151
|
Wang HT, Maeda A, Sakai R, Lo PC, Takakura C, Jiaravuthisan P, Mod Shabri A, Matsuura R, Kodama T, Hiwatashi S, Eguchi H, Okuyama H, Miyagawa S. Human CD31 on porcine cells suppress xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation 2018; 25:e12396. [PMID: 29635708 DOI: 10.1111/xen.12396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation is one of the promising strategies for overcoming the shortage of organs available for transplant. However, many immunological obstructions need to be overcome for practical use. Increasing evidence suggests that neutrophils contribute to xenogeneic cellular rejection. Neutrophils are regulated by activation and inhibitory signals to induce appropriate immune reactions and to avoid unnecessary immune reactivity. Therefore, we hypothesized that the development of neutrophil-targeted therapies may have the potential for increased graft survival in xenotransplantation. METHODS A plasmid containing a cDNA insert encoding the human CD31 gene was transfected into swine endothelial cells (SEC). HL-60 cells were differentiated into neutrophil-like cells by culturing them in the presence of 1.3% dimethyl sulfoxide for 48 hours. The cytotoxicity of the differentiated HL-60 cells (dHL-60) and peripheral blood-derived neutrophils was evaluated by WST-8 assays. To investigate the mechanism responsible for hCD31-induced immunosuppression, citrullinated histone 3 (cit-H3) and phosphorylation of SHP-1 were detected by a cit-H3 enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. RESULTS A significant decrease in dHL-60 and neutrophil-mediated cytotoxicity in SEC/hCD31 compared with SEC was seen, as evidenced by a cytotoxicity assay. Furthermore, the suppression of NETosis and the induction of SHP-1 phosphorylation in neutrophils that had been co-cultured with SEC/CD31 were confirmed by cit-H3 ELISA and Western blotting with an anti-phosphorylated SHP-1. CONCLUSION These data suggest that human CD31 suppresses neutrophil-mediated xenogenic cytotoxicity via the inhibition of NETosis. As CD31 is widely expressed in a variety of inflammatory cells, human CD31-induced suppression may cover the entire xenogeneic cellular rejection, thus making the generation of human CD31 transgenic pigs very attractive for use in xenografts.
Collapse
Affiliation(s)
- Han-Tang Wang
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Maeda
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rieko Sakai
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Pei-Chi Lo
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chihiro Takakura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Afifah Mod Shabri
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rei Matsuura
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tasuku Kodama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shohei Hiwatashi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroomi Okuyama
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
152
|
Panah F, Ghorbanihaghjo A, Argani H, Asadi Zarmehri M, Nazari Soltan Ahmad S. Ischemic acute kidney injury and klotho in renal transplantation. Clin Biochem 2018; 55:3-8. [PMID: 29608890 DOI: 10.1016/j.clinbiochem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure.
Collapse
Affiliation(s)
- Fatemeh Panah
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Asadi Zarmehri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
153
|
Sarıgöl Kılıç Z, Aydın S, Ündeğer Bucurgat Ü, Başaran N. In vitro genotoxicity assessment of dinitroaniline herbicides pendimethalin and trifluralin. Food Chem Toxicol 2018; 113:90-98. [DOI: 10.1016/j.fct.2018.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/03/2018] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
|
154
|
Pharmacologic Protection of Mitochondrial DNA Integrity May Afford a New Strategy for Suppressing Lung Ischemia-Reperfusion Injury. Ann Am Thorac Soc 2018; 14:S210-S215. [PMID: 28945469 DOI: 10.1513/annalsats.201706-438mg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion (IR) injury contributes to post-transplant complications, including primary graft dysfunction. Decades of reports show that reactive oxygen species generated during lung IR contribute to pulmonary vascular endothelial barrier disruption and edema formation, but the specific target molecule(s) that "sense" injury-inducing oxidant stress to activate signaling pathways culminating in pathophysiologic changes have not been established. This review discusses evidence that mitochondrial DNA (mtDNA) may serve as a molecular sentinel wherein oxidative mtDNA damage functions as an upstream trigger for lung IR injury. First, the mitochondrial genome is considerably more sensitive than nuclear DNA to oxidant stress. Multiple studies suggest that oxidative mtDNA damage could be transduced to physiologic dysfunction by pathways that are either a direct consequence of mtDNA damage per se or involve formation of proinflammatory mtDNA damage-associated molecular patterns. Second, transgenic animals or cells overexpressing components of the base excision DNA repair pathway in mitochondria are resistant to oxidant stress-mediated pathophysiologic effects. Finally, published and preliminary studies show that pharmacologic enhancement of mtDNA repair or mtDNA damage-associated molecular pattern degradation suppresses reactive oxygen species-induced or IR injury in multiple organs, including preclinical models of lung procurement for transplant. Collectively, these findings point to the interesting prospect that pharmacologic enhancement of DNA repair during procurement or ex vivo lung perfusion may increase the availability of lungs for transplant and reduce the IR injury contributing to primary graft dysfunction.
Collapse
|
155
|
Farmer BE, Zhukov IO. Anesthesia for Heart and Lung Transplantation. Anesthesiology 2018. [DOI: 10.1007/978-3-319-74766-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
156
|
Tian WF, Zeng S, Sheng Q, Chen JL, Weng P, Zhang XT, Yuan JJ, Pang QF, Wang ZQ. Methylene Blue Protects the Isolated Rat Lungs from Ischemia-Reperfusion Injury by Attenuating Mitochondrial Oxidative Damage. Lung 2017; 196:73-82. [PMID: 29204685 DOI: 10.1007/s00408-017-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Impaired mitochondrial function is a key factor attributing to the lung ischemia reperfusion injury (LIRI). Methylene blue (MB) has been reported to attenuate brain and renal ischemia-reperfusion injury. We hypothesized that MB also could have a protective effect against LIRI by preventing mitochondrial oxidative damage. METHODS Isolated rat lungs were assigned to the following four groups (n = 6): a sham group: perfusion for 105 min without ischemia; I/R group: shutoff of perfusion and ventilation for 45 min followed by reperfusion for 60 min; and I/R + MB group and I/R + glutathione (GSH) group: 2 mg/kg MB or 4 μM glutathione were intraperitoneally administered for 2 h, and followed by 45 min of ischemia and 60 min of reperfusion. RESULTS MB lessened pulmonary dysfunction and severe histological injury induced by ischemia-reperfusion injury. MB reduced the production of reactive oxygen species and malondialdehyde and enhanced the activity of superoxide dismutase. MB also suppressed the opening of the mitochondrial permeability transition pore and partly preserved mitochondrial membrane potential. Moreover, MB inhibited the release of cytochrome c from the mitochondria into the cytosol and decreased apoptosis. Additionally, MB downregulated the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18). CONCLUSION MB protects the isolated rat lungs against ischemia-reperfusion injury by attenuating mitochondrial damage.
