151
|
Yuan Y, Li X, Chu Y, Ye G, Yang L, Dong Z. Long Non-coding RNA H19 Augments Hypoxia/Reoxygenation-Induced Renal Tubular Epithelial Cell Apoptosis and Injury by the miR-130a/BCL2L11 Pathway. Front Physiol 2021; 12:632398. [PMID: 33716779 PMCID: PMC7952615 DOI: 10.3389/fphys.2021.632398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a severe kidney disease defined by partial or abrupt loss of renal function. Emerging evidence indicates that non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs), function as essential regulators in AKI development. Here we aimed to explore the underlying molecular mechanism of the lncRNA H19/miR-130a axis for the regulation of inflammation, proliferation, and apoptosis in kidney epithelial cells. Human renal proximal tubular cells (HK-2) were induced by hypoxia/reoxygenation to replicate the AKI model in vitro. After treatment, the effects of LncRNA H19 and miR-130a on proliferation and apoptosis of HK-2 cells were investigated by CCK-8 and flow cytometry. Meanwhile, the expressions of LncRNA H19, miR-130a, and inflammatory cytokines were detected by qRT-PCR, western blot, and ELISA assays. The results showed that downregulation of LncRNA H19 could promote cell proliferation, inhibit cell apoptosis, and suppress multiple inflammatory cytokine expressions in HK-2 cells by modulating the miR-130a/BCL2L11 pathway. Taken together, our findings indicated that LncRNA H19 and miR-130a might represent novel therapeutic targets and early diagnostic biomarkers for the treatment of AKI.
Collapse
Affiliation(s)
- Yuan Yuan
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | | | - Yudong Chu
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Gongjie Ye
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Lei Yang
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| | - Zhouzhou Dong
- Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
152
|
Li T, Yu C, Zhuang S. Histone Methyltransferase EZH2: A Potential Therapeutic Target for Kidney Diseases. Front Physiol 2021; 12:640700. [PMID: 33679454 PMCID: PMC7930071 DOI: 10.3389/fphys.2021.640700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme that catalyzes the addition of methyl groups to histone H3 at lysine 27, leading to gene silencing. Mutation or over-expression of EZH2 has been linked to many cancers including renal carcinoma. Recent studies have shown that EZH2 expression and activity are also increased in several animal models of kidney injury, such as acute kidney injury (AKI), renal fibrosis, diabetic nephropathy, lupus nephritis (LN), and renal transplantation rejection. The pharmacological and/or genetic inhibition of EZH2 can alleviate AKI, renal fibrosis, and LN, but potentiate podocyte injury in animal models, suggesting that the functional role of EZH2 varies with renal cell type and disease model. In this article, we summarize the role of EZH2 in the pathology of renal injury and relevant mechanisms and highlight EZH2 as a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Alpert Medical School and Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
153
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease are common interconnected syndromes that represent a public health problem. Acute kidney disease (AKD) is defined as the post-AKI status of acute or subacute kidney damage/dysfunction manifested by persistence of AKI beyond 7 to 90 days after the initial AKI diagnosis. Limited clinical data exist regarding AKD epidemiology but its incidence is observed in ∼25% of AKI survivors. Useful risk-stratification tools to predict risk of AKD and its prognosis are needed. Interventions on fluid management, nephrotoxic exposure, and follow-up care hold promise to ameliorate the burden of AKD and its complications.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky Medical Center, 800 Rose Street, MN668, Lexington, KY 40536, USA.
| | - Lakhmir S Chawla
- Department of Medicine, Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
154
|
Creed HA, Rutkowski JM. Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent? Exp Biol Med (Maywood) 2021; 246:845-850. [PMID: 33467886 DOI: 10.1177/1535370220983235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
155
|
MFG-E8-derived peptide attenuates inflammation and injury after renal ischemia-reperfusion in mice. Heliyon 2020; 6:e05794. [PMID: 33409388 PMCID: PMC7773867 DOI: 10.1016/j.heliyon.2020.e05794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. Materials and methods Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. Results At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. Conclusion MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI.
Collapse
|
156
|
Li C, Zheng Z, Xie Y, Zhu N, Bao J, Yu Q, Zhou Z, Liu J. Protective effect of taraxasterol on ischemia/reperfusion-induced acute kidney injury via inhibition of oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2020; 89:107169. [PMID: 33183976 DOI: 10.1016/j.intimp.2020.107169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Ischemia/reperfusion injury (IRI), the most common cause of acute kidney injury (AKI), is correlated with oxidative stress and subsequent inflammation. Taraxasterol, a natural product, has been shown to exert anti-oxidative and anti-inflammatory effects. However, the role of taraxasterol in renal IRI remains unknown. In this study, mice were subjected to 30 min of bilateral renal ischemia-reperfusion to induce AKI. Cellular hypoxia/reoxygenation (H/R) was used to mimic IRI in vitro. Western blotting, immunochemistry, immunofluorescence, TUNEL staining, ELISA, and flow cytometry were performed to evaluate kidney damage, oxidative stress, inflammation, and apoptosis in vivo and in vitro. Treatment with taraxasterol attenuated the following in a dose-dependent manner: tubular damage; infiltration of F4/80-positive macrophages; renal interstitial fibrosis; myeloperoxidase (MPO) activity; and expression of the inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1). Moreover, taraxasterol treatment remarkably ameliorated apoptosis in the kidney by decreasing Bax expression and conserving Bcl2. Notably, MitoSOX assay revealed that treatment with taraxasterol suppressed the production of mitochondrial reactive oxygen species. Furthermore, taraxasterol suppressed phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signaling pathways in vivo and in vitro. In conclusion, these findings indicate that taraxasterol has a protective effect on IRI-induced AKI via inhibition of oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Chuanlei Li
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Yun Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Jinfang Bao
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Zhigang Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, China.
