151
|
Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 2008; 55:289-309. [PMID: 18639906 DOI: 10.1016/j.neuropharm.2008.05.023] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/27/2022]
Abstract
In cerebral ischemia survival of neurons, astrocytes, oligodendrocytes and endothelial cells is threatened during energy deprivation and/or following re-supply of oxygen and glucose. After a brief summary of characteristics of different cells types, emphasizing the dependence of all on oxidative metabolism, the bioenergetics of focal and global ischemia is discussed, distinguishing between events during energy deprivation and subsequent recovery attempt after re-circulation. Gray and white matter ischemia are described separately, and distinctions are made between mature and immature brains. Next comes a description of bioenergetics in individual cell types in culture during oxygen/glucose deprivation or exposure to metabolic inhibitors and following re-establishment of normal aerated conditions. Due to their expression of NMDA and non-NMDA receptors neurons and oligodendrocytes are exquisitely sensitive to excitotoxicity by glutamate, which reaches high extracellular concentrations in ischemic brain for several reasons, including failing astrocytic uptake. Excitotoxicity kills brain cells by energetic exhaustion (due to Na(+) extrusion after channel-mediated entry) combined with mitochondrial Ca(2+)-mediated injury and formation of reactive oxygen species. Many (but not all) astrocytes survive energy deprivation for extended periods, but after return to aerated conditions they are vulnerable to mitochondrial damage by cytoplasmic/mitochondrial Ca(2+) overload and to NAD(+) deficiency. Ca(2+) overload is established by reversal of Na(+)/Ca(2+) exchangers following Na(+) accumulation during Na(+)-K(+)-Cl(-) cotransporter stimulation or pH regulation, compensating for excessive acid production. NAD(+) deficiency inhibits glycolysis and eventually oxidative metabolism, secondary to poly(ADP-ribose)polymerase (PARP) activity following DNA damage. Hyperglycemia can be beneficial for neurons but increases astrocytic death due to enhanced acidosis.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| |
Collapse
|
152
|
Nabuurs CIHC, Klomp DWJ, Veltien A, Kan HE, Heerschap A. Localized sensitivity enhanced in vivo 13C MRS to detect glucose metabolism in the mouse brain. Magn Reson Med 2008; 59:626-30. [PMID: 18224699 DOI: 10.1002/mrm.21498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The application of in vivo 13C MR spectroscopy to mouse brain models is potentially valuable for improving the understanding of cerebral carbohydrate metabolism and glutamatergic neurotransmission in various neuropathologies. However, the low sensitivity of 13C nuclei and contaminating signals of lipids in the relatively small mouse brain make this application rather challenging. To meet these technical challenges, localized semi-adiabatic distortionless enhanced polarization transfer (DEPT) MR spectroscopy in combination with a continuous intravenous [1,6-13C2] glucose infusion was implemented to detect glucose metabolism in isoflurane-anesthetized mice at 7T. The signal enhancement and high spectral resolution obtained in these experiments enabled the separate determination of 13C label incorporation into as much as 13 metabolites from a 175 microL volume. Signal increases of glucose (C6), glutamine (C3, C4), and glutamate (C3, C4) were determined with a time resolution of 8.6 min. This study demonstrates an optimized MR method for the application of in vivo 13C MRS in mouse brain.
Collapse
Affiliation(s)
- C I H C Nabuurs
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
153
|
Maciejewski PK, Rothman DL. Proposed cycles for functional glutamate trafficking in synaptic neurotransmission. Neurochem Int 2008; 52:809-25. [PMID: 18006192 PMCID: PMC2322869 DOI: 10.1016/j.neuint.2007.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/20/2022]
Abstract
To date, the glutamate-glutamine cycle has been the dominant paradigm for understanding the coordinated, compartmentalized activities of phosphate-activated glutaminase (PAG) and glutamine synthetase (GS) in support of functional glutamate trafficking in vivo. However, studies in cell cultures have repeatedly challenged the notion that functional glutamate trafficking is accomplished via the glutamate-glutamine cycle alone. The present study introduces and elaborates alternative cycles for functional glutamate trafficking that integrate glucose metabolism, glutamate anabolism, transport, and catabolism, and trafficking of TCA cycle intermediates from astrocytes to presynaptic neurons. Detailed stoichiometry for each of these alternative cycles is established by strict application of the principle of conservation of atomic species to cytosolic and mitochondrial compartments in both presynaptic neurons and astrocytes. In contrast to the glutamate-glutamine cycle, which requires ATP, but not necessarily oxidative metabolism, to function, cycles for functional glutamate trafficking based on intercellular transport of TCA cycle intermediates require oxidative processes to function. These proposed alternative cycles are energetically more efficient than, and incorporate an inherent mechanism for transporting nitrogen from presynaptic neurons to astrocytes in support of the coordinated activities of PAG and GS that is absent in, the glutamate-glutamine cycle. In light of these newly elaborated alternative cycles, it is premature to presuppose that functional glutamate trafficking in synaptic neurotransmission in vivo is sustained by the glutamate-glutamine cycle alone.
Collapse
Affiliation(s)
- Paul K Maciejewski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
154
|
Teixeira AP, Santos SS, Carinhas N, Oliveira R, Alves PM. Combining metabolic flux analysis tools and 13C NMR to estimate intracellular fluxes of cultured astrocytes. Neurochem Int 2008; 52:478-86. [PMID: 17904693 DOI: 10.1016/j.neuint.2007.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/27/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022]
Abstract
In this work, brain cell metabolism was investigated by (13)C NMR spectroscopy and metabolic flux analysis (MFA). Monotypic cultures of astrocytes were incubated with labeled glucose for 38 h, and the distribution of the label was analyzed by (13)C NMR spectroscopy. The analysis of the spectra reveals two distinct physiological states characterized by different ratios of pyruvate carboxylase to pyruvate dehydrogenase activities (PC/PDH). Intracellular flux distributions for both metabolic states were estimated by MFA using the isotopic information and extracellular rate measurements as constraints. The model was subsequently checked with the consistency index method. From a biological point of view, the occurrence of the two physiological states appears to be correlated with the presence or absence of extracellular glutamate. Concerning the model, it can be stated that the metabolic network and the set of constraints adopted provide a consistent and robust characterization of the astrocytic metabolism, allowing for the calculation of central intracellular fluxes such as pyruvate recycling, the anaplerotic flux mediated by pyruvate carboxylase, and the glutamine formation through glutamine synthetase.
Collapse
Affiliation(s)
- Ana P Teixeira
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Quimica e Biológica (IBET/ITQB), Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
155
|
Uffmann K, Gruetter R. Mathematical modeling of (13)C label incorporation of the TCA cycle: the concept of composite precursor function. J Neurosci Res 2008; 85:3304-17. [PMID: 17600827 DOI: 10.1002/jnr.21392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel approach for the mathematical modeling of (13)C label incorporation into amino acids via the TCA cycle that eliminates the explicit calculation of the labeling of the TCA cycle intermediates is described, resulting in one differential equation per measurable time course of labeled amino acid. The equations demonstrate that both glutamate C4 and C3 labeling depend in a predictable manner on both transmitochondrial exchange rate, V(X), and TCA cycle rate, V(TCA). For example, glutamate C4 labeling alone does not provide any information on either V(X) or V(TCA) but rather a composite "flux". Interestingly, glutamate C3 simultaneously receives label not only from pyruvate C3 but also from glutamate C4, described by composite precursor functions that depend in a probabilistic way on the ratio of V(X) to V(TCA): An initial rate of labeling of glutamate C3 (or C2) being close to zero is indicative of a high V(X)/V(TCA). The derived analytical solution of these equations shows that, when the labeling of the precursor pool pyruvate reaches steady state quickly compared with the turnover rate of the measured amino acids, instantaneous labeling can be assumed for pyruvate. The derived analytical solution has acceptable errors compared with experimental uncertainty, thus obviating precise knowledge on the labeling kinetics of the precursor. In conclusion, a substantial reformulation of the modeling of label flow via the TCA cycle turnover into the amino acids is presented in the current study. This approach allows one to determine metabolic rates by fitting explicit mathematical functions to measured time courses.