Collapse
Affiliation(s)
- Wen-Fang Tian
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qiong Sheng
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Jun-Liang Chen
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Ping Weng
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Xiao-Tong Zhang
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Jia-Jia Yuan
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, No.1800 Lihu Road, 214122, Wuxi, China.
| | - Zhi-Qiang Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jiangnan University, No. 200, Huihe Road, 214062, Wuxi, China.
| |
Collapse
|
157
|
Abstract
Primary graft dysfunction is a form of acute injury after lung transplantation that is associated with significant short- and long-term morbidity and mortality. Multiple mechanisms contribute to the pathogenesis of primary graft dysfunction, including ischemia reperfusion injury, epithelial cell death, endothelial cell dysfunction, innate immune activation, oxidative stress, and release of inflammatory cytokines and chemokines. This article reviews the epidemiology, pathogenesis, risk factors, prevention, and treatment of primary graft dysfunction.
Collapse
Affiliation(s)
- Mary K Porteous
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - James C Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
158
|
Abstract
PURPOSE OF THE REVIEW The purpose of the review is to report recent human application of hypothermic machine liver perfusion, and to discuss potential protective mechanisms. RECENT FINDINGS Human application of hypothermic machine liver perfusion is still very limited. Currently, three transplant centers apply this novel treatment in donation after cardiac death (DCD) or donation after brain death (DBD) liver grafts. In all cases, endischemic perfusion was performed after initial cold storage for organ transport. Perfusion conditions differ slightly in terms of oxygenation (pO2 15-60 kPa), perfusion route (dual vs. portal), perfusion time (2-4 h), and perfusate. SUMMARY The current data support the hypothesis that applying endischemic hypothermic machine liver perfusion protects extended criteria DBD and DCD livers from initial reperfusion injury, with better graft function and less biliary complications. Hypothermic machine perfusion may therefore offer revitalization of liver grafts before implantation by a simple and practical perfusion technique with a high impact on enlarging the donor pool. Multicentric phase III randomized control trials in DBD and DCD liver transplantation have been initiated to further test this strategy, which may establish machine liver perfusion in the clinical setting.
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW Lungs are extremely susceptible to injury, and despite advances in surgical management and immunosuppression, outcomes for lung transplantation are the worst of any solid organ transplant. The success of lung transplantation is limited by high rates of primary graft dysfunction because of ischemia-reperfusion injury characterized by robust inflammation, alveolar damage, and vascular permeability. This review will summarize major mechanisms of lung ischemia-reperfusion injury with a focus on the most recent findings in this area. RECENT FINDINGS Over the past 18 months, numerous studies have described strategies to limit lung ischemia-reperfusion injury in experimental settings, which often reveal mechanistic insight. Many of these strategies involved the use of various antioxidants, anti-inflammatory agents, mesenchymal stem cells, and ventilation with gaseous molecules. Further advancements have been achieved in understanding mechanisms of innate immune cell activation, neutrophil infiltration, endothelial barrier dysfunction, and oxidative stress responses. SUMMARY Methods for prevention of primary graft dysfunction after lung transplant are urgently needed, and understanding mechanisms of ischemia-reperfusion injury is critical for the development of novel and effective therapeutic approaches. In doing so, both acute and chronic outcomes of lung transplant recipients will be significantly improved.
Collapse
|
160
|
Ginseng Rh2 protects endometrial cells from oxygen glucose deprivation/re-oxygenation. Oncotarget 2017; 8:105703-105713. [PMID: 29285285 PMCID: PMC5739672 DOI: 10.18632/oncotarget.22390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, oxygen glucose deprivation/re-oxygenation (OGDR) was applied to cultured endometrial cells to mimic ischemic-reperfusion injuries. We also tested the potential effect of Ginseng Rh2 (GRh2) against the process. In established T-HESC human endometrial cells and primary murine endometrial cells, GRh2 largely inhibited OGDR-induced viability reduction and cell death. Remarkably, OGDR induced programmed necrosis in the endometrial cells, evidenced by cyclophilin D-p53-adenine nucleotide translocator 1 (ANT-1) mitochondrial association, mitochondrial depolarization, reactive oxygen species production, and lactate dehydrogenase release. Notably, such effects by OGDR were largely attenuated with co-treatment of GRh2. Further, cyclophilin D inhibition or knockdown also protected endometrial cells from OGDR. On the other hand, forced over-expression of cyclophilin D facilitated OGDR-induced T-HESC cell necrosis, which was dramatically inhibited by GRh2. Together, GRh2 protects endometrial cells from OGDR possibly via inhibiting CypD-dependent programmed necrosis pathway.
Collapse
|
161
|
Wang J, Tan J, Liu Y, Song L, Li D, Cui X. Amelioration of lung ischemia‑reperfusion injury by JNK and p38 small interfering RNAs in rat pulmonary microvascular endothelial cells in an ischemia‑reperfusion injury lung transplantation model. Mol Med Rep 2017; 17:1228-1234. [PMID: 29115603 DOI: 10.3892/mmr.2017.7985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/25/2017] [Indexed: 11/05/2022] Open
Abstract
The inhibition of mitogen‑activated protein kinases (MAPKs), including c‑Jun NH2‑terminal protein kinase (JNK), p38 MAPK (p38) and extracellular signal‑regulated protein kinase 1/2 (ERK1/2), have an important effect on lung ischemia‑reperfusion injury (IRI) during lung transplantation (LT). However, the way in which combined MAPK inhibition exerts optimal protective effects on lung IRI remains to be elucidated. Therefore, the present study evaluated the therapeutic efficacy of the inhibition of MAPKs in rat pulmonary microvascular endothelial cells (PMVECs) in an IRI model of LT. The rat PMVECs were transfected with small interfering RNAs (siRNAs) against JNK, p38 or ERK1/2. Cotransfection was performed with siRNAs against JNK and p38 in the J+p group, JNK and ERK1/2 in the J+E group, p38 and ERK1/2 in the p+E group, or all three in the J+p+E group. Non‑targeting (NT) siRNA was used as a control. The PMVECs were then treated to induce IRI, and the levels of inflammation, apoptosis and oxidative stress were detected. Differences between compared groups were determined using Tukey's honest significant difference test. In all groups, silencing of the MAPKs was shown to attenuate inflammation, apoptosis and oxidative stress to differing extents, compared with the NT group. The J+p and J+p+E groups showed lower levels of interleukin (IL)‑1β, IL‑6 and malondialdehyde, a lower percentage of early‑apoptotic cells, and higher superoxide dismutase (SOD) activity, compared with the other groups. No significant differences were observed in the inflammatory response, SOD activity or early apoptosis between the J+p and J+p+E groups. These findings suggested that the dual inhibition of JNK and p38 led to maximal amelioration of lung IRI in the PMVECs of the IRI model of LT, which occurred through anti‑inflammatory, anti‑oxidative and anti‑apoptotic mechanisms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Tan
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanhong Liu
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linlin Song
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Di Li
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoguang Cui
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
162
|
|
163
|
Guo S, Fu Y, Xiong S, Lv J. Corilagin protects the acute lung injury by ameliorating the apoptosis pathway. Biomed Pharmacother 2017; 95:1743-1748. [PMID: 28962079 DOI: 10.1016/j.biopha.2017.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023] Open
Abstract
This study elucidates the protective effect of corilagin in acute lung injury rat model. Lung injury induced by ischemia/reperfusion (I/R) model was established by isolating the lungs from the rats. Ischemia was produced for the duration of 1h and thereafter reperfusion was done for 90min in isolated lung in presence and absence of corilagin (20 and 40mg/ml). Effect of corilagin was evaluated by estimating the pulmonary vein oxygen partial pressure (PaO2), airway compliance and tidal volume. Moreover the level of oxidative stress parameter, pro inflammatory parameters, phosphorylation of JNK and apoptosis rate was estimated in lung tissues. There was significant increase in the PaO2, airway compliance and tidal volume in corilagin treated group than I/R group. Treatment with corilagin significantly increases the activity of superoxide dismutase (SOD) and level of adenosine triphosphate (ATP) and decreases the level of MDA in the tissue homogenate of I/R induced lung injury model. Whereas expressions of proinflammatory gene such as tumor necrosis factor α, interlukin-6, IL-1β and cycloxygenase -2 (COX-2) was found to be reduced in corilagin treated group than I/R group. Posphorylation of JNK and apoptotic rate was also found to be decreased in corilagin treated group than I/R group. Present report concludes that treatment with corilagin attenuates the lung injury in ex vivo I/R induced lung injury rat model by decreasing oxidative stress, pro-inflammatory mediators and its anti apoptotic activity.
