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
174
|
Jeffke T, Gropp NH, Kaiser C, Grzeszik C, Kusian B, Bowien B. Mutational analysis of the cbb operon (CO2 assimilation) promoter of Ralstonia eutropha. J Bacteriol 1999; 181:4374-80. [PMID: 10400596 PMCID: PMC93940 DOI: 10.1128/jb.181.14.4374-4380.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PL promoters direct the transcription of the duplicated cbb operons from the facultative chemoautotroph Ralstonia eutropha H16. The operons encode most enzymes of the Calvin-Benson-Bassham carbon reduction cycle required for CO2 assimilation. Their transcription depends on the activator protein CbbR. Structure-function relationships in the cloned chromosomal promoter region were analyzed by site-directed mutagenesis. PL was altered in its presumed hexameric -35 and/or -10 box or in the spacer region between the boxes to achieve a greater or lesser resemblance to the structure of the sigma70 consensus promoter of Escherichia coli. PL::lacZ transcriptional fusions of various promoter variants were assayed in transconjugant strains of R. eutropha as well as in corresponding cbbR deletion mutants. Mutations increasing the similarity of the -35 and/or -10 box to the consensus sequence stimulated PL activity to various extents, whereas mutations deviating from the consensus decreased the activity. The length of the spacer region also proved to be critical. The conversion of the boxes, either individually or simultaneously, into the consensus sequences resulted in a highly active PL. All improved PL mutants, however, retained the activation under inducing or derepressing growth conditions, although the full-consensus promoter was nearly constitutive. They were also activated in the cbbR mutants. The activity of the overlapping, divergently oriented cbbR promoter was less affected by the mutations. The half- and full-consensus PL mutants were comparably active in E. coli. Two major conclusions were drawn from the results: (i) the location and function of PL were verified, and (ii) indirect evidence was obtained for the involvement of another regulator(s), besides CbbR, in the transcriptional control of the R. eutropha cbb operons.
Collapse
Affiliation(s)
- T Jeffke
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Abstract
Many microorganisms possess inducible mechanisms that concentrate CO2 at the carboxylation site, compensating for the relatively low affinity of Rubisco for its substrate, and allowing acclimation to a wide range of CO2 concentrations. The organization of the carboxysomes in prokaryotes and of the pyrenoids in eukaryotes, and the presence of membrane mechanisms for inorganic carbon (Ci) transport, are central to the concentrating mechanism. The presence of multiple Ci transporting systems in cyanobacteria has been indicated. Certain genes involved in structural organization, Ci transport and the energization of the latter have been identified. Massive Ci fluxes associated with the CO2-concentrating mechanism have wide-reaching ecological and geochemical implications.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel; e-mail:
| | | |
Collapse
|