Collapse
Affiliation(s)
- Kai Uffmann
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
156
|
Cakir T, Alsan S, Saybaşili H, Akin A, Ulgen KO. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 2007; 4:48. [PMID: 18070347 PMCID: PMC2246127 DOI: 10.1186/1742-4682-4-48] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 12/10/2007] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. MODEL The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. RESULTS The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. CONCLUSION The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.
Collapse
Affiliation(s)
- Tunahan Cakir
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
157
|
Abstract
Metabolic alterations in the brain underly many of the mechanisms leading to acute and chronic Hepatic Encephalopathy (HE). Controversy exists about the role of glutamine accumulation as a causal factor in HE. Glutamine formation contributes to detoxify ammonia, whereby anaplerotic mechanisms in the astrocytes have to be sufficient to replenish Krebs cycle intermediates. The application of ex vivo high-resolution nuclear magnetic resonance (NMR) spectroscopy permits direct measurements of metabolites and different metabolic pathways. Ex vivo (13)C-NMR studies in experimental animal models of acute and chronic HE have provided new insights. In an experimental rat model of ALF, (13)C isotopomer analysis of glucose metabolism showed that alterations of glucose flux through astrocytic pyruvate carboxylase might be linked to the pathogenesis of ALF as a limited anaplerotic flux in the brain, but not in the muscle, correlates with the development of brain edema. Moreover, (13)C-NMR data from a rat model of mild HE demonstrated relative differences in the pathway of glucose through pyruvate carboxylase in thalamus compared to frontal cortex, which might explain the vulnerability of this brain region compared to thalamus. These findings further support that glutamine accumulation might be not the primary cause of neurological symptoms in HE, and show that anaplerotic mechanisms could be essential for ammonia detoxification in HE.
Collapse
Affiliation(s)
- Claudia Zwingmann
- Neuroscience Research Unit, CHUM Hôpital Saint-Luc, Montreal, Quebec, Canada.
| |
Collapse
|
158
|
Abstract
Both neurons and astrocytes have high rates of glucose utilization and oxidative metabolism. Fully 20% of glucose consumption is used for astrocytic production of glutamate and glutamine, which during intense glutamatergic activity leads to an increase in glutamate content, but at steady state is compensated for by an equally intense oxidation of glutamate. The amounts of ammonia used for glutamine synthesis and liberated during glutamine hydrolysis are large, compared to the additional demand for glutamine synthesis in hyperammonemic animals and patients with hepatic encephalopathy. Nevertheless, elevated ammonia concentrations lead to an increased astrocytic glutamine production and an elevated content of glutamine combined with a decrease in glutamate content, probably mainly in a cytosolic pool needed for normal activity of the malate-asparate shuttle (MAS); another compartment generated by glutamine hydrolysis is increased. As a result of reduced MAS activity the pyruvate/lactate ratio is decreased in astrocytes but not in neurons and decarboxylation of pyruvate to form acetyl coenzyme A is reduced. Elevated ammonia concentrations also inhibit decarboxylation of alpha-ketoglutarate in the TCA cycle. This effect occurs in both neurons and astrocytes, is unrelated to MAS activity and seen after chronic treatment with ammonia even in the absence of elevated ammonia concentrations.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| | | |
Collapse
|
159
|
Zwingmann C, Leibfritz D, Hazell AS. Nmr spectroscopic analysis of regional brain energy metabolism in manganese neurotoxicity. Glia 2007; 55:1610-7. [PMID: 17823966 DOI: 10.1002/glia.20575] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A central question in manganese neurotoxicity concerns the focal neuronal damage in the globus pallidus. In the present study, we investigated specific pathways of [1-(13)C]glucose as well as of [2-(13)C]acetate in this brain region and the frontal cortex following 4-day manganese treatment by high-resolution NMR spectroscopy. Following administration of 50 mg/kg/day manganese, glutamine concentration in the globus pallidus was decreased to 67% of control values but increased in frontal cortex by 56%. Manganese treatment also caused pronounced changes in glutamine-glutamate-GABA interconversion in which region-selective differences were observed in the isotopomer pattern of GABA compared with that of glutamine when including the astrocyte-specific substrate [2-(13)C]acetate. In particular, decreased (13)C-labeled glutamine, synthesized from [1-(13)C]glucose, paralleled accumulation of (13)C-labeled GABA in globus pallidus but not in frontal cortex. On the other hand, increased synthesis of glutamine from [2-(13)C]acetate showed that GABA accumulation was not due to increased synthesis from astrocytic glutamine. Furthermore, treatment with manganese resulted in a selective decrease in N-acetyl-aspartate in the globus pallidus. These data illustrate the potential importance of alterations in neuronal metabolic function. In particular, neuronal metabolic derangements and regional differences in the ability of astrocytes to fulfill their contribution to the glutamine-glutamate-GABA cycle during the early phase of manganese neurotoxicity may be crucial in determining the severity of cellular injury.
Collapse
Affiliation(s)
- Claudia Zwingmann
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
160
|
Kam K, Nicoll R. Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 2007; 27:9192-200. [PMID: 17715355 PMCID: PMC6672195 DOI: 10.1523/jneurosci.1198-07.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The glutamate-glutamine cycle is thought to be integral in continuously replenishing the neurotransmitter pool of glutamate. Inhibiting glial transfer of glutamine to neurons leads to rapid impairment in physiological and behavioral function; however, the degree to which excitatory synaptic transmission relies on the normal operation of this cycle is unknown. In slices and cultured neurons from rat hippocampus, we enhanced the transfer of glutamine to neurons, a fundamental step in this cycle, by adding exogenous glutamine. Although raising glutamine augments synaptic transmission by increasing vesicular glutamate, access to this synthetic pathway by exogenously applied glutamine to neurons is delayed and slow, challenging mechanisms linking the rapid effects of pharmacological inhibitors to decreased vesicular glutamate. We find that pharmacological inhibitors of glutamine synthetase or system A transporters cause an acute depression of basal synaptic transmission that is rapidly reversible, which is unlikely to be attributable to the rapid loss of vesicular glutamate. Furthermore, release of vesicular glutamate remains robust even during the prolonged removal of glutamine from pure neuronal cultures. We conclude that neurons have the capacity to store or produce glutamate for long periods of time, independently of glia and the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- Kaiwen Kam
- Departments of Cellular and Molecular Pharmacology and
- Physiology, and
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143-2140
| | - Roger Nicoll
- Departments of Cellular and Molecular Pharmacology and
- Physiology, and
| |
Collapse
|
161
|
Serres S, Bezancon E, Franconi JM, Merle M. Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 2007; 101:1428-40. [PMID: 17459144 DOI: 10.1111/j.1471-4159.2006.04442.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.
Collapse
Affiliation(s)
- Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS-Université Victor Segalen, Bordeaux, France
| | | | | | | |
Collapse
|
162
|
Yücel M, Lubman DI, Harrison BJ, Fornito A, Allen NB, Wellard RM, Roffel K, Clarke K, Wood SJ, Forman SD, Pantelis C. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol Psychiatry 2007; 12:611, 691-702. [PMID: 17245325 DOI: 10.1038/sj.mp.4001955] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Converging neuropsychological and functional neuroimaging evidence indicates that the dorsal anterior cingulate cortex (dACC) is dysfunctional in drug-addicted populations. Few studies, however, have investigated the biochemical and physiological properties of the dACC in such populations. We used proton magnetic resonance spectroscopy ((1)H-MRS) together with functional magnetic resonance imaging (fMRI) to probe dACC biochemistry and physiological activity during performance of a behavioural control task in 24 opiate-dependent individuals (maintained on a stable dose of methadone or buprenorphine at the time of study) and 24 age, gender, intelligence and performance-matched healthy subjects. While both groups activated the dACC to comparable levels, the opiate-using group displayed relatively increased task-related activation of frontal, parietal and cerebellar regions, as well as reduced concentrations of dACC N-acetylaspartate and glutamate/glutamine. In addition, the opiate-using group failed to show the expected correlations between dACC activation and behavioural measures of cognitive control. These findings suggest that the dACC is biochemically and physiologically abnormal in long-term opiate-dependent individuals. Furthermore, opiate addicts required increased, perhaps compensatory, involvement of the fronto-parietal and cerebellar behavioural regulation network to achieve normal levels of task performance/behavioural control. These neurobiological findings may partly underpin key addiction-related phenomena, such as poor inhibitory control of drug-related behaviour in the face of adverse consequences, and may be of relevance to the design of future treatment studies.