Collapse
Affiliation(s)
- Shixun Guo
- Severe Medical Section, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Yun Fu
- Severe Medical Section, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Shenming Xiong
- Severe Medical Section, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Jiudi Lv
- Department of General Surgery, Xinxiang Central Hospital, Xinxiang, Henan 453000, China.
| |
Collapse
|
164
|
Interleukin-17A Aggravates Middle Ear Injury Induced by Streptococcus pneumoniae through the p38 Mitogen-Activated Protein Kinase Signaling Pathway. Infect Immun 2017; 85:IAI.00438-17. [PMID: 28739823 DOI: 10.1128/iai.00438-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Acute otitis media (AOM) is one of the most common bacterial infectious diseases in children aged 2 to 7 years worldwide. We previously demonstrated that interleukin-17A (IL-17A) promotes an acute inflammatory response characterized by the influx of neutrophils into the middle ear cavity during Streptococcus pneumoniae-induced AOM. In general, the inflammatory response is viewed as an effector that frequently causes local tissue damage. However, little is known about the pathogenic effects of IL-17A in AOM. Here, we investigated the pathogenic effects of IL-17A by using wild-type (WT) and IL-17A knockout (KO) mouse models. The results showed that the pathogenic effects of AOM, including weight loss, histopathological changes, and proinflammatory cytokine production, were more severe in WT mice than in IL-17A KO mice, suggesting that IL-17A aggravates tissue damage in AOM. Furthermore, these pathogenic effects were found to be dependent on p38 mitogen-activated protein kinase (MAPK) and could be reversed in the presence of a p38 MAPK-specific inhibitor. It was also demonstrated that IL-17A promoted the production of neutrophil myeloperoxidase (MPO) through the p38 MAPK signaling pathway, which was responsible for the middle ear tissue injury. These data support the conclusion that IL-17A contributes to middle ear injury through the p38 MAPK signaling pathway.
Collapse
|
165
|
Inhibition of Caveolae Contributes to Propofol Preconditioning-Suppressed Microvesicles Release and Cell Injury by Hypoxia-Reoxygenation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3542149. [PMID: 29181124 PMCID: PMC5625844 DOI: 10.1155/2017/3542149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
Endothelial microvesicles (EMVs), released after endothelial cell (EC) apoptosis or activation, may carry many adverse signals and propagate injury by intercellular transmission. Caveolae are 50–100 nm cell surface plasma membrane invaginations involved in many pathophysiological processes. Recent evidence has indicated EMVs and caveolae may have functional effects in cells undergoing H/R injury. Propofol, a widely used anaesthetic, confers antioxidative stress capability in the same process. But the connection between EMVs, H/R, and caveolae remains largely unclear. Here, we found that H/R significantly increased the release of EMVs, the expression of CAV-1 (the structural protein responsible for maintaining the shape of caveolae), oxidative stress, and the mitochondrial damage, and all these changes were inhibited by propofol preconditioning. Interestingly, the caveolae inhibitor Mβ-CD strengthened the protective effect of propofol preconditioning. We further found that the release of EMVs is more significantly reduced under propofol preconditioning in the presence of the caveolae inhibitor Mβ-CD. EMVs released from H/R-treated cells caused a substantially increased mitochondrial and cellular damage to normal HUVECs after 4 hours of coculture. Thus, we conclude that inhibition of caveolae contributes to propofol preconditioning-suppressed microvesicles release and cell injury by H/R.
Collapse
|
166
|
Yan N, Yang W, Dong X, Fang Q, Gong Y, Zhou JL, Xu JJ. Promotion of anoxia-reoxygenation-induced inflammation and permeability enhancement by nicotinamide phosphoribosyltransferase-activated MAPK signaling in human umbilical vein endothelial cells. Exp Ther Med 2017; 14:4595-4601. [PMID: 29104667 DOI: 10.3892/etm.2017.5083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that nicotinamide phosphoribosyltransferase (NAMPT) promoted inflammation and permeability of vascular endothelial cells following cardiopulmonary bypass (CPB). In addition, mitogen-activated protein kinase (MAPK) signaling was activated and contributed to these cell responses. However, the mechanism by which NAMPT regulates cellular inflammation and permeability remains unknown, and whether NAMPT regulates MAPK signaling during this process is also not clear. The present study established an anoxia-reoxygenation (A-R) model using human umbilical vein endothelial cells (HUVECs) and investigated the regulation of MAPK signaling by NAMPT by using small RNA transfection, ELISA and western blot analysis. The results demonstrated that A-R significantly induced the expression levels of NAMPT and cellular permeability-associated proteins, and the release of several inflammatory factors. Furthermore, calcium and MAPK signaling were evidently increased. When the A-R cells were transfected with NAMPT small interfering RNA, the expression of cellular permeability-associated proteins was downregulated, the release of inflammatory factors was decreased, and calcium and MAPK signaling was blocked. These data suggest that NAMPT may activate MAPK signaling to promote A-R-induced inflammation and permeability enhancement of HUVECs. Therefore, the current study indicates that NAMPT may be a potential drug target for A-R-induced endothelial cell injury subsequent to CPB.