| |
Collapse
|
157
|
Zhao WM, Tao SM, Liu GL. Neutrophil-to-lymphocyte ratio in relation to the risk of all-cause mortality and cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2020; 42:1059-1066. [PMID: 33081569 PMCID: PMC7668415 DOI: 10.1080/0886022x.2020.1832521] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim To systematically evaluate the relationship between the neutrophil-to-lymphocyte ratio (NLR) and the risk of all-cause mortality or cardiovascular events in patients with chronic kidney disease (CKD). Methods PubMed, Embase, and Web of Science databases were searched for cohort studies that were published since the databases were launched, until 1 April 2020. We selected papers according to specific inclusion and exclusion criteria, extracted data, and evaluated the quality of the citations. Data from eligible studies were used to calculate the combined hazard ratios (HRs) and 95% confidence intervals (CI). Results The search identified 1048 potentially eligible records, and 10 studies (n = 1442) were selected. Eight studies reported all-cause mortality, and two studies reported cardiovascular events. The combined HR of all-cause mortality was 1.45 (95% CI 1.20–1.75) and the HR of cardiovascular events was 1.52 (95% CI 1.33–1.72) when NLR was considered as a categorical variable. Similarly, the association between NLR and all-cause mortality was confirmed (HR 1.35; 95% CI 1.23–1.48) when NLR was used as a continuous variable. Conclusion NLR is a predictor of all-cause mortality and cardiovascular events in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Wen-Man Zhao
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shu-Man Tao
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gui-Ling Liu
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
158
|
Tan RZ, Li JC, Liu J, Lei XY, Zhong X, Wang C, Yan Y, Linda Ye L, Darrel Duan D, Lan HY, Wang L. BAY61-3606 protects kidney from acute ischemia/reperfusion injury through inhibiting spleen tyrosine kinase and suppressing inflammatory macrophage response. FASEB J 2020; 34:15029-15046. [PMID: 32964547 DOI: 10.1096/fj.202000261rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a highly prevalent clinical syndrome with high mortality and morbidity. Previous studies indicated that inflammation promotes tubular damage and plays a key role in AKI progress. Spleen tyrosine kinase (Syk) has been linked to macrophage-related inflammation in AKI. Up to date, however, no Syk-targeted therapy for AKI has been reported. In this study, we employed both cell model of LPS-induced bone marrow-derived macrophage (BMDM) and mouse model of ischemia/reperfusion injury (IRI)-induced AKI to evaluate the effects of a Syk inhibitor, BAY61-3606 (BAY), on macrophage inflammation in vitro and protection of kidney from AKI in vivo. The expression and secretion of inflammatory cytokines, both in vitro and in vivo, were significantly inhibited even back to normal levels by BAY. The upregulated serum creatinine and blood urea nitrogen levels in the AKI mice were significantly reduced after administration of BAY, implicating a protective effect of BAY on kidneys against IRI. Further analyses from Western blot, immunofluorescence staining and flow cytometry revealed that BAY inhibited the Mincle/Syk/NF-κB signaling circuit and reduced the inflammatory response. BAY also inhibited the reactive oxygen species (ROS), which further decreased the formation of inflammasome and suppressed the mature of IL-1β and IL-18. Notably, these inhibitory effects of BAY on inflammation and inflammasome in BMDM were significantly reversed by Mincle ligand, trehalose-6,6-dibehenate. In summary, these findings provided compelling evidence that BAY may be an efficient inhibitor of the Mincle/Syk/NF-κB signaling circuit and ROS-induced inflammasome, which may help to develop Syk-inhibitors as novel therapeutic agents for AKI.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian-Chun Li
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Liu
- Department of Nephrology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xian-Ying Lei
- ICU, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chen Wang
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Yan
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingyu Linda Ye
- Center for Phenomics of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Traditional Chinese Medicine and Western Medicine Integration, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
159
|
Serum and Urine Neutrophil Gelatinase-Associated Lipocalin Levels Measured at Admission Predict Progression to Chronic Kidney Disease in Sepsis-Associated Acute Kidney Injury Patients. DISEASE MARKERS 2020; 2020:8883404. [PMID: 32908617 PMCID: PMC7450319 DOI: 10.1155/2020/8883404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Background To evaluate the ratio of acute kidney injury (AKI) to chronic kidney disease (CKD) in sepsis-associated acute kidney injury (SA-AKI) patients of the intensive care unit (ICU) and predictive value of neutrophil gelatinase-associated lipocalin (NGAL) measured at the admission time in the progression of AKI to CKD. Methods A study of 121 consecutive adult patients admitted to the intensive care unit (ICU) diagnosed as SA-AKI. AKI and CKD were defined based on Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Glomerular filtration rate (GFR) was calculated by the CKD-EPI formula. Serum and urine NGAL was measured using the BioVendor Human Lipocalin-2/NGAL ELISA with a blood sample taken at hospital admission time. Results The ratio of AKI to CKD in SA-AKI patients was 22.3%. Mean concentration of serum and urine NGAL in AKI to the CKD group was 790.99 ng/ml and 885.72 ng/ml, higher significantly than those of recovery patients (351.86 ng/ml and 264.68 ng/ml), p < 0.001. eGFR, both serum and urine NGAL had a predictive value for AKI to CKD (eGFR: AUC = 0.857, Se = 74.1%, Spe = 92.6%, p < 0.001. Serum NGAL: AUC = 0.868, Se = 77.8%, Spe = 91.5%. Urine NGAL: AUC = 0.869, Se = 77.8%, Spe = 92.6%, p < 0.001. Conclusion Serum and urine NGAL, measuring at hospital admission time, were good prognostic biomarkers of AKI to CKD in SA-AKI patients.
