151
|
Westin SN, Labrie M, Litton JK, Blucher A, Fang Y, Vellano CP, Marszalek JR, Feng N, Ma X, Creason A, Fellman B, Yuan Y, Lee S, Kim TB, Liu J, Chelariu-Raicu A, Chen TH, Kabil N, Soliman PT, Frumovitz M, Schmeler KM, Jazaeri A, Lu KH, Murthy R, Meyer LA, Sun CC, Sood AK, Coleman RL, Mills GB. Phase Ib Dose Expansion and Translational Analyses of Olaparib in Combination with Capivasertib in Recurrent Endometrial, Triple-Negative Breast, and Ovarian Cancer. Clin Cancer Res 2021; 27:6354-6365. [PMID: 34518313 PMCID: PMC8639651 DOI: 10.1158/1078-0432.ccr-21-1656] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE On the basis of strong preclinical rationale, we sought to confirm recommended phase II dose (RP2D) for olaparib, a PARP inhibitor, combined with the AKT inhibitor capivasertib and assess molecular markers of response and resistance. PATIENTS AND METHODS We performed a safety lead-in followed by expansion in endometrial, triple-negative breast, ovarian, fallopian tube, or peritoneal cancer. Olaparib 300 mg orally twice daily and capivasertib orally twice daily on a 4-day on 3-day off schedule was evaluated. Two dose levels (DL) of capivasertib were planned: 400 mg (DL1) and 320 mg (DL-1). Patients underwent biopsies at baseline and 28 days. RESULTS A total of 38 patients were enrolled. Seven (18%) had germline BRCA1/2 mutations. The first 2 patients on DL1 experienced dose-limiting toxicities (DLT) of diarrhea and vomiting. No DLTs were observed on DL-1 (n = 6); therefore, DL1 was reexplored (n = 6) with no DLTs, confirming DL1 as RP2D. Most common treatment-related grade 3/4 adverse events were anemia (23.7%) and leukopenia (10.5%). Of 32 evaluable subjects, 6 (19%) had partial response (PR); PR rate was 44.4% in endometrial cancer. Seven (22%) additional patients had stable disease greater than 4 months. Tumor analysis demonstrated strong correlations between response and immune activity, cell-cycle alterations, and DNA damage response. Therapy resistance was associated with receptor tyrosine kinase and RAS-MAPK pathway activity, metabolism, and epigenetics. CONCLUSIONS The combination of olaparib and capivasertib is associated to no serious adverse events and demonstrates durable activity in ovarian, endometrial, and breast cancers, with promising responses in endometrial cancer. Importantly, tumor samples acquired pre- and on-therapy can help predict patient benefit.
Collapse
Affiliation(s)
- Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marilyne Labrie
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Jennifer K Litton
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aurora Blucher
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Yong Fang
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | | | | | - Ningping Feng
- TRACTION, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - XiaoYan Ma
- TRACTION, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Allison Creason
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Bryan Fellman
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghoon Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tae-Beom Kim
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Tsun Hsuan Chen
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katheleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Murthy
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Larissa A Meyer
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charlotte C Sun
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
152
|
Xu J, Yu X, Martin TC, Bansal A, Cheung K, Lubin A, Stratikopoulos E, Cahuzac KM, Wang L, Xie L, Zhou R, Shen Y, Wu X, Yao S, Qiao R, Poulikakos PI, Chen X, Liu J, Jin J, Parsons R. AKT Degradation Selectively Inhibits the Growth of PI3K/PTEN Pathway-Mutant Cancers with Wild-Type KRAS and BRAF by Destabilizing Aurora Kinase B. Cancer Discov 2021; 11:3064-3089. [PMID: 34301793 PMCID: PMC9056008 DOI: 10.1158/2159-8290.cd-20-0815] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Using a panel of cancer cell lines, we characterized a novel degrader of AKT, MS21. In mutant PI3K-PTEN pathway cell lines, AKT degradation was superior to AKT kinase inhibition for reducing cell growth and sustaining lower signaling over many days. AKT degradation, but not kinase inhibition, profoundly lowered Aurora kinase B (AURKB) protein, which is known to be essential for cell division, and induced G2-M arrest and hyperploidy. PI3K activated AKT phosphorylation of AURKB on threonine 73, which protected it from proteasome degradation. A mutant of AURKB (T73E) that mimics phosphorylation and blocks degradation rescued cells from growth inhibition. Degrader-resistant lines were associated with low AKT phosphorylation, wild-type PI3K/PTEN status, and mutation of KRAS/BRAF. Pan-cancer analysis identified that 19% of cases have PI3K-PTEN pathway mutation without RAS pathway mutation, suggesting that these patients with cancer could benefit from AKT degrader therapy that leads to loss of AURKB. SIGNIFICANCE MS21 depletes cells of phosphorylated AKT (pAKT) and a newly identified AKT substrate, AURKB, to inhibit tumor growth in mice. MS21 is superior to prior agents that target PI3K and AKT due to its ability to selectively target active, pAKT and sustain repression of signaling to deplete AURKB. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tiphaine C. Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kakit Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elias Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Royce Zhou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yudao Shen
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruifang Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Liu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
153
|
Papavassiliou KA, Papavassiliou AG. The Bumpy Road towards mTOR Inhibition in Glioblastoma: Quo Vadis? Biomedicines 2021; 9:1809. [PMID: 34944625 PMCID: PMC8698473 DOI: 10.3390/biomedicines9121809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM), a grade IV astrocytoma, is a lethal brain tumor with a poor prognosis. Despite recent advances in the molecular biology of GBM, neuro-oncologists have very limited treatment options available to improve the survival of GBM patients. A prominent signaling pathway implicated in GBM pathogenesis is that of the mechanistic target of rapamycin (mTOR). Attempts to target the mTOR pathway with first-generation mTOR inhibitors appeared promising in the preclinical stage; however, results have been disappointing in clinical trials, owing to the heterogeneous nature of GBM, escape mechanisms against treatment, the blood-brain barrier, drug-related toxicities, and the imperfect design of clinical trials, among others. The development of next-generation mTOR inhibitors and their current evaluation in clinical trials have sparked new hope to realize the clinical potential of mTOR inhibitors in GBM. Meanwhile, studies are continuously furthering our understanding of mTOR signaling dysregulation, its downstream effects, and interplay with other signaling pathways in GBM tumors. Therefore, it remains to be seen whether targeting mTOR in GBM will eventually prove to be fruitful or futile.
Collapse
Affiliation(s)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
154
|
Shimizu T, Kuboki Y, Lin CC, Yonemori K, Yanai T, Faller DV, Dobler L, Gupta N, Sedarati F, Kim KP. A Phase 1 Study of Sapanisertib (TAK-228) in East Asian Patients with Advanced Nonhematological Malignancies. Target Oncol 2021; 17:15-24. [PMID: 34843044 PMCID: PMC8994735 DOI: 10.1007/s11523-021-00855-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sapanisertib is an oral, highly selective inhibitor of mammalian target of rapamycin complexes 1 and 2. OBJECTIVE The aim of this study was to assess the safety, tolerability, pharmacokinetics, preliminary efficacy, and to establish the recommended phase 2 dose (RP2D) of sapanisertib. PATIENTS AND METHODS In this dose-escalation and expansion study, East Asian patients with nonhematologic malignancies received increasing sapanisertib doses once-daily (QD; starting at 2 mg) or once-weekly (QW; starting at 20 mg) in 28-day cycles. RESULTS Among 28 patients (QD dosing, n = 22; QW dosing, n = 6), three dose-limiting toxicities were reported (stomatitis [n = 2], gastrointestinal inflammation, gingivitis, and acute myocardial infarction [all n = 1]), all in the 4 mg QD cohort. The RP2D of sapanisertib was 3 mg QD. The most common adverse events were stomatitis (64%), nausea (50%), and decreased appetite (50%) in the QD arm, and nausea (100%), blood alkaline phosphatase increased (67%), and hyperglycemia (67%) in the QW arm. The Tmax of sapanisertib was ~ 0.5-2.6 h and the T1/2 was ~ 5.9-7.6 h. Three patients achieved stable disease for ≥ 6 months (1 each in 3 mg QD, 4 mg QD and 20 mg QW cohorts, respectively); the clinical benefit rate was 45% and 67% in the QD and QW arms, respectively. CONCLUSIONS The RP2D of sapanisertib in East Asian patients (3 mg QD) was lower than in Western patients (4 mg QD), but the pharmacokinetics and safety profiles were similar. Sapanisertib was well tolerated and showed moderate anti-tumor effects in heavily pretreated patients with nonhematologic malignancies. NCT NUMBER NCT03370302; Registered December 7, 2017.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.
| | | | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | - Kan Yonemori
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoko Yanai
- Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Douglas V Faller
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Lwona Dobler
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Neeraj Gupta
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Farhad Sedarati
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Kyu-Pyo Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
155
|
Experimental and computational assessment of the synergistic pharmacodynamic drug-drug interactions of a triple combination therapy in refractory HER2-positive breast cancer cells. J Pharmacokinet Pharmacodyn 2021; 49:227-241. [PMID: 34773540 DOI: 10.1007/s10928-021-09795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
The development of innate and/or acquired resistance to human epidermal growth factor receptor type-2 (HER2)-targeted therapy in HER2-positive breast cancer (HER2 + BC) is a major clinical challenge that needs to be addressed. One of the main mechanisms of resistance includes aberrant activation of the HER2 and phosphatidylinositol 3-kinase/AKT8 virus oncogene cellular homolog/mammalian target of rapamycin (PI3K/Akt/mTOR) pathways. In the present work, we propose to use a triple combination therapy to combat this resistance phenomenon. Our strategy involves evaluation of two targeted small molecule agents, everolimus and dasatinib, with complementary inhibitory circuitries in the PI3K/Akt/mTOR pathway, along with a standard cytotoxic agent, paclitaxel. Everolimus inhibits mTOR, while dasatinib inhibits Src, which is a protein upstream of Akt. An over-activation of these two proteins has been implicated in approximately 50% of HER2 + BC cases. Hence, we hypothesize that their simultaneous inhibition may lead to enhanced cell-growth inhibition. Moreover, the potent apoptotic effects of paclitaxel may help augment the overall cytotoxicity of the proposed triple combination in HER2 + BC cells. To this end, we investigated experimentally and assessed computationally the in vitro pharmacodynamic drug-drug interactions of the various dual and triple combinations to assess their subsequent combinatorial effects (synergistic/additive/antagonistic) in a HER2-therapy resistant BC cell line, JIMT-1. Our proposed triple combination therapy demonstrated synergism in JIMT-1 cells, thus corroborating our hypothesis. This effort may form the basis for further investigation of the triple combination therapy in vivo at a mechanistic level in HER2-therapy resistant BC cells.
Collapse
|
156
|
Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J, Lee K. Activation of ERK and p38 Reduces AZD8055-Mediated Inhibition of Protein Synthesis in Hepatocellular Carcinoma HepG2 Cell Line. Int J Mol Sci 2021; 22:ijms222111824. [PMID: 34769253 PMCID: PMC8584319 DOI: 10.3390/ijms222111824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.
Collapse
Affiliation(s)
- Ha-yeon Jee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Yoon-Gyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Sol Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Hye-eun Seo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Ji-Yeon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Kyungho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3423; Fax: +82-2-3436-5432
| |
Collapse
|
157
|
Kordbacheh F, Farah CS. Current and Emerging Molecular Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13215471. [PMID: 34771633 PMCID: PMC8582411 DOI: 10.3390/cancers13215471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer affects nearly 750,000 patients, with more than 300,000 deaths annually. Advances in first line surgical treatment have improved survival rates marginally particularly in developed countries, however survival rates for aggressive locally advanced head and neck cancer are still poor. Recurrent and metastatic disease remains a significant problem for patients and the health system. As our knowledge of the genomic landscape of the head and neck cancers continues to expand, there are promising developments occurring in molecular therapies available for advanced or recalcitrant disease. The concept of precision medicine is underpinned by our ability to accurately sequence tumour samples to best understand individual patient genomic variations and to tailor targeted therapy for them based on such molecular profiling. Not only is their purported response to therapy a factor of their genomic variation, but so is their inclusion in biomarker-driven personalised medicine therapeutic trials. With the ever-expanding number of molecular druggable targets explored through advances in next generation sequencing, the number of clinical trials assessing these targets has significantly increased over recent years. Although some trials are focussed on first-line therapeutic approaches, a greater majority are focussed on locally advanced, recurrent or metastatic disease. Similarly, although single agent monotherapy has been found effective in some cases, it is the combination of drugs targeting different signalling pathways that seem to be more beneficial to patients. This paper outlines current and emerging molecular therapies for head and neck cancer, and updates readers on outcomes of the most pertinent clinical trials in this area while also summarising ongoing efforts to bring more molecular therapies into clinical practice.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Nedlands, WA 6009, Australia
- Genomics for Life, Milton, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6009, Australia
- Head and Neck Cancer Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Correspondence:
| |
Collapse
|
158
|
Pezzicoli G, Filoni E, Gernone A, Cosmai L, Rizzo M, Porta C. Playing the Devil's Advocate: Should We Give a Second Chance to mTOR Inhibition in Renal Clear Cell Carcinoma? - ie Strategies to Revert Resistance to mTOR Inhibitors. Cancer Manag Res 2021; 13:7623-7636. [PMID: 34675658 PMCID: PMC8500499 DOI: 10.2147/cmar.s267220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
In the last decade, the inhibition of the mechanistic target of Rapamycin (mTOR) in renal clear cell carcinoma (RCC) has disappointed the clinician's expectations. Many clinical trials highlighted the low efficacy and unmanageable safety profile of first-generation mTOR inhibitors (Rapalogs), thus limiting their use in the clinical practice only to those patients who already failed several therapy lines. In this review, we analyze the major resistance mechanisms that undermine the efficacy of this class of drugs. Moreover, we describe some of the possible strategies to overcome the mechanisms of resistance and their clinical experimentation, with particular focus on novel mTOR inhibitors and the combinations of mTOR inhibitors and other anti-cancer drugs.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Biomedical Sciences and Human Oncology, Post-Graduate School of Specialization in Medical Oncology, University of Bari 'A. Moro', Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Elisabetta Filoni
- Department of Biomedical Sciences and Human Oncology, Post-Graduate School of Specialization in Medical Oncology, University of Bari 'A. Moro', Bari, Italy.,Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Angela Gernone
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Laura Cosmai
- Onconephrology Outpatient Clinic, Division of Nephrology and Dialysis, A.S.S.T. Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, I.R.C.C.S. Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Camillo Porta
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.,Chair of Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Bari, Italy
| |
Collapse
|
159
|
Aranda-Tavío H, Recio C, Martín-Acosta P, Guerra-Rodríguez M, Brito-Casillas Y, Blanco R, Junco V, León J, Montero JC, Gandullo-Sánchez L, McNaughton-Smith G, Zapata JM, Pandiella A, Amesty A, Estévez-Braun A, Fernández-Pérez L, Guerra B. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother 2021; 144:112330. [PMID: 34673425 DOI: 10.1016/j.biopha.2021.112330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.