Collapse
Affiliation(s)
- Nao Yan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao Dong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiao Fang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Liang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
167
|
Wu YH, Lin HR, Lee YH, Huang PH, Wei HC, Stern A, Chiu DTY. A novel fine tuning scheme of miR-200c in modulating lung cell redox homeostasis. Free Radic Res 2017; 51:591-603. [PMID: 28675952 DOI: 10.1080/10715762.2017.1339871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress induces miR-200c, the predominant microRNA (miRNA) in lung tissues; however, the antioxidant role and biochemistry of such induction have not been clearly defined. Therefore, a lung adenocarcinoma cell line (A549) and a normal lung fibroblast (MRC-5) were used as models to determine the effects of miR-200c expression on lung antioxidant response. Hydrogen peroxide (H2O2) upregulated miR-200c, whose overexpression exacerbated the decrease in cell proliferation, retarded the progression of cells in the G2/M-phase, and increased oxidative stress upon H2O2 stimulation. The expression of three antioxidant proteins, superoxide dismutase (SOD)-2, haem oxygenase (HO)-1, and sirtuin (SIRT) 1, was reduced upon H2O2 stimulation in miR-200c-overexpressed A549 cells. This phenomenon of increased oxidative stress and antioxidant protein downregulation also occurs simultaneously in miR-200c overexpressed MRC-5 cells. Molecular analysis revealed that miR-200c inhibited the gene expression of HO-1 by directly targeting its 3'-untranslated region. The downregulation of SOD2 and SIRT1 by miR-200c was mediated through zinc finger E-box-binding homeobox 2 (ZEB2) and extracellular signal-regulated kinase 5 (ERK5) pathways, respectively, where knockdown of ZEB2 or ERK5 decreased the expression of SOD2 or SIRT1 in A549 cells. LNA anti-miR-200c transfection in A549 cells inhibited the endogenous miR-200c expression, resulting in increased expressions of antioxidant proteins, reduced oxidative stress and recovered cell proliferation upon H2O2 stimulation. These findings indicate that miR-200c fine-tuned the antioxidant response of the lung cells to oxidative stress through several pathways, and thus this study provides novel information concerning the role of miR-200c in modulating redox homeostasis of lung.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Hsin-Ru Lin
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ying-Hsuan Lee
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Pin-Hao Huang
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Huei-Chung Wei
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- d New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,e Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,f Department of Pediatric Hematology/Oncology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
168
|
Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9634803. [PMID: 28751936 PMCID: PMC5511669 DOI: 10.1155/2017/9634803] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
Lung ischemia/reperfusion (I/R) injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF) leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase) activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.
Collapse
|
169
|
Abstract
Ischemia-reperfusion (IR)-induced acute lung injury (ALI) is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA), in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group): sham, sham + AZA 200 mg/kg body weight (BW), IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17) and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.
Collapse
|
170
|
Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501046. [PMID: 28698768 PMCID: PMC5494111 DOI: 10.1155/2017/6501046] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.
Collapse
|
171
|
Tian WF, Weng P, Sheng Q, Chen JL, Zhang P, Zhang JR, Du B, Wu MC, Pang QF, Chu JJ. Biliverdin Protects the Isolated Rat Lungs from Ischemia-reperfusion Injury via Antioxidative, Anti-inflammatory and Anti-apoptotic Effects. Chin Med J (Engl) 2017; 130:859-865. [PMID: 28345551 PMCID: PMC5381321 DOI: 10.4103/0366-6999.202735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Biliverdin (BV) has a protective role against ischemia-reperfusion injury (IRI). However, the protective role and potential mechanisms of BV on lung IRI (LIRI) remain to be elucidated. Thus, we aimed to investigate the protective role and potential mechanisms of BV on LIRI. Methods: Lungs were isolated from Sprague-Dawley rats to establish an ex vivo LIRI model. After an initial 15 min stabilization period, the isolated lungs were subjected to ischemia for 60 min, followed by 90 min of reperfusion with or without BV treatment. Results: Lungs in the I/R group exhibited significant decrease in tidal volume (1.44 ± 0.23 ml/min in I/R group vs. 2.41 ± 0.31 ml/min in sham group; P < 0.001), lung compliance (0.27 ± 0.06 ml/cmH2O in I/R group vs. 0.44 ± 0.09 ml/cmH2O in sham group; P < 0.001; 1 cmH2O=0.098 kPa), and oxygen partial pressure (PaO2) levels (64.12 ± 12 mmHg in I/R group vs. 114 ± 8.0 mmHg in sham group; P < 0.001; 1 mmHg = 0.133 kPa). In contrast, these parameters in the BV group (2.27 ± 0.37 ml/min of tidal volume, 0.41 ± 0.10 ml/cmH2O of compliance, and 98.7 ± 9.7 mmHg of PaO2) were significantly higher compared with the I/R group (P = 0.004, P < 0.001, and P < 0.001, respectively). Compared to the I/R group, the contents of superoxide dismutase were significantly higher (47.07 ± 7.91 U/mg protein vs. 33.84 ± 10.15 U/mg protein; P = 0.005) while the wet/dry weight ratio (P < 0.01), methane dicarboxylic aldehyde (1.92 ± 0.25 nmol/mg protein vs. 2.67 ± 0.46 nmol/mg protein; P < 0.001), and adenosine triphosphate contents (297.05 ± 47.45 nmol/mg protein vs. 208.09 ± 29.11 nmol/mg protein; P = 0.005) were markedly lower in BV-treated lungs. Histological analysis revealed that BV alleviated LIRI. Furthermore, the expression of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-β) was downregulated and the expression of cyclooxygenase-2, inducible nitric oxide synthase, and Jun N-terminal kinase was significantly reduced in BV group (all P < 0.01 compared to I/R group). Finally, the apoptosis index in the BV group was significantly decreased (P < 0.01 compared to I/R group). Conclusion: BV protects lung IRI through its antioxidative, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Wen-Fang Tian
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Weng
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiong Sheng
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Liang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Zhang
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ji-Ru Zhang
- Department of Anesthesia, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bin Du
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min-Chen Wu
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Jun Chu
- Department of Anesthesia, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
172
|
Bougioukas I, Didilis V, Emmert A, Jebran AF, Waldmann-Beushausen R, Stojanovic T, Schoendube FA, Danner BC. Apigenin Reduces NF-κB and Subsequent Cytokine Production as Protective Effect in a Rodent Animal Model of Lung Ischemia-Reperfusion Injury. J INVEST SURG 2017; 31:96-106. [PMID: 28340319 DOI: 10.1080/08941939.2017.1296512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Lung ischemia-reperfusion injury (LIRI) can complicate lung transplantation or cardiac surgery with cardiopulmonary bypass, increasing morbidity and mortality. In LIRI, pro-inflammatory cytokines are activated, reactive oxygen species are generated and nuclear factor-κB (NF-κB) is up-regulated, altering lung mechanics. We tested the effect of the flavonoid apigenin on a rodent model of LIRI. METHODS Thirty-seven Wistar rats were subjected to LIRI with or without a single or double dose of apigenin. Induction of LIRI involved sternotomy and clamping of either the left lung hilum or the pulmonary artery alone for 30 min, followed by 60 min of reperfusion. Control groups consisted of LIRI plus NaCl, a sham group and a baseline group. At the end of the experiments, both lungs were analyzed by RT-PCR, Western blot, and light microscopy. RESULTS In placebos, the expression levels of pro-inflammatory markers were increased in both lungs significantly, whereas NF-κB was markedly up-regulated. Administration of apigenin reduced the activation of NF-κB and the expression of TNFα, iNOS, and IL-6. These effects were observed in total lung ischemia. Histology showed greater hemorrhage and exudation in the pulmonary periphery of all groups, whereby damage was practically absent in the central lung regions of the apigenin animals. A second dose of apigenin did not outclass a single one. CONCLUSIONS We conclude that apigenin given intraperitoneally can reduce activation of NF-κB and also attenuate the expression of TNFα, IL-6, and iNOS in a surgical model of LIRI. The surgical procedure itself can induce significant damage to the lungs.