Collapse
|
160
|
Ban Y, Cui C. Silencing of Long Non-Coding RNA (lncRNA) Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) Protects PC-12 Cells from LPS-Induced Injury via Targeting miR-29a. Med Sci Monit 2020; 26:e923914. [PMID: 32776916 PMCID: PMC7439599 DOI: 10.12659/msm.923914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a debilitating neuropathological condition that significantly affects the quality of life. The present study is basic research examining the underlying mechanisms of NEAT1 and miR-29a in regulating LPS-induced PC-12 cell injury. Material/Methods The model of cell injury was induced by the treatment of PC-12 cells with LPS. The expressions of NEAT1, miR-29a, and inflammatory cytokines were measured by real-time quantitative polymerase chain reactions (RT-qPCR). Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry, respectively. Finally, the target between miR-29a and NEAT1 as well as miR-29a and BCL2L11 was investigated by luciferase and RNA pull-down assays. Results Knockdown of NEAT1 can inhibit inflammatory cytokine expression and PC-12 cell apoptosis and promote PC-12 cell proliferation by targeting miR-29a. However, the variation caused by NEAT1 knockdown can be reversed by the silencing of miR-29a and the overexpression of BCL2L11, which is the direct target gene of miR-29a. Conclusions High NEAT1 levels can increase LPS-induced injury in PC-12 cells through the miR-29a/BCL2L11 pathway. lncRNA NEAT1 may, therefore, be a promising target for SCI treatment.
Collapse
Affiliation(s)
- Yunchao Ban
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Cui Cui
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
161
|
Zilberman-Itskovich S, Efrati S. Mesenchymal Stromal Cell Uses for Acute Kidney Injury-Current Available Data and Future Perspectives: A Mini-Review. Front Immunol 2020; 11:1369. [PMID: 32793191 PMCID: PMC7385060 DOI: 10.3389/fimmu.2020.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence concerning the potential use of mesenchymal stromal cells (MSCs) for different tissue injuries. Initially, the intended physiological use of MSCs was due to their ability to differentiate and replace damaged cells. However, MSCs have multiple effects, including being able to significantly modulate immunological responses. MSCs are currently being tested for neurodegenerative diseases, graft vs. host disease, kidney injury, and other chronic unremitting tissue damage. Using MSCs in acute tissue damage is only now being studied. Acute kidney injury (AKI) is a common cause of morbidity and mortality. After the primary insult, overactivation of the immune system culminates in additional secondary potentially permanent kidney damage. MSCs have the potential to ameliorate the secondary damage, and recent studies have shed important light on their mechanisms of action. This article summarizes the basics of MSCs therapy, the newly discovered mechanisms of action, and their potential application in the setting of AKI.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
162
|
Yuan HX, Chen CY, Li YQ, Ning DS, Li Y, Chen YT, Li SX, Fu MX, Li XD, Ma J, Jian YP, Liu DH, Mo ZW, Peng YM, Xu KQ, Ou ZJ, Ou JS. Circulating extracellular vesicles from patients with valvular heart disease induce neutrophil chemotaxis via FOXO3a and the inhibiting role of dexmedetomidine. Am J Physiol Endocrinol Metab 2020; 319:E217-E231. [PMID: 32516026 DOI: 10.1152/ajpendo.00062.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Quan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Xia Fu
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Di Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong-Hong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kang-Qing Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
163
|
Lu J, Zhang J, Chen M, Chen C, Li Z, Liao P. Regulatory T Cells as a Novel Candidate for Cell-Based Therapy in Kidney Disease. Front Physiol 2020; 11:621. [PMID: 32581852 PMCID: PMC7296170 DOI: 10.3389/fphys.2020.00621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
Kidney disease is a significant health concern worldwide. Ineffective treatment can lead to disastrous consequences, such as organ failure and death. Research has turned to cell-based therapy, but has yet to produce an effective and reliable treatment for kidney disease. To address this problem, we examined four datasets of gene expression profiles from diseased and healthy kidney tissue in humans, mice, and rats. Differentially expressed genes (DEGs) were screened and subjected to enrichment analyses. Up-regulated genes in diseased kidney tissue were significantly enriched in pathways associated with regulatory T cells (Tregs). Analysis with the xCell tool showed that Tregs were generally increased in diseased kidney tissue in all species. To validate these results in vivo, kidneys were removed from mice with Adriamycin-induced nephropathy, and histology confirmed increase of Tregs. Furthermore, Tregs were adoptively transferred from healthy mice into mice with kidney injury, restoring normal structure to the damaged kidneys. Treg cells that were co-cultured with M2c macrophages exhibited up-regulation of chemokine receptors CCR2, CCR5, CCR7, CD62L, and CX3CR1. This may be the mechanism by which M2c cells enhance the migration of Tregs to the site of inflammation. We propose that Tregs may be an effective, novel candidate for cell-based therapy in pre-clinical kidney injury models.