Collapse
Affiliation(s)
- M Yücel
- ORYGEN Research Centre, Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
van Heeswijk RB, Laus S, Morgenthaler FD, Gruetter R. Relaxivity of Gd-based contrast agents on X nuclei with long intrinsic relaxation times in aqueous solutions. Magn Reson Imaging 2007; 25:821-5. [PMID: 17448617 PMCID: PMC2039890 DOI: 10.1016/j.mri.2007.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/18/2022]
Abstract
The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.
Collapse
Affiliation(s)
- Ruud B. van Heeswijk
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sabrina Laus
- Department of Radiology, University of Geneva, Switzerland
| | - Florence D. Morgenthaler
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Switzerland
- Department of Radiology, University of Lausanne, Switzerland
| |
Collapse
|
164
|
Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 2007; 27:1055-63. [PMID: 17033694 DOI: 10.1038/sj.jcbfm.9600401] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To date, functional 1H NMR spectroscopy has been utilized to report the time courses of few metabolites, primarily lactate. Benefiting from the sensitivity offered by ultra-high magnetic field (7 T), the concentrations of 17 metabolites were measured in the human visual cortex during two paradigms of visual stimulation lasting 5.3 and 10.6 mins. Significant concentration changes of approximately 0.2 micromol/g were observed for several metabolites: lactate increased by 23%+/-5% (P<0.0005), glutamate increased by 3%+/-1% (P<0.01), whereas aspartate decreased by 15%+/-6% (P<0.05). Glucose concentration also manifested a tendency to decrease during activation periods. The lactate concentration reached the new steady-state level within the first minute of activation and came back to baseline only after the stimulus ended. The changes of the concentration of metabolites implied a rise in oxidative metabolism to a new steady-state level during activation and indicated that amino-acid homeostasis is affected by physiological stimulation, likely because of an increased flux through the malate-aspartate shuttle.
Collapse
Affiliation(s)
- Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
165
|
Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry PG, Van De Moortele PF, Gruetter R. Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 2007; 292:E946-51. [PMID: 17132822 DOI: 10.1152/ajpendo.00424.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.
Collapse
Affiliation(s)
- Gülin Oz
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 2007; 27:219-49. [PMID: 16835632 DOI: 10.1038/sj.jcbfm.9600343] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Astrocytic energy demand is stimulated by K(+) and glutamate uptake, signaling processes, responses to neurotransmitters, Ca(2+) fluxes, and filopodial motility. Astrocytes derive energy from glycolytic and oxidative pathways, but respiration, with its high-energy yield, provides most adenosine 5' triphosphate (ATP). The proportion of cortical oxidative metabolism attributed to astrocytes ( approximately 30%) in in vivo nuclear magnetic resonance (NMR) spectroscopic and autoradiographic studies corresponds to their volume fraction, indicating similar oxidation rates in astrocytes and neurons. Astrocyte-selective expression of pyruvate carboxylase (PC) enables synthesis of glutamate from glucose, accounting for two-thirds of astrocytic glucose degradation via combined pyruvate carboxylation and dehydrogenation. Together, glutamate synthesis and oxidation, including neurotransmitter turnover, generate almost as much energy as direct glucose oxidation. Glycolysis and glycogenolysis are essential for astrocytic responses to increasing energy demand because astrocytic filopodial and lamellipodial extensions, which account for 80% of their surface area, are too narrow to accommodate mitochondria; these processes depend on glycolysis, glycogenolysis, and probably diffusion of ATP and phosphocreatine formed via mitochondrial metabolism to satisfy their energy demands. High glycogen turnover in astrocytic processes may stimulate glucose demand and lactate production because less ATP is generated when glucose is metabolized via glycogen, thereby contributing to the decreased oxygen to glucose utilization ratio during brain activation. Generated lactate can spread from activated astrocytes via low-affinity monocarboxylate transporters and gap junctions, but its subsequent fate is unknown. Astrocytic metabolic compartmentation arises from their complex ultrastructure; astrocytes have high oxidative rates plus dependence on glycolysis and glycogenolysis, and their energetics is underestimated if based solely on glutamate cycling.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
| | | | | |
Collapse
|
167
|
Abstract
Increasing emphasis has been recently put on large-scale network processing of brain functions. To explore these networks, many approaches have been proposed in functional magnetic resonance imaging (fMRI). Their objective is to answer the following two questions: (1) what brain regions are involved in the functional process under investigation? and (2) how do these regions interact? We review some of the key concepts and corresponding methods to cope with both issues.
Collapse
|
168
|
Escartin C, Valette J, Lebon V, Bonvento G. Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem 2007; 99:393-401. [PMID: 17029594 DOI: 10.1111/j.1471-4159.2006.04083.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An adequate and timely production of ATP by brain cells is of cardinal importance to support the major energetic cost of the rapid processing of information via synaptic and action potentials. Recently, evidence has been accumulated to support the view that the regulation of brain energy metabolism is under the control of an intimate dialogue between astrocytes and neurons. In vitro studies on cultured astrocytes and in vivo studies on rodents have provided evidence that glutamate and Na(+) uptake in astrocytes is a key triggering signal regulating glucose use in the brain. With the advent of NMR spectroscopy, it has been possible to provide experimental evidence to show that energy consumption is mainly devoted to glutamatergic neurotransmission and that glutamate-glutamine cycling is coupled in a approximately 1 : 1 molar stoichiometry to glucose oxidation, at least in the cerebral cortex. This improved understanding of neuron-astrocyte metabolic interactions offers the potential for developing novel therapeutic strategies for many neurological disorders that include a metabolic deficit.
Collapse
Affiliation(s)
- Carole Escartin
- CEA CNRS URA 2210, Service Hospitalier Frederic Joliot, Orsay, France
| | | | | | | |
Collapse
|
169
|
Mason GF, Petersen KF, de Graaf RA, Shulman GI, Rothman DL. Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J Neurochem 2007; 100:73-86. [PMID: 17076763 PMCID: PMC2995551 DOI: 10.1111/j.1471-4159.2006.04200.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies in rodent and human cerebral cortex have shown that glutamate-glutamine neurotransmitter cycling is rapid and the major pathway of neuronal glutamate repletion. The rate of the cycle remains controversial in humans, because glutamine may come either from cycling or from anaplerosis via glial pyruvate carboxylase. Most studies have determined cycling from isotopic labeling of glutamine and glutamate using a [1-(13)C]glucose tracer, which provides label through neuronal and glial pyruvate dehydrogenase or via glial pyruvate carboxylase. To measure the anaplerotic contribution, we measured (13)C incorporation into glutamate and glutamine in the occipital-parietal region of awake humans while infusing [2-(13)C]glucose, which labels the C2 and C3 positions of glutamine and glutamate exclusively via pyruvate carboxylase. Relative to [1-(13)C]glucose, [2-(13)C]glucose provided little label to C2 and C3 glutamine and glutamate. Metabolic modeling of the labeling data indicated that pyruvate carboxylase accounts for 6 +/- 4% of the rate of glutamine synthesis, or 0.02 micromol/g/min. Comparison with estimates of human brain glutamine efflux suggests that the majority of the pyruvate carboxylase flux is used for replacing glutamate lost due to glial oxidation and therefore can be considered to support neurotransmitter trafficking. These results are consistent with observations made with arterial-venous differences and radiotracer methods.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut 06520-8043, USA.