Collapse
Affiliation(s)
- Ioannis Bougioukas
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| | - Vassilios Didilis
- b Department of Cardiothoracic Surgery , University of Thrace , Alexandroupolis , Greece
| | - Alexander Emmert
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| | - Ahmad F Jebran
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| | | | - Tomislav Stojanovic
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| | - Friedrich A Schoendube
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| | - Bernhard C Danner
- a Department of Thoracic and Cardiovascular Surgery , University Medical Center , Göttingen , Germany
| |
Collapse
|
173
|
Bi W, Bi Y, Gao X, Li P, Hou S, Zhang Y, Bammert C, Jockusch S, Legalley TD, Michael Gibson K, Bi L. Indole-TEMPO conjugates alleviate ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function. Bioorg Med Chem 2017; 25:2545-2568. [PMID: 28359673 DOI: 10.1016/j.bmc.2017.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023]
Abstract
Mitochondrial oxidative damage contributes to a wide range of pathologies including ischemia/reperfusion injury. Accordingly, protecting mitochondria from oxidative damage should possess therapeutic relevance. In the present study, we have designed and synthesized a series of novel indole-TEMPO conjugates that manifested good anti-inflammatory properties in a murine model of xylene-induced ear edema. We have demonstrated that these compounds can protect cells from simulated ischemia/reperfusion (s-I/R)-induced reactive oxygen species (ROS) overproduction and mitochondrial dysfunction. Furthermore, we have demonstrated that indole-TEMPO conjugates can attenuate organ damage induced in rodents via intestinal I/R injury. We therefore propose that the pharmacological profile and mechanism of action of these indole-TEMPO conjugates involve convergent roles, including the ability to decrease free radical production via lipid peroxidation which couples to an associated decrease in ROS-mediated activation of the inflammatory process. We further hypothesize that the protective effects of indole-TEMPO conjugates partially reside in maintaining optimal mitochondrial function.
Collapse
Affiliation(s)
- Wei Bi
- Second Hospital of HeBei Medical University, Shijiazhuang 050000, PR China.
| | - Yue Bi
- Second Hospital of HeBei Medical University, Shijiazhuang 050000, PR China
| | - Xiang Gao
- Department of Chemistry and Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Pengfei Li
- Second Hospital of HeBei Medical University, Shijiazhuang 050000, PR China
| | - Shanshan Hou
- Department of Chemistry and Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Yanrong Zhang
- Second Hospital of HeBei Medical University, Shijiazhuang 050000, PR China
| | - Cathy Bammert
- Department of Chemistry and Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Thomas D Legalley
- Marquette General Heart and Vascular Institute, Marquette General Hospital, Marquette, MI 49855, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane WA 99202, USA.
| | - Lanrong Bi
- Department of Chemistry and Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
174
|
Han JY, Li Q, Ma ZZ, Fan JY. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther 2017; 177:146-173. [PMID: 28322971 DOI: 10.1016/j.pharmthera.2017.03.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculation dysfunction and organ injury after ischemia and reperfusion (I/R) result from a complex pathologic process consisting of multiple links, with metabolism impairment in the ischemia phase and oxidative stress in the reperfusion phase as initiators, and any treatment targeting a single link is insufficient to cope with this. Compound Chinese medicine (CCM) has been applied in clinics in China and some Asian nations for >2000years. Studies over the past decades revealed the protective and therapeutic effect of CCMs and major ingredients on I/R-induced microcirculatory dysfunction and tissue injury in the heart, brain, liver, intestine, and so on. CCM contains diverse bioactive components with potential for energy metabolism regulation; antioxidant effect; inhibiting inflammatory cytokines release; adhesion molecule expression in leukocyte, platelet, and vascular endothelial cells; and the protection of thrombosis, albumin leakage, and mast cell degranulation. This review covers the major works with respect to the effects and underlying mechanisms of CCM and its ingredients on microcirculatory dysfunction and organ injury after I/R, providing novel ideas for dealing with this threat.
Collapse
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China.
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Zhi-Zhong Ma
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 100191, China; Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
175
|
Liou CJ, Huang YL, Huang WC, Yeh KW, Huang TY, Lin CF. Water extract of Helminthostachys zeylanica attenuates LPS-induced acute lung injury in mice by modulating NF-κB and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:30-38. [PMID: 28119099 DOI: 10.1016/j.jep.2017.01.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies showed that Helminthostachys zeylanica (L.) Hook. could reduce inflammatory responses in macrophage and brain astrocytes. AIM OF THE STUDY In the present study, we evaluated whether an ethyl acetate extract (HZE) or a water extract (HZW) of H. zeylanica could reduce inflammatory responses in lung epithelial cells and ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. METHODS Human lung epithelial A549 cells were pre-treated with HZE or HZW (1-10μg/mL), then stimulated with LPS. BALB/c mice received oral HZW for 7 consecutive days, then an intratracheal instillation of LPS to induce lung injury. RESULTS HZW reduced chemokine and proinflammatory cytokine production in LPS-activated A549 cells. HZW also suppressed ICAM-1 expression and reduced the adherence of acute monocytic leukemia cells to inflammatory A549 cells. HZE had less efficacy than HZW in suppressing inflammatory responses in A549 cells. In vivo, HZW significantly suppressed neutrophil infiltration and reduced the TNF-α and IL-6 levels in bronchoalveolar lavage fluid and serum from LPS-treated mice. HZW also modulated superoxide dismutase activity, glutathione, and myeloperoxidase activity in lung tissues from LPS-treated mice. HZW decreased the phosphorylation of mitogen-activated protein kinase and nuclear factor kappa B, and promoted heme oxygenase-1 expression in inflamed lung tissue from LPS-treated mice. CONCLUSION Our findings suggested that HZW reduced lung injury in mice by reducing oxidative stress and inflammatory responses. HZW also reduced inflammatory responses in human lung epithelial cells.