Collapse
Affiliation(s)
- Haidée Aranda-Tavío
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Miguel Guerra-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Juan Manuel Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" - CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
160
|
Lu M, Yu L, Yang Y, Zhu J, Qiang S, Wang X, Wang J, Tan X, Wang W, Zhang Y, Wang W, Xie J, Chen X, Wang H, Cui X, Ge X. Hayatine inhibits amino acid-induced mTORC1 activation as a novel mTOR-Rag A/C interaction disruptor. Biochem Biophys Res Commun 2021; 583:71-78. [PMID: 34735882 DOI: 10.1016/j.bbrc.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Abnormal activation of the mechanistic target of rapamycin (mTOR) signaling is commonly observed in many cancers and attracts extensive attention as an oncology drug discovery target, which is encouraged by the success of rapamycin and its analogs (rapalogs) in treatment of mTORC1-hyperactive cancers in both pre-clinic models and clinical trials. However, rapamycin and existing rapalogs have typically short-lasting partial responses due to drug resistance, thereby triggering our interest to investigate a potential mTORC1 inhibitor that is mechanistically different from rapamycin. Here, we report that hayatine, a derivative from Cissampelos, can serve as a potential mTORC1 inhibitor selected from a natural compound library. The unique properties owned by hayatine such as downregulation of mTORC1 activities, induction of mTORC1's translocation to lysosomes followed by autophagy, and suppression on cancer cell growth, strongly emphasize its role as a potential mTORC1 inhibitor. Mechanistically, we found that hayatine disrupts the interaction between mTORC1 complex and its lysosomal adaptor RagA/C by binding to the hydrophobic loop of RagC, leading to mTORC1 inhibition that holds great promise to overcome rapamycin resistance. Taken together, our data shed light on an innovative strategy using structural interruption-based mTORC1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Meiling Lu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Lei Yu
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Yanrong Yang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Jiali Zhu
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Sujing Qiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Xinbo Wang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Jia Wang
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Xiao Tan
- Cancer Center, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China
| | - Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Weichao Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, 200072, China
| | - Jian Xie
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Xinyan Chen
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Hongbing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China
| | - Xianghuan Cui
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200060, China.
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Medical School of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
161
|
Jeong M, Jeong MH, Kim JE, Cho S, Lee KJ, Park S, Sohn J, Park YG. TCTP protein degradation by targeting mTORC1 and signaling through S6K, Akt, and Plk1 sensitizes lung cancer cells to DNA-damaging drugs. Sci Rep 2021; 11:20812. [PMID: 34675258 PMCID: PMC8531033 DOI: 10.1038/s41598-021-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is expressed in many tissues, particularly in human tumors. It plays a role in malignant transformation, apoptosis prevention, and DNA damage repair. The signaling mechanisms underlying TCTP regulation in cancer are only partially understood. Here, we investigated the role of mTORC1 in regulating TCTP protein levels, thereby modulating chemosensitivity, in human lung cancer cells and an A549 lung cancer xenograft model. The inhibition of mTORC1, but not mTORC2, induced ubiquitin/proteasome-dependent TCTP degradation without a decrease in the mRNA level. PLK1 activity was required for TCTP ubiquitination and degradation and for its phosphorylation at Ser46 upon mTORC1 inhibition. Akt phosphorylation and activation was indispensable for rapamycin-induced TCTP degradation and PLK1 activation, and depended on S6K inhibition, but not mTORC2 activation. Furthermore, the minimal dose of rapamycin required to induce TCTP proteolysis enhanced the efficacy of DNA-damaging drugs, such as cisplatin and doxorubicin, through the induction of apoptotic cell death in vitro and in vivo. This synergistic cytotoxicity of these drugs was induced irrespective of the functional status of p53. These results demonstrate a new mechanism of TCTP regulation in which the mTORC1/S6K pathway inhibits a novel Akt/PLK1 signaling axis and thereby induces TCTP protein stabilization and confers resistance to DNA-damaging agents. The results of this study suggest a new therapeutic strategy for enhancing chemosensitivity in lung cancers regardless of the functional status of p53.