Collapse
Affiliation(s)
- Junyu Lu
- The First Clinical Medical College of Jinan University, Guangzhou, China.,Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Menghua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Chen
- Department of Cardiology and Endocrinology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengzhao Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pinhu Liao
- The First Clinical Medical College of Jinan University, Guangzhou, China.,Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
164
|
Chade AR, Williams ML, Engel JE, Williams E, Bidwell GL. Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease. Am J Physiol Renal Physiol 2020; 319:F139-F148. [PMID: 32538151 DOI: 10.1152/ajprenal.00155.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a major determinant for the progression of chronic kidney disease (CKD). NF-κB is a master transcription factor upregulated in CKD that promotes inflammation and regulates apoptosis and vascular remodeling. We aimed to modulate this pathway for CKD therapy in a swine model of CKD using a peptide inhibitor of the NF-κB p50 subunit (p50i) fused to a protein carrier [elastin-like polypeptide (ELP)] and equipped with a cell-penetrating peptide (SynB1). We hypothesized that intrarenal SynB1-ELP-p50i therapy would inhibit NF-κB-driven inflammation and induce renal recovery. CKD was induced in 14 pigs. After 6 wk, pigs received single intrarenal SynB1-ELP-p50i therapy (10 mg/kg) or placebo (n = 7 each). Renal hemodynamics were quantified in vivo using multidetector computed tomography before and 8 wk after treatment. Pigs were then euthanized. Ex vivo experiments were performed to quantify renal activation of NF-κB, expression of downstream mediators of NF-κB signaling, renal microvascular density, inflammation, and fibrosis. Fourteen weeks of CKD stimulated NF-κB signaling and downstream mediators (e.g., TNF-α, monocyte chemoattractant protein-1, and IL-6) accompanying loss of renal function, inflammation, fibrosis, and microvascular rarefaction versus controls. All of these were improved after SynB1-ELP-p50i therapy, accompanied by reduced circulating inflammatory cytokines as well, which were evident up to 8 wk after treatment. Current treatments for CKD are largely ineffective. Our study shows the feasibility of a new treatment to induce renal recovery by offsetting inflammation at a molecular level. It also supports the therapeutic potential of targeted inhibition of the NF-κB pathway using novel drug delivery technology in a translational model of CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maxx L Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erika Williams
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
165
|
Sato Y, Boor P, Fukuma S, Klinkhammer BM, Haga H, Ogawa O, Floege J, Yanagita M. Developmental stages of tertiary lymphoid tissue reflect local injury and inflammation in mouse and human kidneys. Kidney Int 2020; 98:448-463. [PMID: 32473779 DOI: 10.1016/j.kint.2020.02.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues in chronic inflammatory states and function as sites of priming local immune responses. We previously demonstrated that aged but not young mice exhibited multiple TLTs after acute kidney injury and that TLTs were also detected in human aged and diseased kidneys. However, the forms of progression and the implication for kidney injury remain unclear. To clarify this we analyzed surgically resected kidneys from aged patients with or without chronic kidney disease as well as kidneys resected for pyelonephritis, and classified TLTs into three distinct developmental stages based on the presence of follicular dendritic cells and germinal centers. In injury-induced murine TLT models, the stages advanced with the extent of kidney injury, and decreased with dexamethasone accompanied with improvement of renal function, fibrosis and inflammation. Kidneys from aged patients with chronic kidney disease consistently exhibited more frequent and advanced stages of TLTs than those without chronic kidney disease. Kidneys of patients with pyelonephritis exhibited more frequent TLTs with more advanced stages than aged kidneys. Additionally, TLTs in both cohorts shared similar locations and components, suggesting that TLT formation may not be a disease-specific phenomenon but rather a common pathological process. Thus, our findings provide the insights into biological features of TLT in the kidney and implicate TLT stage as a potential marker reflecting local injury and inflammation.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Peter Boor
- Institute of Pathology, Rhenish-Westphalian Technical University of Aachen, Aachen, Germany; Department of Nephrology, Rhenish-Westphalian Technical University of Aachen, Aachen, Germany
| | - Shingo Fukuma
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Barbara M Klinkhammer
- Institute of Pathology, Rhenish-Westphalian Technical University of Aachen, Aachen, Germany; Department of Nephrology, Rhenish-Westphalian Technical University of Aachen, Aachen, Germany