Collapse
Affiliation(s)
- Chian-Jiun Liou
- Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Yu-Ling Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No. 155-1, Sec. 2, Li-Nung St., Peitou, Taipei, Taiwan
| | - Wen-Chung Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City 33303, Taiwan; Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Tzu-Yi Huang
- Department of Nursing, Tzu Chi University of Science and Technology, No. 880, Section2, Chienkuo Rd., Hualien City 970, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City 33303, Taiwan.
| |
Collapse
|
176
|
Apocynin suppressed the nuclear factor-κB pathway and attenuated lung injury in a rat hemorrhagic shock model. J Trauma Acute Care Surg 2017; 82:566-574. [DOI: 10.1097/ta.0000000000001337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
177
|
Beckers PAJ, Gielis JF, Van Schil PE, Adriaensen D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:129. [PMID: 28462209 DOI: 10.21037/atm.2017.01.41] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a cell surface protease that has been reported to play a role in glucose homeostasis, cancer, HIV, autoimmunity, immunology and inflammation. A role for DPP4 in ischemia-reperfusion injury (IRI) in the heart has been established. Dipeptidyl peptidase 4 inhibition (DPP4i) appeared to decrease infarct size, improves cardiac function and promotes myocardial regeneration. Lung ischemia reperfusion injury is caused by a complex mechanism in which macrophages and neutrophils play an important role. Generation of reactive oxygen species (ROS), uncoupling of nitric oxide synthase (NOS), activation of nuclear factor-κB (NF-κB), activation of nicotinamide adenine dinucleotide phosphate metabolism, and generation of pro-inflammatory cytokines lead to acute lung injury (ALI). In this review we present the current knowledge on DPP4 as a target to treat IRI in the lung. We also provide evidence of the roles of the DPP4 substrates glucagon-like peptide 1 (GLP-1), vasoactive intestinal peptide (VIP) and stromal cell-derived factor-1α (SDF-1α) in protection against oxidative stress through activation of the mitogen-activated protein kinase (MAPK) 1/2 and phosphatidylinositol 3'-kinase (PI3K)/Akt signal transduction pathways.
Collapse
Affiliation(s)
- Paul A J Beckers
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Jan F Gielis
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Paul E Van Schil
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
178
|
Scozzi D, Ibrahim M, Menna C, Krupnick AS, Kreisel D, Gelman AE. The Role of Neutrophils in Transplanted Organs. Am J Transplant 2017; 17:328-335. [PMID: 27344051 PMCID: PMC5183560 DOI: 10.1111/ajt.13940] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 01/25/2023]
Abstract
Neutrophils are often viewed as nonspecialized effector cells whose presence is a simple indicator of tissue inflammation. There is new evidence that neutrophils exist in subsets and have specialized effector functions that include extracellular trap generation and the stimulation of angiogenesis. The application of intravital imaging to transplanted organs has revealed novel requirements for neutrophil trafficking into graft tissue and has illuminated direct interactions between neutrophils and other leukocytes that promote alloimmunity. Paradoxically, retaining some neutrophilia may be important to induce or maintain tolerance. Neutrophils can stimulate anti-inflammatory signals in other phagocytes and release molecules that inhibit T cell activation. In this article, we will review the available evidence of how neutrophils regulate acute and chronic inflammation in transplanted organs and discuss the possibility of targeting these cells to promote tolerance.
Collapse
Affiliation(s)
- Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Mohsen Ibrahim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Medical - Surgical Science and Translational Medicine, Sapienza University of Rome, Italy
| | - Cecilia Menna
- Department of Medical - Surgical Science and Translational Medicine, Sapienza University of Rome, Italy
| | - Alexander S Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
179
|
Abstract
Organ transplantation improves survival and quality of life in patients with end-organ failure. Waiting lists continue to grow across the world despite remarkable advances in the transplantation process, from the creation of public engagement campaigns to the development of critical pathways for the timely identification, referral, approach, and treatment of the potential organ donor. The pathophysiology of dying triggers systemic changes that are intimately related to organ viability. The intensive care management of the potential organ donor optimizes organ function and improves the donation yield, representing a significant step in reducing the mismatch between organ supply and demand. Different beliefs and cultures reflect diverse legislations and donation practices amongst different countries, creating a challenge to standardized practices. Maintaining public trust is necessary for continued progress in organ donation and transplantation, hence the urge for a joint effort in creating uniform protocols that ensure transparent practices within the medical community.
Collapse
Affiliation(s)
- C B Maciel
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - D Y Hwang
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - D M Greer
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
180
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
181
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
182
|
Zhao X, Zeng Q, Ren G, Cao J, Dou J, Gao Q. Pulmonary injury at the anhepatic phase without veno-venous bypass in portal hypertensive rats. Clin Exp Hypertens 2016; 38:624-630. [PMID: 27653544 DOI: 10.1080/10641963.2016.1182179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In order to understand the characterization and evolution of pulmonary injury, a portal hypertension rat model was used to imitate the anhepatic phase during standard orthotopic liver transplantation without veno-venous bypass. METHODS In this study, 135 healthy male Wistar rats were selected; in which 15 rats were assigned in the normal control (NC) group and the remaining 120 rats were used to establish a recoverable prehepatic portal hypertension model, which were further evenly divided into eight groups after ischemia-reperfusion: portal hypertensive control group (PHTC), R0h, R6h, R12h, R24h, R48h, R72h, and R7d groups. Meanwhile, arterial blood pressure, dry-to-wet weight ratios of the lung, alanine aminotransferase (ALT) level in serum, arterial oxygen pressure (PaO2), and myeloperoxidase (MPO) activity in lung tissue were measured. Morphology changes of the lung were observed using an optical microscope and a transmission electron microscope. RESULTS The portal hypertension rat model was successfully established three weeks after the first operation. These portal hypertensive rats could withstand 1 hour at the anhepatic phase. Pulmonary injury severity increased to the most at 12-24 hours, and decreased to normal at seven days after reperfusion. CONCLUSION Ischemia-reperfusion injury is an important mechanism that results in pulmonary injury after liver transplantation. It is safe for portal hypertensive rats to tolerate 1 hour at the anhepatic phase. Pulmonary injury was the most severe within 12-24 hours after ischemia-reperfusion.