| | | | | | | | | |
Collapse
|
170
|
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55:1251-1262. [PMID: 17659524 DOI: 10.1002/glia.20528] [Citation(s) in RCA: 600] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Agnès Aubert
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Michel Merle
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Robert Costalat
- INSERM U678, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Pierre J Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne and Centre de Neurosciences Psychiatriques, Hôpital de Cery, Prilly, Switzerland
| |
Collapse
|
171
|
Nehlig A, Coles JA. Cellular pathways of energy metabolism in the brain: Is glucose used by neurons or astrocytes? Glia 2007; 55:1238-1250. [PMID: 17659529 DOI: 10.1002/glia.20376] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 666, Faculty of Medicine, Strasbourg, France
| | - Jonathan A Coles
- INSERM Unité 594, Functional and Metabolic Neuroimaging, Université Joseph Fourier, Grenoble, France
| |
Collapse
|
172
|
Shen J. 13C magnetic resonance spectroscopy studies of alterations in glutamate neurotransmission. Biol Psychiatry 2006; 59:883-7. [PMID: 16199016 DOI: 10.1016/j.biopsych.2005.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/11/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Over the past a few years, significant progress has been made in refining the in vivo 13C magnetic resonance spectroscopy technique and in applying it to studying the alterations in the glutamate-glutamine cycling flux. Meanwhile, the details of the metabolic modeling are being rigorously debated. Recent evidence against fast alpha-ketoglutarate-glutamate exchange across the mitochondrial membrane is examined. Previous reports have indicated that glutamate release or 13C label incorporation into glutamine is attenuated at elevated concentrations of endogenous gamma-aminobutyric acid (GABA). A recent study has shown that phenelzine administration reduces the glutamate-glutamine cycling flux while raising endogenous GABA levels in vivo. Effects of several metabotropic glutamate receptor agonists and antagonists and brain disorders on the glutamate-glutamine cycle are also summarized.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland 20892-1527, USA.
| |
Collapse
|
173
|
Thoren AE, Helps SC, Nilsson M, Sims NR. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. J Neurochem 2006; 97:968-78. [PMID: 16606370 DOI: 10.1111/j.1471-4159.2006.03778.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia.
Collapse
Affiliation(s)
- Anna E Thoren
- Centre for Neuroscience and Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
174
|
Cerdán S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, García-Martín ML. The redox switch/redox coupling hypothesis. Neurochem Int 2006; 48:523-30. [PMID: 16530294 DOI: 10.1016/j.neuint.2005.12.036] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 10/24/2022]
Abstract
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.
Collapse
Affiliation(s)
- Sebastián Cerdán
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Institute of Biomedical Research Alberto Sols, c/Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
175
|
Dienel GA, Cruz NF. Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem Int 2006; 48:586-95. [PMID: 16513214 DOI: 10.1016/j.neuint.2006.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/27/2022]
Abstract
Glucose delivered to brain by the cerebral circulation is the major and obligatory fuel for all brain cells, and assays of functional activity in working brain routinely focus on glucose utilization. However, these assays do not take into account the contributions of minor substrates or endogenous fuel consumed by astrocytes during brain activation, and emerging evidence suggests that glycogen, acetate, and, perhaps, glutamate, are metabolized by working astrocytes in vivo to provide physiologically significant amounts of energy in addition to that derived from glucose. Rates of glycogenolysis during sensory stimulation of normal, conscious rats are high enough to support the notion that glycogen can contribute substantially to astrocytic glucose utilization during activation. Oxidative metabolism of glucose provides most of the ATP for cultured astrocytes, and a substantial contribution of respiration to astrocyte energetics is supported by recent in vivo studies. Astrocytes preferentially oxidize acetate taken up into brain from blood, and calculated local rates of acetate utilization in vivo are within the range of calculated rates of glucose oxidation in astrocytes. Glutamate may also serve as an energy source for activated astrocytes in vivo because astrocytes in tissue culture and in adult brain tissue readily oxidize glutamate. Taken together, contributions of minor metabolites derived from endogenous and exogenous sources add substantially to the energy obtained by astrocytes from blood-borne glucose. Because energy-generating reactions from minor substrates are not taken into account by routine assays of functional metabolism, they reflect a "hidden cost" of astrocyte work in vivo.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Shorey Bldg, Rm. 715, Slot 830, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, 72205, USA.
| | | |
Collapse
|
176
|
Hertz L. Glutamate, a neurotransmitter--and so much more. A synopsis of Wierzba III. Neurochem Int 2006; 48:416-25. [PMID: 16500003 DOI: 10.1016/j.neuint.2005.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/14/2005] [Accepted: 12/22/2005] [Indexed: 11/28/2022]
Abstract
It appears almost incredible that the first indications that glutamate excites brain tissue were obtained during the second half of the 20th century, that vesicles containing glutamate were demonstrated in glutamatergic neurons less than 25 years ago, and that glutamate was not accepted as the major excitatory transmitter until about the same time. During this span of time it has also become realized that glutamate is so much more than a conventional neurotransmitter: (1) astrocytes express vesicles accumulating glutamate by vesicular transporters akin to the vesicular glutamate transporters in glutamatergic neurons, and they release glutamate by exocytosis; (2) a series of metabolic processes in astrocytes (glutamate uptake, glutamine synthetase activity, glutamine release) are involved in neuronal reutilization of transmitter glutamate; (3) glutamine may also be utilized for synthesis of GABA, the major inhibitory transmitter; (4) de novo synthesis of glutamate accounts for 20% of cerebral glucose metabolism, all of which initially occurs in astrocytes, and at steady state a corresponding amount of glutamate is oxidatively degraded, mainly or exclusively in astrocytes; (5) tissue contents of glutamate/glutamine increase during enhanced glutamatergic activity, i.e., astrocytic de novo synthesis exceeds astrocytic metabolic degradation of glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, China.
| |
Collapse
|
177
|
Klomp DWJ, Renema WKJ, van der Graaf M, de Galan BE, Kentgens APM, Heerschap A. Sensitivity-enhanced13C MR spectroscopy of the human brain at 3 Tesla. Magn Reson Med 2006; 55:271-8. [PMID: 16372278 DOI: 10.1002/mrm.20745] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous circularly polarized 1H B1 field for 1H decoupled 13C MRS. A quadrature 1H birdcage coil optimized for minimal local RF heating makes broadband 1H decoupling in the entire human brain possible at 3 Tesla while remaining well within international safety guidelines for RF absorption. Apart from a substantial increase in sensitivity compared to conventional small linear coils, the quadrature 13C coil combined with the quadrature 1H birdcage coil allows efficient cross polarization (CP) in the brain, resulting in an additional 3.5-fold sensitivity improvement compared to direct 13C measurements without nuclear Overhauser enhancement (NOE) or polarization transfer. Combined with the gain in power efficiency, this setup allows broadband 1H to 13C CP over large areas of the brain. Clear 13C resonances from glutamate (Glu), glutamine (Gln), aspartate (Asp), lactate (Lac), and gamma-aminobutyrate (GABA) carbon spins in the human brain demonstrate the quality of 13C MR spectra obtained in vivo with this coil setup.
Collapse
Affiliation(s)
- D W J Klomp
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
178
|
Boumezbeur F, Besret L, Valette J, Gregoire MC, Delzescaux T, Maroy R, Vaufrey F, Gervais P, Hantraye P, Bloch G, Lebon V. Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J Cereb Blood Flow Metab 2005; 25:1418-23. [PMID: 15917749 DOI: 10.1038/sj.jcbfm.9600145] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glycolytic flux (cerebral metabolic rate of glucose CMRglc) and the TCA cycle flux (VTCA) were measured in the same monkeys by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and 13C NMR spectroscopy, respectively. Registration of nuclear magnetic resonance (NMR) and PET data were used for comparison of CMRglc and VTCA in the exact same area of the brain. Both fluxes were in good agreement with literature values (CMRglc=0.23+/-0.03 micromol/g min, VTCA=0.53+/-0.13 micromol/g min). The resulting [CMRglc/VTCA] ratio was 0.46+/-0.12 (n=5, mean+/-s.d.), not significantly different from the 0.5 expected when glucose is the sole fuel that is completely oxidized. Our results provide a cross-validation of both techniques. Comparison of CMRglc with VTCA is in agreement with a metabolic coupling between the TCA cycle and glycolysis under normal physiologic conditions.