Collapse
Affiliation(s)
- Mini Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serin Cho
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serkin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
162
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
163
|
Xiao Y, Huck BR, Lan R, DeSelm L, Chen X, Qiu H, Neagu C, Johnson T, Mochalkin I, Gardberg A, Jiang X, Tian H, Dutt V, Santos D, Head J, Jackson J, Syed S, Lin J, Wilker E, Ma J, Clark A, Machl A, Bankston D, Jones CCV, Goutopoulos A, Sherer B. Discovery of 4-aminopyrimidine analogs as highly potent dual P70S6K/Akt inhibitors. Bioorg Med Chem Lett 2021; 50:128352. [PMID: 34481987 DOI: 10.1016/j.bmcl.2021.128352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/15/2022]
Abstract
Activation of the PI3K/Akt/mTOR kinase pathway is associated with human cancers. A dual p70S6K/Akt inhibitor is sufficient to inhibit strong tumor growth and to block negative impact of the compensatory Akt feedback loop activation. A scaffold docking strategy based on an existing quinazoline carboxamide series identified 4-aminopyrimidine analog 6, which showed a single-digit nanomolar and a micromolar potencies in p70S6K and Akt enzymatic assays. SAR optimization improved Akt enzymatic and p70S6K cellular potencies, reduced hERG liability, and ultimately discovered the promising candidate 37, which exhibited with a single digit nanomolar value in both p70S6K and Akt biochemical assays, and hERG activities (IC50 = 17.4 μM). This agent demonstrated dose-dependent efficacy in inhibiting mice breast cancer tumor growth and covered more than 90% pS6 inhibition up to 24 h at a dose of 200 mg/kg po.
Collapse
Affiliation(s)
- Yufang Xiao
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA.
| | - Bayard R Huck
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA.
| | - Ruoxi Lan
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Lizbeth DeSelm
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Xiaoling Chen
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Hui Qiu
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Constantin Neagu
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Theresa Johnson
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Igor Mochalkin
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Anna Gardberg
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Xuliang Jiang
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Hui Tian
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Vikram Dutt
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Dusica Santos
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jared Head
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jennifer Jackson
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Sakeena Syed
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jing Lin
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Erik Wilker
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Jianguo Ma
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Anderson Clark
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Andreas Machl
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Donald Bankston
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Christopher C V Jones
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Andreas Goutopoulos
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Brian Sherer
- EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| |
Collapse
|
164
|
DeSelm L, Huck B, Lan R, Neagu C, Potnick J, Xiao Y, Chen X, Jones R, Richardson TE, Heasley BH, Haxell T, Moore J, Tian H, Georgi K, Rohdich F, Sutton A, Johnson T, Mochalkin I, Jackson J, Lin J, Crowley L, Machl A, Clark A, Wilker E, Sherer B, Goutopoulos A. Identification of Clinical Candidate M2698, a Dual p70S6K and Akt Inhibitor, for Treatment of PAM Pathway-Altered Cancers. J Med Chem 2021; 64:14603-14619. [PMID: 34596404 DOI: 10.1021/acs.jmedchem.1c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we report the discovery of a novel class of quinazoline carboxamides as dual p70S6k/Akt inhibitors for the treatment of tumors driven by alterations to the PI3K/Akt/mTOR (PAM) pathway. Through the screening of in-house proprietary kinase library, 4-benzylamino-quinazoline-8-carboxylic acid amide 1 stood out, with sub-micromolar p70S6k biochemical activity, as the starting point for a structurally enabled p70S6K/Akt dual inhibitor program that led to the discovery of M2698, a dual p70S6k/Akt inhibitor. M2698 is kinase selective, possesses favorable physical, chemical, and DMPK profiles, is orally available and well tolerated, and displayed tumor control in multiple in vivo studies of PAM pathway-driven tumors.