Collapse
Affiliation(s)
- Xin Zhao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Qiang Zeng
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Guijun Ren
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Jinglin Cao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Jian Dou
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| | - Qingjun Gao
- a Department of Hepatobiliary Surgery , The Third Hospital of Hebei Medical University , Shijiazhuang , Hebei Province , China
| |
Collapse
|
183
|
Fan Y, Zhang D, Xiang D. Delayed protective effect of telmisartan on lung ischemia/reperfusion injury in valve replacement operations. Exp Ther Med 2016; 12:2577-2581. [PMID: 27698759 PMCID: PMC5038488 DOI: 10.3892/etm.2016.3626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to investigate the delayed protective effect of telmisartan on lung ischemic/reperfusion injury in patients undergoing heart valve replacement operations. In total, 180 patients diagnosed with rheumatic valve diseases were randomly divided into the telmisartan (T), captopril (C) and placebo (P) groups. In the telmisartan group, the patients were pretreated with telmisartan (1 mg/kg/day), at the time period 96-48 h before the operation, whereas in the C group, the patients were treated with captopril (1 mg/kg/day) at the time period 96-48 h prior to the operation control group. Each drug treatment group included a corresponding placebo treatment. The variables pulmonary vascular resistance (PVR) and A-aDO2 were measured prior to CPB and at 1, 3, 6 and 12 h after CPB. Pulmonary neutrophil (PMN) count in the left and right atrium blood as well as SOD malondialdehyde (MDA), NO, angiotensin II (AngII) value in the left atrium blood, were measured 30 min prior to and after CPB. The PVR parameters of the telmisartan and captopril groups were significantly lower than those of the placebo group (P<0.05). The A-aDO2 values in the telmisartan and captopril groups were significantly lower than those in the placebo group at 1, 3 and 6 h following CPB treatment. The difference between the right and left atrium blood PMN was significantly lower in the telmisartan and captopril intervention groups compared to that in the placebo group 30 min following CPB treatment. The left atrium blood SOD and NO values were significantly higher, whereas the MDA value was significantly lower in the telmisartan group compared to the control group 30 min following CPB treatment. As for AngII, there was no difference between the C and T groups, compared with the P group. In the two groups 30 min after treatment with CPB, 24 patients experienced varying degrees of cough, with the telmisartan group showing a significant difference (P<0.05). The hospitalization time was compared in the three groups of patients and it was found to be significantly shorter in the telmisartan group than the captopril and placebo groups (P<0.05). In conclusion, it was found that for the time period 96-48 h before heart valve replacement operations telmisartan (1 mg/kg/day) delayed the protective effect on lung ischemia/reperfusion injury in patients with rheumatic valve diseases. The results of the present study indicated that the protective effect may be associated with the increment of endogenetic NO and the enhanced ability against lipid peroxidation.
Collapse
Affiliation(s)
- Yongfeng Fan
- Department of Cardiac Surgery, The People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Daguo Zhang
- Department of Cardiac Surgery, The People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Daokang Xiang
- Department of Cardiac Surgery, The People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
184
|
Kedia K, Smith SF, Wright AH, Barnes JM, Tolley HD, Esplin MS, Graves SW. Global "omics" evaluation of human placental responses to preeclamptic conditions. Am J Obstet Gynecol 2016; 215:238.e1-238.e20. [PMID: 26970495 DOI: 10.1016/j.ajog.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a leading cause of maternal death. Its cause is still debated but there is general agreement that the placenta plays a central role. Perhaps the most commonly proposed contributors to PE include placental hypoxia, oxidative stress, and increased proinflammatory cytokines. How the placenta responds to these abnormalities has been considered but not as part of a comprehensive analysis of low-molecular-weight biomolecules and their responses to these accepted PE conditions. OBJECTIVE Using a peptidomic approach, we sought to identify a set of molecules exhibiting differential expression in consequence of provocative agents/chemical mediators of PE applied to healthy human placental tissue. STUDY DESIGN Known PE conditions were imposed on normal placental tissue from 13 uncomplicated pregnancies and changes in the low-molecular-weight peptidome were evaluated. A t test was used to identify potential markers for each imposed stress. These markers were then submitted to a least absolute shrinkage and selection operator multinomial logistic regression model to identify signatures specific to each stressor. Estimates of model performance on external data were obtained through internal validation. RESULTS A total of 146 markers were increased/decreased as a consequence of exposure to proposed mediators of PE. Of these 75 changed with hypoxia; 23 with hypoxia-reoxygenation/oxidative stress and 48 from exposure to tumor necrosis factor-α. These markers were chemically characterized using tandem mass spectrometry. Identification rates were: hypoxia, 34%; hypoxia-reoxygenation, 60%; and tumor necrosis factor-α, 50%. Least absolute shrinkage and selection operator modeling specified 16 markers that effectively distinguished all groups, ie, the 3 abnormal conditions and control. Bootstrap estimates of misclassification rates, multiclass area under the curve, and Brier score were 0.108, 0.944, and 0.160, respectively. CONCLUSION Using this approach we found previously unknown molecular changes in response to individual PE conditions that allowed development biomolecular signatures for exposure to each accepted pathogenic condition.
Collapse
|
185
|
Zhang H, Wan Z, Yan X, Wang DG, Leng Y, Liu Y, Zhang Y, Zhang H, Han X. Protective effect of Shenfu injection preconditioning on lung ischemia-reperfusion injury. Exp Ther Med 2016; 12:1663-1670. [PMID: 27602083 PMCID: PMC4998227 DOI: 10.3892/etm.2016.3549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 04/05/2016] [Indexed: 01/08/2023] Open
Abstract
Lung ischemia-reperfusion injury remains a problem in thoracic surgery, as minimal progress has been made concerning its prevention and control. In the present study, the protective effects and the underlying mechanism of Shenfu injection preconditioning on a rat lung ischemia-reperfusion model was investigated. Shenfu injection is a well-known Chinese traditional medicine, which is composed of Red Radix Ginseng and Radix Aconitum carmichaelii, with ginseng saponin and aconitum alkaloids as the active ingredients. A total of 72 specific pathogen-free, healthy male Wistar rats were randomly divided into control, model and Shenfu injection (10 ml/kg injection prior to injury) groups and were assessed at the following points: Ischemia 45 min; reperfusion 60 min; and reperfusion 120 min. Blood collected from the aorta abdominalis was cryopreserved at −70°C for the analysis of malondialdehyde (MDA) and superoxide dismutase (SOD) activity. Lung tissues were divided into three equal sections in order to assess the wet-to-dry (W/D) lung ratio, tumor necrosis factor (TNF)-α expression levels, myeloperoxidase (MPO) activity, alveolar damage, total protein and hematoxylin and eosin staining. The results demonstrated that the lung W/D weight ratio, TNF-α expression levels and SOD activity in the Shenfu group were significantly lower at 120 min reperfusion (P<0.05), as compared with the model group. MPO and MDA activity significantly decreased following reperfusion at 60 and 120 min (P<0.05), as compared with the model group. In addition, the degree of alveolar damage in the Shenfu group was significantly decreased (P<0.05), as compared with the model group. In addition, compared with the model group, the degree of alveolar damage in the Shenfu group was significantly lower (P<0.05); however, no significant changes in total protein were observed. The extent of alveolar structural damage and the proportion of interstitial neutrophils and alveolar and interstitial red blood cells were lower in the Shenfu group, as compared with the model and control groups. Therefore, the results of the present study suggested that Shenfu injection may have protective effects on lung ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhanhai Wan
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiang Yan
- Department of Gerontology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - De-Gui Wang
- Department of Anatomy and Histology, Lanzhou University School of Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yufang Leng
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yongqiang Liu
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haijun Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuena Han
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
186
|
Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7079487. [PMID: 27382429 PMCID: PMC4921628 DOI: 10.1155/2016/7079487] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.