Collapse
Affiliation(s)
- Fawzi Boumezbeur
- Commissariat à l'Energie Atomique, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Deuschle K, Fehr M, Hilpert M, Lager I, Lalonde S, Looger LL, Okumoto S, Persson J, Schmidt A, Frommer WB. Genetically encoded sensors for metabolites. Cytometry A 2005; 64:3-9. [PMID: 15688353 PMCID: PMC2752217 DOI: 10.1002/cyto.a.20119] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes over the past few years. Advanced expression systems and analysis technologies made it possible to study the biochemical properties of the corresponding proteins in great detail. We begin to understand the biological functions of the gene products by systematic analysis of mutants using systematic PTGS/RNAi, knockout and TILLING approaches. However, one crucial set of data especially relevant in the case of multicellular organisms is lacking: the knowledge of the spatial and temporal profiles of metabolite levels at cellular and subcellular levels. METHODS We therefore developed genetically encoded nanosensors for several metabolites to provide a basic set of tools for the determination of cytosolic and subcellular metabolite levels in real time by using fluorescence microscopy. RESULTS Prototypes of these sensors were successfully used in vitro and also in vivo, i.e., to measure sugar levels in fungal and animal cells. CONCLUSIONS One of the future goals will be to expand the set of sensors to a wider spectrum of substrates by using the natural spectrum of periplasmic binding proteins from bacteria and by computational design of proteins with altered binding pockets in conjunction with mutagenesis. This toolbox can then be applied for four-dimensional imaging of cells and tissues to elucidate the spatial and temporal distribution of metabolites as a discovery tool in functional genomics, as a tool for high-throughput, high-content screening for drugs, to test metabolic models, and to analyze the interplay of cells in a tissue or organ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wolf B. Frommer
- Correspondence to: Wolf B. Frommer, Ph.D., Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305-4101., E-mail:
| |
Collapse
|
180
|
Yang J, Shen J. In vivo evidence for reduced cortical glutamate-glutamine cycling in rats treated with the antidepressant/antipanic drug phenelzine. Neuroscience 2005; 135:927-37. [PMID: 16154287 DOI: 10.1016/j.neuroscience.2005.06.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Converging evidence has indicated that hyperglutamatergic activity and GABAergic dysfunction may play important roles in the neurobiology and treatment of depression and other mood disorders. In this study, in vivo 1H[13C] magnetic resonance spectroscopy was used to quantify the effects of acute phenelzine administration on cortical energetics, glutamate neurotransmission, and GABA synthesis flux. The time-resolved kinetics of cortical [4-13C]glutamate, [4-13C]glutamine, and [2-13C]GABA turnover from i.v.-infused [1,6-13C2]glucose was measured at 11.7 T in alpha-chloralose anesthetized rats four hours after phenelzine treatment (10 mg/kg, i.p.) and in non-treated controls. The rate of the tricarboxylic acid cycle flux was not affected by phenelzine treatment compared with the non-treated group (0.46+/-0.05 vs. 0.50+/-0.05 micromol/g/min, respectively). The rate of the glutamate-glutamine cycling flux between neurons and glia in the phenelzine-treated group was significantly reduced (from 0.16+/-0.04 to 0.10+/-0.03 micromol/g/min), providing in vivo evidence that phenelzine attenuates glutamate neurotransmission. Following phenelzine treatment, the cortical GABA concentration increased significantly (from 1.02+/-0.17 to 2.30+/-0.26 micromol/g), while the GABA synthesis flux was unchanged (from 0.07+/-0.02 to 0.06+/-0.02 micromol/g/min). The possible role of augmented GABAergic function resulting from elevated GABA levels in the observed modulatory effect of phenelzine on the glutamate-glutamine cycling flux was discussed. The reduced glutamate-glutamine cycling flux observed in this study suggests that, in addition to its effects on monoaminergic and GABAergic systems, the attenuation of glutamate neurotransmission resulting from phenelzine administration may also contribute to its efficacy in the treatment of depression. This study is the first demonstration that the glutamate-glutamine cycling flux, which can be measured non-invasively in the human brain in vivo, was altered due to the action of a psychotropic drug.
Collapse
Affiliation(s)
- J Yang
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Building 10, Room 2D51A, 9000 Rockville Pike, Bethesda, MD 20892-1527, USA
| | | |
Collapse
|
181
|
Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 2005; 24:11273-9. [PMID: 15601933 PMCID: PMC6730363 DOI: 10.1523/jneurosci.3564-04.2004] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cells are thought to supply energy for neurotransmission by increasing nonoxidative glycolysis; however, oxidative metabolism in glia may also contribute to increased brain activity. To study glial contribution to cerebral energy metabolism in the unanesthetized state, we measured neuronal and glial metabolic fluxes in the awake rat brain by using a double isotopic-labeling technique and a two-compartment mathematical model of neurotransmitter metabolism. Rats (n = 23) were infused simultaneously with 14C-bicarbonate and [1-13C]glucose for up to 1 hr. The 14C and 13C labeling of glutamate, glutamine, and aspartate was measured at five time points in tissue extracts using scintillation counting and 13C nuclear magnetic resonance of the chromatographically separated amino acids. The isotopic 13C enrichment of glutamate and glutamine was different, suggesting significant rates of glial metabolism compared with the glutamate-glutamine cycle. Modeling the 13C-labeling time courses alone and with 14C confirmed significant glial TCA cycle activity (V(PDH)((g)), approximately 0.5 micromol x gm(-1) x min(-1)) relative to the glutamate-glutamine cycle (V(NT)) (approximately 0.5-0.6 micromol x gm(-1) x min(-1)). The glial TCA cycle rate was approximately 30% of total TCA cycle activity. A high pyruvate carboxylase rate (V(PC), approximately 0.14-0.18 micromol x gm(-1) x min(-1)) contributed to the glial TCA cycle flux. This anaplerotic rate in the awake rat brain was severalfold higher than under deep pentobarbital anesthesia, measured previously in our laboratory using the same 13C-labeling technique. We postulate that the high rate of anaplerosis in awake brain is linked to brain activity by maintaining glial glutamine concentrations during increased neurotransmission.
Collapse
Affiliation(s)
- Gülin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
Astrocytes are multifunctional cells that interact with neurons and other astrocytes in signaling and metabolic functions, and their resistance to pathophysiological conditions can help restrict loss of tissue after an ischemic event provided adequate nutrients are supplied to support their requirements. Astrocytes have substantial oxidative capacity and mechanisms to upregulate glycolytic capability when respiration is impaired. An astrocytic enzyme that synthesizes a powerful activator of glycolysis is not present in neurons, endowing astrocytes with the ability to sustain ATP production under restrictive conditions. The monocarboxylic acid transporter (MCT) isoforms predominating in astrocytes are optimized to facilitate very large increases in lactate flux as lactate concentration increases within (1-3 mM) and above (>3 mM) the normal range. In sharp contrast, the major neuronal MCT serves as a barrier to increased transmembrane transport as lactate rises above 1 mM, restricting both entry and efflux. Lactate can serve as fuel during recovery from ischemia but direct evidence that lactate is oxidized by neurons (vs. astrocytes) to maintain synaptic function is lacking. Astrocytes have critical roles in regulation of ionic homeostasis and control of extracellular glutamate levels, and spreading depression associated with ischemia places high demands on energy supplies in astrocytes and contributes to metabolic exhaustion and demise. Disruption of Ca2+ homeostasis, generation of oxygen free radicals and nitric oxide, and mitochondrial depolarization contribute to astrocyte death during and after a metabolic insult. Novel pharmaceutical agents targeted to astrocytes and hyperoxic therapy that restores penumbral oxygen level during energy failure might improve postischemic outcome.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
183
|
Choi IY, Gruetter R. Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from D-[1-13C]glucose in the rat brain in vivo. J Neurochem 2005; 91:778-87. [PMID: 15525331 PMCID: PMC1513183 DOI: 10.1111/j.1471-4159.2004.02716.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of (13)C-label incorporation into both aspartyl (NAA C3) and acetyl (NAA C6) groups of N-acetyl aspartate (NAA) was simultaneously measured in the rat brain in vivo for up to 19 h of [1-(13)C]glucose infusion (n = 8). Label incorporation was detected in NAA C6 approximately 1.5 h earlier than in NAA C3 because of the delayed labeling of the precursor of NAA C3, aspartate, compared to that of NAA C6, glucose. The time courses of NAA were fitted using a mathematical model assuming synthesis of NAA in one kinetic compartment with the respective precursor pools of aspartate and acetyl coenzyme A (acetyl-CoA). The turnover rates of NAA C6 and C3 were 0.7 +/- 0.1 and 0.6 +/- 0.1 micromol/(g h) with the time constants 14 +/- 2 and 13 +/- 2 h, respectively, with an estimated pool size of 8 micromol/g. The results suggest that complete label turnover of NAA from glucose occurs in approximately 70 h. Several hours after starting the glucose infusion, label incorporation into glutathione (GSH) was also detected. The turnover rate of GSH was 0.06 +/- 0.02 micromol/(g h) with a time constant of 13 +/- 2 h. The estimated pool size of GSH was 0.8 micromol/g, comparable to the cortical glutathione concentration. We conclude that NAA and GSH are completely turned over and that the metabolism is extremely slow (< 0.05% of the glucose metabolic rate).