Collapse
Affiliation(s)
- Lizbeth DeSelm
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Bayard Huck
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Ruoxi Lan
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Constantin Neagu
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Justin Potnick
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Yufang Xiao
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Xiaoling Chen
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Reinaldo Jones
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Thomas E Richardson
- SCYNEXIS, Inc., 1 Evertrust Plaza, 13th Floor, Jersey City, New Jersey 07302, United States
| | - Brian H Heasley
- SCYNEXIS, Inc., 1 Evertrust Plaza, 13th Floor, Jersey City, New Jersey 07302, United States
| | - Thomas Haxell
- SCYNEXIS, Inc., 1 Evertrust Plaza, 13th Floor, Jersey City, New Jersey 07302, United States
| | - Joseph Moore
- SCYNEXIS, Inc., 1 Evertrust Plaza, 13th Floor, Jersey City, New Jersey 07302, United States
| | - Hui Tian
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Katrin Georgi
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Felix Rohdich
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Amanda Sutton
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Theresa Johnson
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Igor Mochalkin
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Jennifer Jackson
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Jing Lin
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Lindsey Crowley
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Andreas Machl
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Anderson Clark
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Erik Wilker
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Brian Sherer
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| | - Andreas Goutopoulos
- Discovery Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
165
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
166
|
Zhang Y, Shi X, Xie X, Laster KV, Pang M, Liu K, Hwang J, Kim DJ. Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR. Phytother Res 2021; 35:6377-6388. [PMID: 34545650 DOI: 10.1002/ptr.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Harmaline is a naturally occurring β-carboline alkaloid that is isolated from Peganum harmala. It has shown efficacy in treating Parkinson's disease and has been reported to exhibit antimicrobial and anticancer properties. However, the molecular mechanism of harmaline in the context of esophageal squamous cell carcinoma (ESCC) has not been characterized. Here, we report that harmaline attenuates ESCC growth by directly targeting the mammalian target of rapamycin (mTOR). Harmaline strongly reduced cell proliferation and anchorage-independent cell growth. Additionally, harmaline treatment induced G2/M phase cell-cycle arrest through upregulation of p27. The results of in vitro and cell-based assays showed that harmaline directly inhibited the activity of mTOR kinase and the phosphorylation of its downstream pathway components. Depletion of mTOR using an shRNA-mediated strategy in ESCC cell lines indicated that reduced mTOR protein expression levels are correlated with decreased cell proliferation. Additionally, we observed that the inhibitory effect of harmaline was dependent upon mTOR expression. Notably, oral administration of harmaline suppressed ESCC patient-derived tumor growth in vivo. Taken together, harmaline is a potential mTOR inhibitor that might be used for therapeutically treating ESCC.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mengjun Pang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Joonsung Hwang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Anticancer Agent Research Center, Cheongju, Republic of Korea
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
167
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
168
|
Heimhalt M, Berndt A, Wagstaff J, Anandapadamanaban M, Perisic O, Maslen S, McLaughlin S, Yu CWH, Masson GR, Boland A, Ni X, Yamashita K, Murshudov GN, Skehel M, Freund SM, Williams RL. Bipartite binding and partial inhibition links DEPTOR and mTOR in a mutually antagonistic embrace. eLife 2021; 10:e68799. [PMID: 34519269 PMCID: PMC8439657 DOI: 10.7554/elife.68799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.
Collapse
Affiliation(s)
- Maren Heimhalt
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Alex Berndt
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Jane Wagstaff
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Olga Perisic
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sarah Maslen
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | - Glenn R Masson
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Andreas Boland
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Xiaodan Ni
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | | |
Collapse
|
169
|
A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells 2021; 10:cells10092391. [PMID: 34572040 PMCID: PMC8471927 DOI: 10.3390/cells10092391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.
Collapse
|
170
|
Maniam S, Maniam S. Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22189722. [PMID: 34575883 PMCID: PMC8465612 DOI: 10.3390/ijms22189722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| |
Collapse
|
171
|
Buron F, Rodrigues N, Saurat T, Hiebel MA, Bourg S, Bonnet P, Nehmé R, Morin P, Percina N, Corret J, Vallée B, le Guevel R, Jourdan ML, Bénédetti H, Routier S. Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2- d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors. Molecules 2021; 26:molecules26175349. [PMID: 34500781 PMCID: PMC8434050 DOI: 10.3390/molecules26175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.
Collapse
Affiliation(s)
- Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Nuno Rodrigues
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Thibault Saurat
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Marie Aude Hiebel
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Philippe Morin
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Nathalie Percina
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
| | - Justine Corret
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
| | - Remy le Guevel
- Campus de Villejean, ImPACcell, Structure Fédérative de Recherche BIOSIT, Université de Rennes 1, Bat 8, 2 Avenue du Pr. Leon Bernard, CS34317, 35043 Rennes, France;
| | - Marie-Lise Jourdan
- Nutrition Croissance et Métabolisme, N2C, INSERM U1069, CHU Tours, Faculté de Médecine, 10 boulevard Tonnellé, 37032 Tours, France;
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS Orléans, Rue Charles Sadron, 45071 Orléans, France; (J.C.); (B.V.)
- Correspondence: (H.B.); (S.R.); Tel.: +33-(0)2-38-49-48-53 (S.R.)
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans, France; (F.B.); (N.R.); (T.S.); (M.A.H.); (S.B.); (P.B.); (R.N.); (P.M.); (N.P.)