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jürgen Floege
- Department of Nephrology, Rhenish-Westphalian Technical University of Aachen, Aachen, Germany
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
166
|
Xiong T, Attar M, Gnirck AC, Wunderlich M, Becker M, Rickassel C, Puelles VG, Meyer-Schwesinger C, Wiech T, Nies JF, Divivier M, Fuchs T, Schulze Zur Wiesch J, Taipaleenmäki H, Hoxha E, Wirtz S, Huber TB, Panzer U, Turner JE. Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in Adriamycin-induced nephropathy. Kidney Int 2020; 98:615-629. [PMID: 32446933 DOI: 10.1016/j.kint.2020.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
A wide spectrum of immunological functions has been attributed to Interleukin 9 (IL-9), including effects on the survival and proliferation of immune and parenchymal cells. In recent years, emerging evidence suggests that IL-9 expression can promote tissue repair in inflammatory conditions. However, data about the involvement of IL-9 in kidney tissue protection is very limited. Here, we investigated the role of IL-9 in Adriamycin-induced nephropathy (AN), a mouse model for proteinuric chronic kidney disease. Compared to wild type mice, IL-9 knockout (Il9-/-) mice with AN displayed accelerated development of proteinuria, aggravated glomerulosclerosis and deterioration of kidney function. At an early stage of disease, the Il9-/- mice already displayed a higher extent of glomerular podocyte injury and loss of podocyte number compared to wild type mice. In the kidney, T cells and innate lymphoid cells produced IL-9. However, selective deficiency of IL-9 in the innate immune system in Il9-/-Rag2-/- mice that lack T and B cells did not alter the outcome of AN, indicating that IL-9 derived from the adaptive immune system was the major driver of tissue protection in this model. Mechanistically, we could show that podocytes expressed the IL-9 receptor in vivo and that IL-9 signaling protects podocytes from Adriamycin-induced apoptosis in vitro. Finally, in vivo treatment with IL-9 effectively protected wild type mice from glomerulosclerosis and kidney failure in the AN model. The detection of increased serum IL-9 levels in patients with primary focal and segmental glomerulosclerosis further suggests that IL-9 production is induced by glomerular injury in humans. Thus, IL-9 confers protection against experimental glomerulosclerosis, identifying the IL-9 pathway as a potential therapeutic target in proteinuric chronic kidney disease.
Collapse
Affiliation(s)
- Tingting Xiong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madena Attar
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Gnirck
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Becker
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin Rickassel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasper F Nies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mylène Divivier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Hanna Taipaleenmäki
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich Alexander University Erlangen-Nürnberg, University Medical Center Erlangen, Erlangen, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
167
|
Liu Y, Fu Y, Liu Z, Shu S, Wang Y, Cai J, Tang C, Dong Z. Irisin is induced in renal ischemia-reperfusion to protect against tubular cell injury via suppressing p53. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165792. [PMID: 32251763 DOI: 10.1016/j.bbadis.2020.165792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion is a major cause of acute kidney injury, a disease currently without effective treatments. Irisin was initially identified as an important factor produced by muscles to mediate the health benefits of exercise, and recent work has further suggested its protective effect against lung and liver injury. However, the role of Irisin in kidney diseases, including renal ischemia-reperfusion injury (IRI), remains unknown. In the present study, we found that the Irisin precursor, fibronectin type III domain-containing protein 5 (Fndc5), was induced in renal tubules in a mouse model of renal IRI and in cultured mouse renal proximal tubular cells subjected ATP depletion injury. Functionally, silencing Fndc5 in cultured proximal tubular cells increased the sensitivity to ATP depletion-induced apoptosis, whereas both Fndc5 overexpression and supplementation of recombinant Irisin alleviated ATP depletion-induced apoptosis. In vivo, administration of recombinant Irisin dramatically attenuated kidney dysfunction, tissue damage, tubular cell apoptosis, and inflammation during renal IRI in mice. Mechanistically, Irisin suppressed the activation of p53 in renal IRI, a critical factor in tubular cell death. Together, these results indicate that Irisin is induced in renal IRI as a protective mechanism for renal tubular cells, suggesting the therapeutic potential of recombinant Irisin in renal IRI and related kidney diseases.