Collapse
Affiliation(s)
- In-Young Choi
- The Nathan Kline Institute, Medical Physics, Orangeburg, New York 10962, USA.
| | | |
Collapse
|
184
|
Abstract
It is a major recent finding that astrocytes can influence synaptic activity by release of glutamate, but many other glutamate-mediated activities are also controlled by astrocytes. Even the most obvious neuronal function of glutamate - its release as a transmitter - is regulated by astrocytes; these cells are needed for formation of precursors for glutamate synthesis, for reuptake of released transmitter, and for disposal of excess glutamate. Without astrocytic involvement, normal function of glutamatergic neurons is not possible, as exemplified by almost instantaneous abrogation of normal vision and learning upon inhibition of astrocyte-specific metabolic pathways. In addition, astrocytes are essential for production of the neuroprotectant glutathione, yet they can also contribute to neuronal death during ischemia by maintaining glutamine synthesis, enabling neuronal formation of neurotoxic glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, P.R. China.
| | | |
Collapse
|
185
|
de Pasquale F, Testa C, Soldaini R, Casieri C, Podo F, De Luca F. Bayesian analysis of in vivo dynamic 13C-edited 1H images. Magn Reson Imaging 2005; 23:577-84. [PMID: 15919604 DOI: 10.1016/j.mri.2005.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 02/03/2005] [Indexed: 11/27/2022]
Abstract
We propose an application of a Bayesian methodology to dynamic MR images of protons J-coupled to 13C nuclei for monitoring the in vivo 13C-glucose uptake of mouse brain. The very low population of these protons and the random noise make the analysis of these images extremely difficult. The proposed method restores the images and provides an "activation" map of the mouse brain by means of a hypothesis testing procedure. The restoration step is performed in the Bayesian framework so that among the other advantages of a stochastic approach, it is possible to model spatial and temporal information about neighboring pixels. This leads to a restoration procedure able to reduce the noise level while preserving the information about the edges of signal areas. Based on the restored images, the testing procedure provides us with a reliable map of pixels characterized by the 13C-glucose uptake.
Collapse
Affiliation(s)
- Francesco de Pasquale
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Richeeche, I-00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
186
|
Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 2005; 102:5588-93. [PMID: 15809416 PMCID: PMC556230 DOI: 10.1073/pnas.0501703102] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the glutamate/glutamine (Glu/Gln) neurotransmitter cycle and neuronal glucose oxidation are proportional (1:1), with increasing neuronal activity above isoelectricity. GABA, a product of Glu metabolism, is synthesized from astroglial Gln and contributes to total Glu/Gln neurotransmitter cycling, although the fraction contributed by GABA is unknown. In the present study, we used (13)C NMR spectroscopy together with i.v. infusions of [1,6-(13)C(2)]glucose and [2-(13)C]acetate to separately determine rates of Glu/Gln and GABA/Gln cycling and their respective tricarboxylic acid cycles in the rat cortex under conditions of halothane anesthesia and pentobarbital-induced isoelectricity. Under 1% halothane anesthesia, GABA/Gln cycle flux comprised 23% of total (Glu plus GABA) neurotransmitter cycling and 18% of total neuronal tricarboxylic acid cycle flux. In isoelectric cortex, glucose oxidation was reduced >3-fold in glutamatergic and GABAergic neurons, and neurotransmitter cycling was below detection. Hence, in both cell types, the primary energetic costs are associated with neurotransmission, which increase together as cortical activity is increased. The contribution of GABAergic neurons and inhibition to cortical energy metabolism has broad implications for the interpretation of functional imaging signals.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
188
|
Boumezbeur F, Besret L, Valette J, Vaufrey F, Henry PG, Slavov V, Giacomini E, Hantraye P, Bloch G, Lebon V. NMR measurement of brain oxidative metabolism in monkeys using 13C-labeled glucose without a 13C radiofrequency channel. Magn Reson Med 2004; 52:33-40. [PMID: 15236364 DOI: 10.1002/mrm.20129] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We detected glutamate C4 and C3 labeling in the monkey brain during an infusion of [U-13C6]glucose, using a simple 1H PRESS sequence without 13C editing or decoupling. Point-resolved spectroscopy (PRESS) spectra revealed decreases in 12C-bonded protons, and increases in 13C-bonded protons of glutamate. To take full advantage of the simultaneous detection of 12C- and 13C-bonded protons, we implemented a quantitation procedure to properly measure both glutamate C4 and C3 enrichments. This procedure relies on LCModel analysis with a basis set to account for simultaneous signal changes of protons bound to 12C and 13C. Signal changes were mainly attributed to 12C- and 13C-bonded protons of glutamate. As a result, we were able to measure the tricarboxylic acid (TCA) cycle flux in a 3.9 cm3 voxel centered in the monkey brain on a whole-body 3 Tesla system (VTCA = 0.55 +/- 0.04 micromol x g(-1) x min(-1), N = 4). This work demonstrates that oxidative metabolism can be quantified in deep structures of the brain on clinical MRI systems, without the need for a 13C radiofrequency (RF) channel.
Collapse
|
189
|
Voit EO, Alvarez-Vasquez F, Sims KJ. Analysis of dynamic labeling data. Math Biosci 2004; 191:83-99. [PMID: 15312745 DOI: 10.1016/j.mbs.2004.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 04/09/2004] [Accepted: 04/13/2004] [Indexed: 11/28/2022]
Abstract
Comprehensive assessments of the organization and regulation of metabolic pathways cannot be limited to steady-state measurements alone but require dynamic time series data. One experimental means of generating such data consists of radioactively labeling precursors and measuring their fate over time. While labeling experiments belong to the standard repertoire of biological laboratory techniques, corresponding mathematical tools for analyzing the non-linear dynamics of tracers are scarce. The article addresses this issue, using Biochemical Systems Theory as the modeling framework. The description of the dynamics of labeled metabolites alone is difficult, but it is demonstrated that these difficulties are easily overcome by setting up dynamic models in two or three blocks, one for the kinetics of the total pools, the second just for the labeled portions, and the third, optional, block for the remaining unlabeled components. Since the dynamic model is not limited in complexity and can account for linear pathways, converging and diverging branches, cycles, and the various observed modes of regulation, the proposed method of non-linear tracer analysis is rather general and permits simulations of most standard labeling experiments, both at steady state and during transients.