Collapse
|
187
|
van der Linden M, Meyaard L. Fine-tuning neutrophil activation: Strategies and consequences. Immunol Lett 2016; 178:3-9. [PMID: 27262927 DOI: 10.1016/j.imlet.2016.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/30/2022]
Abstract
In spite of their important role in host defense, neutrophils can also cause severe morbidity and mortality. Neutrophils have an extensive armory necessary to eradicate pathogens, but neutrophil infiltration and activation also induces major tissue injury associated with acute and chronic inflammatory disorders. Here, we review neutrophil anti-microbial functions and discuss their individual contribution to disease pathogenesis. Furthermore, we provide an overview of the anti-inflammatory drugs that can dampen neutrophil transmigration, elastase activity, and the production of reactive oxygen species which are already in clinical trials. The discovery of potential inhibitors of the release of neutrophil extracellular trap is still in its infancy. Here, we discuss small molecule inhibitors and inhibitory receptors that show promising results in reducing neutrophil extracellular trap formation in vitro and in vivo and discuss the advantages and drawbacks of inhibiting the release of neutrophil extracellular traps as a therapeutic treatment. Specific suppression of neutrophil extracellular trap formation, preferably while other antimicrobial functions are preserved, would be an ideal approach to treat neutrophilic inflammation, since it prevents acute as well as chronic neutrophil-associated pathology.
Collapse
Affiliation(s)
- Maarten van der Linden
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
188
|
Protection Efficacy of the Extract of Ginkgo biloba against the Learning and Memory Damage of Rats under Repeated High Sustained +Gz Exposure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6320586. [PMID: 27069491 PMCID: PMC4812286 DOI: 10.1155/2016/6320586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
Repeated high sustained positive Gz (+Gz) exposures are known for the harmful pathophysiological impact on the brain of rats, which is reflected as the interruption of normal performance of learning and memory. Interestingly, extract of Ginkgo biloba (EGb) has been reported to have neuroprotective effects and cognition-enhancing effects. In this study, we are interested in evaluating the protective effects of EGb toward the learning and memory abilities. Morris Water Maze Test (MWM) was used to evaluate the cognitive function, and the physiological status of the key components in central cholinergic system was also investigated. Our animal behavioral tests indicated that EGb can release the learning and memory impairment caused by repeated high sustained +Gz. Administration of EGb to rats can diminish some of the harmful physiological effects caused by repeated +Gz exposures. Moreover, EGb administration can increase the biological activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) but reduce the production of malondialdehyde (MDA). Taken together, our study showed that EGb can ameliorate the impairment of learning and memory abilities of rats induced by repeated high sustained +Gz exposure; the underlying mechanisms appeared to be related to the signal regulation on the cholinergic system and antioxidant enzymes system.
Collapse
|
189
|
Hüppe T, Lorenz D, Maurer F, Albrecht FW, Schnauber K, Wolf B, Sessler DI, Volk T, Fink T, Kreuer S. Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: an exploratory trial. J Breath Res 2016; 10:016016. [DOI: 10.1088/1752-7155/10/1/016016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
190
|
Shaghaghi H, Kadlecek S, Siddiqui S, Pourfathi M, Hamedani H, Clapp J, Profka H, Rizi R. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance. Free Radic Biol Med 2015; 89:62-71. [PMID: 26165188 DOI: 10.1016/j.freeradbiomed.2015.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/19/2015] [Accepted: 06/28/2015] [Indexed: 01/10/2023]
Abstract
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes.
Collapse
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
191
|
Matsumoto T, Matsubara Y, Mizuhara Y, Sekiguchi K, Koseki J, Tsuchiya K, Nishimura H, Watanabe J, Kaneko A, Maemura K, Hattori T, Kase Y. Plasma Pharmacokinetics of Polyphenols in a Traditional Japanese Medicine, Jumihaidokuto, Which Suppresses Propionibacterium acnes-Induced Dermatitis in Rats. Molecules 2015; 20:18031-46. [PMID: 26437394 PMCID: PMC6332076 DOI: 10.3390/molecules201018031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/22/2022] Open
Abstract
Most orally administered polyphenols are metabolized, with very little absorbed as aglycones and/or unchanged forms. Metabolic and pharmacokinetic studies are therefore necessary to understand the pharmacological mechanisms of polyphenols. Jumihaidokuto (JHT), a traditional Japanese medicine, has been used for treatment of skin diseases including inflammatory acne. Because JHT contains various types of bioactive polyphenols, our aim was to clarify the metabolism and pharmacokinetics of the polyphenols in JHT and identify active metabolites contributing to its antidermatitis effects. Orally administered JHT inhibited the increase in ear thickness in rats induced by intradermal injection of Propionibacterium acnes. Quantification by LC-MS/MS indicated that JHT contains various types of flavonoids and is also rich in hydrolysable tannins, such as 1,2,3,4,6-penta-O-galloyl glucose. Pharmacokinetic and antioxidant analyses showed that some flavonoid conjugates, such as genistein 7-O-glucuronide and liquiritigenin 7-O-glucuronide, appeared in rat plasma and had an activity to inhibit hydrogen peroxide-dependent oxidation. Furthermore, 4-O-methylgallic acid, a metabolite of Gallic acid, appeared in rat plasma and inhibited the nitric oxide reaction. JHT has numerous polyphenols; it inhibited dermatitis probably via the antioxidant effect of its metabolites. Our study is beneficial for understanding in vivo actions of orally administered polyphenol drugs.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yousuke Matsubara
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yasuharu Mizuhara
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Junichi Koseki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kazuaki Tsuchiya
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Hiroaki Nishimura
- Kampo Formulations Development Center, Production Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kazuya Maemura
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| |
Collapse
|