Collapse
Affiliation(s)
- Yuxue Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
168
|
Madduma Hewage S, Prashar S, Debnath SC, O K, Siow YL. Inhibition of Inflammatory Cytokine Expression Prevents High-Fat Diet-Induced Kidney Injury: Role of Lingonberry Supplementation. Front Med (Lausanne) 2020; 7:80. [PMID: 32292787 PMCID: PMC7119336 DOI: 10.3389/fmed.2020.00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic low-grade inflammation is a major stimulus for progression of chronic kidney disease (CKD) in individuals consuming high-fat diet. Currently, there are limited treatment options for CKD other than controlling the progression rate and its associated complications. Lingonberry (Vaccinium vitis-idaea L.) is rich in anthocyanins with demonstrated anti-inflammatory effect. In the current study, we investigated the potential renal protective effect of lingonberry and its anthocyanin (cyanidin-3-glucoside) in high-fat diet fed obese mice and in human proximal tubular cells. Prolonged consumption of high-fat diets is strongly associated with obesity, abnormal lipid and glucose metabolism. Mice (C57BL/6J) fed a high-fat diet (62% kcal fat) for 12 weeks developed renal injury as indicated by an elevation of blood urea nitrogen (BUN) level as well as an increase in renal kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and renin expression. Those mice displayed an activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and increased expression of inflammatory cytokines-monocyte chemoattractant-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) in the kidneys. Mice fed a high-fat diet also had a significant elevation of inflammatory cytokine levels in the plasma. Dietary supplementation of lingonberry for 12 weeks not only attenuated high-fat diet-induced renal inflammatory response but also reduced kidney injury. Such a treatment improved plasma lipid and glucose profiles, reduced plasma inflammatory cytokine levels but did not affect body weight gain induced by high-fat diet feeding. Lingonberry extract or its active component cyanidin-3-glucoside effectively inhibited palmitic acid-induced NF-κB activation and inflammatory cytokine expression in proximal tubular cells. These results suggest that lingonberry supplementation can reduce inflammatory response and prevent chronic kidney injury. Such a renal protective effect by lingonberry and its active component may be mediated, in part, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Susara Madduma Hewage
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Suvira Prashar
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Samir C Debnath
- Agriculture and Agri-Food Canada, St. John's Research and Development Centre, St. John's, NL, Canada
| | - Karmin O
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
169
|
Digby JLM, Vanichapol T, Przepiorski A, Davidson AJ, Sander V. Evaluation of cisplatin-induced injury in human kidney organoids. Am J Physiol Renal Physiol 2020; 318:F971-F978. [PMID: 32150447 DOI: 10.1152/ajprenal.00597.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) remains a major global healthcare problem, and there is a need to develop human-based models to study AKI in vitro. Toward this goal, we have characterized induced pluripotent stem cell-derived human kidney organoids and their response to cisplatin, a chemotherapeutic drug that induces AKI and preferentially damages the proximal tubule. We found that a single treatment with 50 µM cisplatin induces hepatitis A virus cellular receptor 1 (HAVCR1) and C-X-C motif chemokine ligand 8 (CXCL8) expression, DNA damage (γH2AX), and cell death in the organoids but greatly impairs organoid viability. DNA damage was not specific to the proximal tubule but also affected the distal tubule and interstitial cell populations. This lack of specificity correlated with low expression of proximal tubule-specific SLC22A2/organic cation transporter 2 (OCT2) for cisplatin. To improve viability, we developed a repeated low-dose regimen of 4 × 5 µM cisplatin over 7 days and found this caused less toxicity while still inducing a robust injury response that included secretion of known AKI biomarkers and inflammatory cytokines. This work validates the use of human kidney organoids to model aspects of cisplatin-induced injury, with the potential to identify new AKI biomarkers and develop better therapies.