- Correspondence: (H.B.); (S.R.); Tel.: +33-(0)2-38-49-48-53 (S.R.)
| |
Collapse
|
172
|
Targeting PI3K Pathway in Pancreatic Ductal Adenocarcinoma: Rationale and Progress. Cancers (Basel) 2021; 13:cancers13174434. [PMID: 34503244 PMCID: PMC8430624 DOI: 10.3390/cancers13174434] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains among the deadliest solid tumors that remain treatment-refractory and show a dismal prognosis. More than 90% of PDAC tumors harbor mutations in the K-Ras that exert a strong pro-tumorigenic effect by activating several downstream effector pathways, including phosphatidylinositol-3-kinase (PI3K)-Akt. The role of frequently activated PI3K/Akt pathway in promoting PDAC aggressiveness is well established. Therapeutic approaches targeting PI3K and downstream signaling components in different cellular compartments, including tumor, stromal and immune cells, have directly impacted the tumor burden in this cancer type. Our previous work has demonstrated that targeting the PI3K/Akt/mTOR pathway reduced tumor growth and improved survival in the genetic mouse model of PDAC. Here, we discuss the significance of targeting PI3K signaling and the biological impact of PI3K inhibition in modulating the tumor-stromal immune crosstalk within the microenvironment of pancreatic cancer. Furthermore, this review updates on the current challenges involving the therapeutic implications of targeting this pathway in PDAC.
Collapse
|
173
|
Comito F, Marchese PV, Ricci AD, Tober N, Peterle C, Sperandi F, Melotti B. Systemic and liver-directed therapies in metastatic uveal melanoma: state-of-the-art and novel perspectives. Future Oncol 2021; 17:4583-4606. [PMID: 34431316 DOI: 10.2217/fon-2021-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metastatic uveal melanoma (MUM) is the most common form of noncutaneous melanoma. It is different from its cutaneous counterpart and is characterized by a very poor prognosis. Despite groundbreaking improvements in the treatment of cutaneous melanoma, there have been few advances in the treatment of MUM, and standard treatments for MUM have not been defined. We performed a systematic review focusing our attention on all interventional studies, ongoing or already published, concerning the treatment of MUM. We present results from studies of chemotherapy, targeted therapy, immunotherapy and liver-directed therapies. Although the results in this setting have been disappointing until now, trials investigating novel immunotherapeutic strategies alone and in combination with targeted agents and liver-directed therapies are ongoing.
Collapse
Affiliation(s)
- Francesca Comito
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna.,Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Paola Valeria Marchese
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Nastassja Tober
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Chiara Peterle
- Department of Experimental, Diagnostic & Specialty Medicine, S. Orsola-Malpighi University Hospital of Bologna 40138, Italy
| | - Francesca Sperandi
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Barbara Melotti
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| |
Collapse
|
174
|
Alves CL, Ehmsen S, Terp MG, Portman N, Tuttolomondo M, Gammelgaard OL, Hundebøl MF, Kaminska K, Johansen LE, Bak M, Honeth G, Bosch A, Lim E, Ditzel HJ. Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nat Commun 2021; 12:5112. [PMID: 34433817 PMCID: PMC8387387 DOI: 10.1038/s41467-021-25422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) combined with endocrine therapy have shown impressive efficacy in estrogen receptor-positive advanced breast cancer. However, most patients will eventually experience disease progression on this combination, underscoring the need for effective subsequent treatments or better initial therapies. Here, we show that triple inhibition with fulvestrant, CDK4/6i and AKT inhibitor (AKTi) durably impairs growth of breast cancer cells, prevents progression and reduces metastasis of tumor xenografts resistant to CDK4/6i-fulvestrant combination or fulvestrant alone. Importantly, switching from combined fulvestrant and CDK4/6i upon resistance to dual combination with AKTi and fulvestrant does not prevent tumor progression. Furthermore, triple combination with AKTi significantly inhibits growth of patient-derived xenografts resistant to combined CDK4/6i and fulvestrant. Finally, high phospho-AKT levels in metastasis of breast cancer patients treated with a combination of CDK4/6i and endocrine therapy correlates with shorter progression-free survival. Our findings support the clinical development of ER, CDK4/6 and AKT co-targeting strategies following progression on CDK4/6i and endocrine therapy combination, and in tumors exhibiting high phospho-AKT levels, which are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Martina Tuttolomondo
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Monique F Hundebøl
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kamila Kaminska
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Sydvestjysk Sygehus, Esbjerg, Denmark
| | - Gabriella Honeth
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
175
|
Tong M, Wong TL, Zhao H, Zheng Y, Xie YN, Li CH, Zhou L, Che N, Yun JP, Man K, Lee TKW, Cai Z, Ma S. Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Rep 2021; 36:109617. [PMID: 34433044 DOI: 10.1016/j.celrep.2021.109617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The liver plays central roles in coordinating different metabolic processes, such as the catabolism of amino acids. In this study, we identify a loss of tyrosine catabolism and a concomitant increase in serum tyrosine levels during liver cancer development. Liver cells with disordered tyrosine catabolism, as exemplified by the suppression of a tyrosine catabolic enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), display augmented tumorigenic and proliferative potentials. Metabolomics profiling and isotope tracing reveal the metabolic reliance of HPD-silenced cells on glutamine, coupled with increased tricarboxylic acid cycle metabolites and their associated amino acid pools. Mechanistically, HPD silencing reduces ketone bodies, which regulate the proliferative and metabolic phenotypes via the AMPK/mTOR/p70S6 kinase pathway and mTOR-dependent glutaminase (GLS) activation. Collectively, our results demonstrate a metabolic link between tyrosine and glutamine metabolism, which could be exploited as a potentially promising anticancer therapy for liver cancer.