Collapse
Affiliation(s)
- Eberhard O Voit
- Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, 303K Cannon Place, 135 Cannon Street, Charleston, SC 29425-2503, USA.
| | | | | |
Collapse
|
190
|
Mason GF, Rothman DL. Basic principles of metabolic modeling of NMR (13)C isotopic turnover to determine rates of brain metabolism in vivo. Metab Eng 2004; 6:75-84. [PMID: 14734257 DOI: 10.1016/j.ymben.2003.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic modeling is a necessary part of the analysis of isotopic labeling data that is being obtained in the brain and other organs. Here are explained the basic principles of metabolic modeling of isotopic labeling studies, particularly with regard to (13)C isotopic measurements performed in vivo. The basic elements needed to simulate isotopic flows are described, and how to combine them to perform modeling analyses is explained. Procedures to introduce and evaluate model constraints and simplifications are discussed. The basic principle of isotopomer analysis is explained, as are mechanics of least-squares fitting of simulations to data. Closely related to the fitting is the effect of data scatter, which is discussed in the context of the non-normal distributions of uncertainty that are often seen with (13)C labeling measurements in vivo. This article is meant to provide a general background for investigators to begin to apply metabolic modeling analysis to (13)C isotopic labeling studies performed in vivo.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Psychiatry, School of Medicine, Yale University, N-141 CAB-Magnetic Resonance Center, 300 Cedar Street, PO Box 208043, New Haven, CT 06520-8043, USA.
| | | |
Collapse
|
191
|
Des Rosiers C, Lloyd S, Comte B, Chatham JC. A critical perspective of the use of (13)C-isotopomer analysis by GCMS and NMR as applied to cardiac metabolism. Metab Eng 2004; 6:44-58. [PMID: 14734255 DOI: 10.1016/j.ymben.2003.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this article is to provide a guide for metabolic physiologists and bioengineers to the combined use of gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance (NMR) in stable isotope investigations in any biological systems. Building on our past experience with these two techniques, as applied separately to the investigation of citric acid metabolism in the ex vivo perfused rat heart we initiated a collaborative study for their critical evaluation. This article, which expands on our previous work (Mol. Cel. Biol., 2003), directly compares GCMS- and NMR-determined 13C-isotopomer and flux data obtained from ex vivo rat heart perfusion studies with 13C-substrates. Overall we have found excellent agreement between the 13C-enrichments of GCMS- and NMR-determined citric acid cycle metabolites (citrate, 2-ketoglutarate, succinate and malate) and glutamate; however the unlabeled component (M) was consistently underestimated by NMR. Despite this discrepancy there was reasonably good agreement in the relative fluxes of 13C-substrates through the citric acid cycle determined by the two techniques. Nevertheless, further investigations appear necessary before maximal advantage can be taken of the complementary 13C-isotopomer and flux data of GCMS and NMR for probing the dynamics of cellular metabolism.
Collapse
Affiliation(s)
- Christine Des Rosiers
- The Department of Nutrition & CHUM Research Center, University of Montreal, Montreal, Que, Canada H3C 3J7.
| | | | | | | |
Collapse
|
192
|
Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, Shulman RG, Behar KL. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab 2004; 24:972-85. [PMID: 15356418 DOI: 10.1097/01.wcb.0000126234.16188.71] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
13C nuclear magnetic resonance (NMR) experiments have previously shown that glutamatergic neurotransmitter flux (Vcycle(Glu/Gln)) changes proportionately with neuronal glucose oxidation (CMRglc(ox)N) in the nonactivated cortex of anesthetized rats. Positron Emission Tomography measurements of glucose and oxygen uptake during sensory stimulation had shown that the incremental glucose utilization is greater than oxygen leading to the suggestion that the energy required for stimulated neuronal activity arises from nonoxidative glucose metabolism. In this study, the authors used spatially localized 1H-observed, 13C-edited NMR spectroscopy during an infusion of [1,6-13C2]glucose to assess the relationship between changes in Vcycle(Glu/Gln) and glucose utilization (CMRglc(ox)N and CMRglc(nonox)) during the intense cortical activity associated with bicuculline-induced seizures. Metabolic fluxes were determined by model-based analysis of the 13C-enrichment time courses of glutamate-C4 and glutamine-C4 (CMRglc(ox)N, Vcycle(Glu/Gln)) and lactate-C3 (CMRglc(nonox)). The exchange rate between alpha-ketoglutarate and glutamate was found to be significantly faster than TCA cycle flux both for control (41 micromol.g(-1).min(-1); 95% CI, 5 to 109 micromol.g(-1).min(-1)) and during seizures (21 micromol.g(-1).min(-1); 95% CI, 4.4 to 51.8 micromol.g(-1).min(-1)). During seizures, total glucose utilization (CMRglc(ox+nonox)) increased substantially (466% between 0 and 6 minutes; 277% between 6 and 55 minutes). Glucose oxidation (CMRglc(ox)N) also increased (214%; from 0.26 +/- 0.02 to 0.57 +/- 0.07 micromol.g(-1).min(-1)) but to a lesser degree, resulting in a large increase in cortical lactate concentration. Vcycle(Glu/Gln) increased 233% (from 0.22 +/- 0.04 to 0.52 +/- 0.07 micromol.g(-1).min(-1)), which was similar to the increase in glucose oxidation. The value of Vcycle(Glu/Gln) and CMRglc(ox)N obtained here lie on the line predicted in a previous study. These results indicate that neuronal glucose oxidation and not total glucose utilization is coupled to the glutamate/glutamine cycle during intense cortical activation.
Collapse
Affiliation(s)
- Anant B Patel
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
193
|
de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci U S A 2004; 101:12700-5. [PMID: 15310848 PMCID: PMC515118 DOI: 10.1073/pnas.0405065101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/18/2022] Open
Abstract
Multivolume (1)H-[(13)C] NMR spectroscopy in combination with i.v. [1,6-(13)C(2)]glucose infusion was used to detect regional glucose metabolism and glutamatergic neurotransmission in the halothane-anesthetized rat brain at 7 T. The regional information was decomposed into pure cerebral gray matter, white matter, and subcortical structures by means of tissue segmentation based on quantitative T(1) relaxation mapping. The (13)C turnover curves of [4-(13)C]glutamate, [4-(13)C]glutamine, and [3-(13)C]glutamate + glutamine were fitted with a two-compartment neuronal-astroglial metabolic model. The neuronal tricarboxylic acid cycle fluxes in cerebral gray matter, white matter, and subcortex were 0.79 +/- 0.15, 0.20 +/- 0.11, and 0.42 +/- 0.09 micromol/min per g, respectively. The glutamate-glutamine neurotransmitter cycle fluxes in cerebral gray matter, white matter, and subcortex were 0.31 +/- 0.07, 0.02 +/- 0.04, and 0.18 +/- 0.12 micromol/min per g, respectively. The exchange rate between the mitochondrial and cytosolic metabolite pools was fast relative to the neuronal tricarboxylic acid cycle flux for all cerebral tissue types.
Collapse
Affiliation(s)
- Robin A de Graaf
- Magnetic Resonance Research Center and Departments of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
194
|
Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004; 27:489-95. [PMID: 15271497 DOI: 10.1016/j.tins.2004.06.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex activities of the brain need not distract us from the certainty that it uses energy and performs work very efficiently. The human brain, which claims approximately 2% of our body mass, is responsible for approximately 20% of our body oxygen consumption. In vivo magnetic resonance spectroscopy (MRS) follows the metabolic pathways of energy production (as glucose oxidation) and work (as monitored by the cycling of glutamate and GABA neurotransmitters). In the resting awake state, approximately 80% of energy used by the brain supports events associated with neuronal firing and cycling of GABA and glutamate neurotransmitters. Small differences in neuronal activity between stimulation and control conditions can be measured and localized using functional magnetic resonance imaging (fMRI). MRS and fMRI experiments show that the majority of cerebral activity, which is often disregarded in imaging experiments, is ongoing even when the brain appears to be doing nothing.
Collapse
Affiliation(s)
- Robert G Shulman
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
195
|
García-Espinosa MA, Rodrigues TB, Sierra A, Benito M, Fonseca C, Gray HL, Bartnik BL, García-Martín ML, Ballesteros P, Cerdán S. Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy. Neurochem Int 2004; 45:297-303. [PMID: 15145545 DOI: 10.1016/j.neuint.2003.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 08/28/2003] [Indexed: 10/26/2022]
Abstract
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.