Collapse
Affiliation(s)
- Jenny L M Digby
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Aneta Przepiorski
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
170
|
Noh MR, Jang HS, Kim J, Padanilam BJ. Renal Sympathetic Nerve-Derived Signaling in Acute and Chronic kidney Diseases. Int J Mol Sci 2020; 21:ijms21051647. [PMID: 32121260 PMCID: PMC7084190 DOI: 10.3390/ijms21051647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The kidney is innervated by afferent sensory and efferent sympathetic nerve fibers. Norepinephrine (NE) is the primary neurotransmitter for post-ganglionic sympathetic adrenergic nerves, and its signaling, regulated through adrenergic receptors (AR), modulates renal function and pathophysiology under disease conditions. Renal sympathetic overactivity and increased NE level are commonly seen in chronic kidney disease (CKD) and are critical factors in the progression of renal disease. Blockade of sympathetic nerve-derived signaling by renal denervation or AR blockade in clinical and experimental studies demonstrates that renal nerves and its downstream signaling contribute to progression of acute kidney injury (AKI) to CKD and fibrogenesis. This review summarizes our current knowledge of the role of renal sympathetic nerve and adrenergic receptors in AKI, AKI to CKD transition and CKDand provides new insights into the therapeutic potential of intervening in its signaling pathways.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Anatomy, Jeju National University School of Medicine, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Babu J. Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
- Correspondence:
| |
Collapse
|
171
|
Tubulointerstitial damage and interstitial immune cell phenotypes are useful predictors for renal survival and relapse in antineutrophil cytoplasmic antibody-associated vasculitis. J Nephrol 2020; 33:771-781. [DOI: 10.1007/s40620-019-00695-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
|
172
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
173
|
Fu Y, Cai J, Li F, Liu Z, Shu S, Wang Y, Liu Y, Tang C, Dong Z. Chronic effects of repeated low-dose cisplatin treatment in mouse kidneys and renal tubular cells. Am J Physiol Renal Physiol 2019; 317:F1582-F1592. [PMID: 31532246 DOI: 10.1152/ajprenal.00385.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug for cancer treatment, but its nephrotoxicity may lead to the deterioration of renal function. Previous work has been focused on cisplatin-induced acute kidney disease, whereas the mechanism of chronic kidney disease after cisplatin chemotherapy is largely unknown. In the present study, we have characterized the mouse model of chronic kidney defects induced by repeated low-dose cisplatin treatment. We have also established a relevant cell culture model. In the animal model, C57 mice were given weekly injection of 8 mg/kg cisplatin for 4 wk. This led to a sustained decline of kidney function. These mice showed loss of kidney mass, interstitial fibrosis, continued activation of inflammatory cytokines, and appearance of atubular glomeruli. In the cell model, the BUMPT mouse proximal tubular cell line was treated four times with 1-2 μM cisplatin, resulting in low levels of apoptosis and the expression of fibrosis proteins and profibrotic factors. These data suggest that repeated treatment with low-dose cisplatin causes long-term renal pathologies with characteristics of chronic kidney disease.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fanghua Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxue Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
174
|
Abstract
Immunosenescence involves a series of ageing-induced alterations in the immune system and is characterized by two opposing hallmarks: defective immune responses and increased systemic inflammation. The immune system is modulated by intrinsic and extrinsic factors and undergoes profound changes in response to the ageing process. Immune responses are therefore highly age-dependent. Emerging data show that immunosenescence underlies common mechanisms responsible for several age-related diseases and is a plastic state that can be modified and accelerated by non-heritable environmental factors and pharmacological intervention. In the kidney, resident macrophages and fibroblasts are continuously exposed to components of the external environment, and the effects of cellular reprogramming induced by local immune responses, which accumulate with age, might have a role in the increased susceptibility to kidney disease among elderly individuals. Additionally, because chronic kidney disease, especially end-stage renal disease, is often accompanied by immunosenescence, which affects these patients independently of age, and many kidney diseases are strongly age-associated, treatment approaches that target immunosenescence might be particularly clinically relevant.
Collapse
|
175
|
Xu L, Sharkey D, Cantley LG. Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury. J Am Soc Nephrol 2019; 30:1825-1840. [PMID: 31315923 DOI: 10.1681/asn.2019010068] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After bilateral kidney ischemia/reperfusion injury (IRI), monocytes infiltrate the kidney and differentiate into proinflammatory macrophages in response to the initial kidney damage, and then transition to a form that promotes kidney repair. In the setting of unilateral IRI (U-IRI), however, we have previously shown that macrophages persist beyond the time of repair and may promote fibrosis. METHODS Macrophage homing/survival signals were determined at 14 days after injury in mice subjected to U-IRI and in vitro using coculture of macrophages and tubular cells. Mice genetically engineered to lack Ccr2 and wild-type mice were treated ±CCR2 antagonist RS102895 and subjected to U-IRI to quantify macrophage accumulation, kidney fibrosis, and inflammation 14 and 30 days after the injury. RESULTS Failure to resolve tubular injury after U-IRI results in sustained expression of granulocyte-macrophage colony-stimulating factor by renal tubular cells, which directly stimulates expression of monocyte chemoattractant protein-1 (Mcp-1) by macrophages. Analysis of CD45+ immune cells isolated from wild-type kidneys 14 days after U-IRI reveals high-level expression of the MCP-1 receptor Ccr2. In mice lacking Ccr2 and wild-type mice treated with RS102895, the numbers of macrophages, dendritic cells, and T cell decreased following U-IRI, as did the expression of profibrotic growth factors and proimflammatory cytokines. This results in a reduction in extracellular matrix and kidney injury markers. CONCLUSIONS GM-CSF-induced MCP-1/CCR2 signaling plays an important role in the cross-talk between injured tubular cells and infiltrating immune cells and myofibroblasts, and promotes sustained inflammation and tubular injury with progressive interstitial fibrosis in the late stages of U-IRI.