Collapse
Affiliation(s)
- María A García-Espinosa
- Laboratorio de Imagen y Espectroscopía por Resonancia Magnética (LIERM), Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dienel GA, Cruz NF. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 2004; 45:321-51. [PMID: 15145548 DOI: 10.1016/j.neuint.2003.10.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, Room 715, Shorey Building, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
197
|
Hertz L. Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem Int 2004; 45:285-96. [PMID: 15145544 DOI: 10.1016/j.neuint.2003.08.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 08/01/2003] [Accepted: 08/01/2003] [Indexed: 11/21/2022]
Abstract
The first indication of 'metabolic compartmentation' in brain was the demonstration that glutamine after intracisternal [14C]glutamate administration is formed from a compartment of the glutamate pool that comprises at most one-fifth of the total glutamate content in the brain. This pool, which was designated 'the small compartment,' is now known to be made up predominantly or exclusively of astrocytes, which accumulate glutamate avidly and express glutamine synthetase activity, whereas this enzyme is absent from neurons, which eventually were established to constitute 'the large compartment.' During the following decades, the metabolic compartment concept was refined, aided by emerging studies of energy metabolism and glutamate uptake in cellularly homogenous preparations and by the histochemical observations that the two key enzymes glutamine synthetase and pyruvate carboxylase are active in astrocytes but absent in neurons. It is, however, only during the last few years that nuclear magnetic resonance (NMR) spectroscopy, assisted by previously obtained knowledge of metabolic pathways, has allowed accurate determination in the human brain in situ of actual metabolic fluxes through the neuronal tricarboxylic acid (TCA) cycle, the glial, presumably mainly astrocytic, TCA cycle, pyruvate carboxylation, and the 'glutamate-glutamine cycle,' connecting neuronal and astrocytic metabolism. Astrocytes account for 20% of oxidative metabolism of glucose in the human brain cortex and accumulate the bulk of neuronally released transmitter glutamate, part of which is rapidly converted to glutamine and returned to neurons in the glutamate-glutamine cycle. However, one-third of released transmitter glutamate is replaced by de novo synthesis of glutamate from glucose in astrocytes, suggesting that at steady state a corresponding amount of glutamate is oxidatively degraded. Net degradation of glutamate may not always equal its net production from glucose and enhanced glutamatergic activity, occurring during different types of cerebral stimulation, including the establishment of memory, may be associated with increased de novo synthesis of glutamate. This process may contribute to a larger increase in glucose utilization rate than in rate of oxygen consumption during brain activation. The energy yield in astrocytes from glutamate formation is strongly dependent upon the fate of the generated glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- College of Medical Sciences, China Medical University, Shenyang, PR China.
| |
Collapse
|
198
|
Tyson RL, Gallagher C, Sutherland GR. 13C-Labeled substrates and the cerebral metabolic compartmentalization of acetate and lactate. Brain Res 2004; 992:43-52. [PMID: 14604771 DOI: 10.1016/j.brainres.2003.08.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
[1-13C]Glucose, [2-13C]acetate and [3-13C]lactate were infused into male Sprague-Dawley rats (150-170 g) for periods of 3-100 min (n=4 per time) and neocortex extracts were analyzed using 13C-edited 1H magnetic resonance (MR) spectroscopy. The time dependence of the [4-13C]glutamine/[4-13C]glutamate labeling ratio was significantly different for all three substrates infused (p<0.001) and showed that acetate is primarily utilized by glia and lactate by neurons, whereas glucose is ubiquitous. The ratio of second- to first-turn TCA cycle labeling for glutamine was significantly lower for acetate (30-100 min infusion; p<0.02) and greater for lactate (10-30 min; p<0.02) than for glucose infusions, while the C-2/C-4 glutamate labeling ratio was similar for all the three substrates. This indicated that transfer of [2-13C]acetate-derived [4-13C]glutamine to neurons was preferred to reentry of label into the glial TCA cycle and that the neuronal TCA cycle turnover is significantly faster than that for glia. Fitting parameters of a function representing a pseudo-first-order process to the time dependence of labeling demonstrated that GABA labeling reaches steady state faster with glutamine labeled from [2-13C]acetate than with glutamate labeled from [3-13C]lactate. It is concluded that lactate represents a significant improvement over glucose in the study of neuronal metabolism and complements the use of acetate to study glial metabolism and glial/neuronal metabolic relationships.
Collapse
Affiliation(s)
- Randy Lee Tyson
- Department of Clinical Neurosciences, University of Calgary, 1403-29 Street NW, Calgary, AB, Canada T2N 2T9
| | | | | |
Collapse
|
199
|
Berkich DA, Xu Y, LaNoue KF, Gruetter R, Hutson SM. Evaluation of brain mitochondrial glutamate and ?-ketoglutarate transport under physiologic conditions. J Neurosci Res 2004; 79:106-13. [PMID: 15558751 DOI: 10.1002/jnr.20325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Some models of brain energy metabolism used to interpret in vivo (13)C nuclear magnetic resonance spectroscopic data assume that intramitochondrial alpha-ketoglutarate is in rapid isotopic equilibrium with total brain glutamate, most of which is cytosolic. If so, the kinetics of changes in (13)C-glutamate can be used to predict citric acid cycle flux. For this to be a valid assumption, the brain mitochondrial transporters of glutamate and alpha-ketoglutarate must operate under physiologic conditions at rates much faster than that of the citric acid cycle. To test the assumption, we incubated brain mitochondria under physiologic conditions, metabolizing both pyruvate and glutamate and measured rates of glutamate, aspartate, and alpha-ketoglutarate transport. Under the conditions employed (66% of maximal O(2) consumption), the rate of synthesis of intramitochondrial alpha-ketoglutarate was 142 nmol/min.mg and the combined initial rate of alpha-ketoglutarate plus glutamate efflux from the mitochondria was 95 nmol/min.mg. It thus seems that much of the alpha-ketoglutarate synthesized within the mitochondria proceeds around the citric acid cycle without equilibrating with cytosolic glutamate. Unless the two pools are in such rapid exchange that they maintain the same percent (13)C enrichment at all points, (13)C enrichment of glutamate alone cannot be used to determine tricarboxylic acid cycle flux. The alpha-ketoglutarate pool is far smaller than the glutamate pool and will therefore approach steady state faster than will glutamate at the metabolite transport rates measured.
Collapse
Affiliation(s)
- Deborah A Berkich
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
200
|
Serres S, Bezancon E, Franconi JM, Merle M. Ex vivo NMR study of lactate metabolism in rat brain under various depressed states. J Neurosci Res 2004; 79:19-25. [PMID: 15558748 DOI: 10.1002/jnr.20277] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain endogenous lactate metabolism was investigated by ex vivo nuclear magnetic resonance (NMR) spectroscopy study after the infusion of rats with a solution of glucose and lactate labeled as either [3-(13)C]lactate or [1-(13)C]glucose, when their cerebral activity was more or less depressed under the influence of either pentobarbital, alphachloralose, or morphine. We found that: (1) the ratio between the enrichment of alanine C3 and that of glutamate C4, gamma-aminobutyric acid (GABA) C2, glutamine C4, or aspartate C3 decreased from pentobarbital to alphachloralose and morphine whatever the labeled precursor, indicating a link between metabolic and cerebral activity; (2) under glucose + [3-(13)C]lactate infusion, alanine C3 and acetyl-CoA C2 enrichments were higher than that of lactate C3, revealing the occurrence of an isotopic dilution of the brain exogenous lactate (arising from the blood) by lactate from the brain (endogenous lactate), and that the latter was synthesized from glycolysis in a compartment other than neurons; and (3) the contribution of labeled glucose and lactate to acetyl-CoA and amino acid enrichment indicated that the involvement of blood glucose relative to that of blood lactate to brain metabolism was correlated with cerebral activity. The evolution of metabolite enrichments, however, indicated that the cerebral activity-dependent increase in the contribution of blood glucose relative to that of blood lactate to brain metabolism occurred partly via the increase in lactate metabolism generated from astrocytic glycolysis. These findings support the hypothesis for an astrocyte-neuron lactate shuttle component in the coupling mechanism between cerebral activity and energy metabolism.
Collapse
Affiliation(s)
- Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS-Université Victor Segalen, 146 rue Léo-Saignat, 33076 Bordeaux, France
| | | | | | | |
Collapse
|