Collapse
Affiliation(s)
- Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Diana Sharkey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
176
|
Yang Q, Wang Y, Pei G, Deng X, Jiang H, Wu J, Zhou C, Guo Y, Yao Y, Zeng R, Xu G. Bone marrow-derived Ly6C - macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis 2019; 10:291. [PMID: 30926787 PMCID: PMC6440948 DOI: 10.1038/s41419-019-1531-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Macrophages play an important role in renal injury and repair after acute kidney injury (AKI) and the subsequent chronic kidney disease (CKD) that often results. However, as macrophages have a high degree of plasticity and heterogeneity, the function(s) of macrophage subtypes in AKI-to-CKD progression are not fully understood. Here, we focused on Ly6C− macrophages, which are derived from the embryonic yolk sac and post-development become resident in the kidneys. We found that C–C chemokine receptor type 2 (CCR2) deficiency, which blocks the migration of Ly6C+ macrophages from the bone marrow to the sites of injury, alleviated ischemia-induced AKI in mice. Unexpectedly, though, CCR2 deficiency worsened the subsequent renal fibrosis, which was marked by notable intra-renal infiltration of Ly6C− macrophages. These Ly6C− macrophages were greater in number in both the acute and chronic phases after ischemia reperfusion (I/R) in kidneys of wild type (WT) mice, and we showed them to be derived from the bone marrow by bone marrow chimerism. Clodronate Liposomes (CLs)-mediated depletion of renal Ly6C− macrophages in CCR2−/− mice or in WT mice after I/R alleviated the renal injury and fibrosis. On the contrary, adoptive transfer of Ly6C− macrophages from injured kidneys of WT mice into immune-deficient mice was sufficient to induce renal injury and fibrosis. Transcriptome sequencing of Ly6C− macrophages from injured kidneys revealed that they secreted various cytokines and growth factors, which were associated with the transdifferentiation of fibroblasts into myofibroblasts. This transdifferentiation effect was further supported by in vitro studies showing that Ly6C− macrophages induced the secretion of extracellular matrix proteins from co-cultured fibroblasts. In conclusion, the presence of bone marrow-derived Ly6C− macrophages after ischemia induces AKI and worsens subsequent CKD.
Collapse
Affiliation(s)
- Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hongyang Jiang
- Division of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jianliang Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Cheng Zhou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yi Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
177
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
178
|
SATO Y, YANAGITA M. Functional heterogeneity of resident fibroblasts in the kidney. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:468-478. [PMID: 31611502 PMCID: PMC6819150 DOI: 10.2183/pjab.95.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chronic kidney disease (CKD) is a global public health problem, affecting over 10% of the world's population and more than half of the population aged over 70 years, imposing major costs on healthcare systems. Although the primary causes of CKD include various diseases such as diabetes, glomerulonephritis, and acute kidney injury (AKI), the progression of CKD is mediated by a common pathological pathway, which is mainly characterized by fibrosis and chronic inflammation. In this process, resident fibroblasts in the kidney play crucial roles. Accumulating evidence highlights the existence of functional heterogeneity and plasticity of fibroblasts and their diverse roles in kidney disease progression and resolution. In addition to renal fibrosis, renal anemia and peritubular capillary loss, two major complications of progressive CKD, are also caused by dysfunction of resident fibroblasts. Furthermore, age-dependent alterations in fibroblast behavior also contribute to age-dependent unique pathological conditions. In this article, we describe the current understanding regarding the behaviors of fibroblasts in the kidney in health, disease, and aging.
Collapse
Affiliation(s)
- Yuki SATO
- Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko YANAGITA
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Correspondence should be addressed: M. Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
179
|
Panickar KS, Jewell DE. The Benefit of Anti-Inflammatory and Renal-Protective Dietary Ingredients on the Biological Processes of Aging in the Kidney. BIOLOGY 2018; 7:biology7040045. [PMID: 30274250 PMCID: PMC6316594 DOI: 10.3390/biology7040045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
One of the significant organ systems which decline in aging is the kidney. While the causes of age-associated decline in renal function are likely multifactorial, oxidative stress and inflammation are hypothesized to play important roles in the structural and functional changes of the kidney. During aging there is a general decline in the glomerular filtration rate (GFR), a primary measurement used to assess kidney function. Inflammation and oxidative stress have been hypothesized to have a significant detrimental effect on renal function in aging and this may be attenuated by renal protective dietary ingredients. These dietary ingredients may affect renal function directly or through a microbiome-mediated secondary product. Likewise, structural changes including renal tubular atrophy, interstitial fibrosis, and glomerulosclerosis have all been described in aging. Such detrimental changes may benefit from dietary ingredients that may delay or attenuate the occurrence of such changes. This review will describe the physiology and pathophysiology of aging in renal function with an emphasis on dogs and cats that develop a decline in kidney function naturally. In addition, the varying biomarkers of health and renal dysfunction will be discussed. Finally, we will evaluate the aid in the management of this normal decline through dietary intervention in animal models.
Collapse
Affiliation(s)
- Kiran S Panickar
- Science & Technology Center, Hill's Pet Nutrition, Inc., Topeka, KS 66617, USA.
| | - Dennis E Jewell
- Science & Technology Center, Hill's Pet Nutrition, Inc., Topeka, KS 66617, USA.
| |
Collapse
|