Collapse
Affiliation(s)
- Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yu-Nong Xie
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Hin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Noélia Che
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kwan Man
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
176
|
Tsimberidou AM, Shaw JV, Juric D, Verschraegen C, Weise AM, Sarantopoulos J, Lopes G, Nemunaitis J, Mita M, Park H, Ellers-Lenz B, Tian H, Xiong W, Kaleta R, Kurzrock R. Phase 1 study of M2698, a p70S6K/AKT dual inhibitor, in patients with advanced cancer. J Hematol Oncol 2021; 14:127. [PMID: 34407844 PMCID: PMC8371902 DOI: 10.1186/s13045-021-01132-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The PI3K/AKT/mTOR (PAM) pathway is a key regulator of tumor therapy resistance. We investigated M2698, an oral p70S6K/AKT dual inhibitor, in patients with advanced cancer who failed standard therapies. METHODS M2698 was administered as monotherapy (escalation, 15-380 mg daily; food effect cohort, 240-320 mg daily) and combined with trastuzumab or tamoxifen. RESULTS Overall, 101 patients were treated (M2698, n = 62; M2698/trastuzumab, n = 13; M2698/tamoxifen, n = 26). Patients were predominantly aged < 65 years, were female, had performance status 1 and were heavily pretreated. There was a dose- and concentration-dependent inhibition of pS6 levels in peripheral blood mononuclear cells and tumor tissue. M2698 was well tolerated; the most common treatment-emergent adverse events were gastrointestinal, abnormal dreams and fatigue (serious, attributed to M2698: monotherapy, 8.1%; M2698/trastuzumab, 7.7%; M2698/tamoxifen, 11.5% of patients). The recommended phase 2 doses of M2698 were 240 mg QD (monotherapy), 160 mg QD (M2698/trastuzumab) and 160 mg QD/240 mg intermittent regimen (M2698/tamoxifen). In the monotherapy cohort, 27.4% of patients had stable disease at 12 weeks; no objective response was noted. The median progression-free survival (PFS) durations in patients with PAM pathway alterations with and without confounding markers (KRAS, EGFR, AKT2) were 1.4 months and 2.8 months, respectively. Two patients with breast cancer (M2698/trastuzumab, n = 1; M2698/tamoxifen, n = 1) had partial response; their PFS durations were 31 months and 2.7 months, respectively. CONCLUSIONS M2698 was well tolerated. Combined with trastuzumab or tamoxifen, M2698 demonstrated antitumor activity in patients with advanced breast cancer resistant to multiple standard therapies, suggesting that it could overcome treatment resistance. Trial registration ClinicalTrials.gov, NCT01971515. Registered October 23, 2013.
Collapse
Affiliation(s)
- Apostolia-Maria Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Jamie V Shaw
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Dejan Juric
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - John Sarantopoulos
- Institute for Drug Development, Mays Cancer Center at University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | | | | | - Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Hui Tian
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Wenyuan Xiong
- Merck Institute of Pharmacometrics, Merck Serono SA, Lausanne, Switzerland
| | - Remigiusz Kaleta
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | | |
Collapse
|
177
|
Grosso S, Marini A, Gyuraszova K, Voorde JV, Sfakianos A, Garland GD, Tenor AR, Mordue R, Chernova T, Morone N, Sereno M, Smith CP, Officer L, Farahmand P, Rooney C, Sumpton D, Das M, Teodósio A, Ficken C, Martin MG, Spriggs RV, Sun XM, Bushell M, Sansom OJ, Murphy D, MacFarlane M, Le Quesne JPC, Willis AE. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun 2021; 12:4920. [PMID: 34389715 PMCID: PMC8363647 DOI: 10.1038/s41467-021-25173-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.
Collapse
Affiliation(s)
- Stefano Grosso
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Alberto Marini
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | | | | | - Gavin D Garland
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ryan Mordue
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Nobu Morone
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Marco Sereno
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Claire P Smith
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Leah Officer
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Claire Rooney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Madhumita Das
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ana Teodósio
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Catherine Ficken
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Maria Guerra Martin
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| | - John P C Le Quesne
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, Groby Road, University Hospitals Leicester NHS Trust Leicester, Leicester, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| |
Collapse
|
178
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
179
|
Insulin Receptor Substrate 1 Is Involved in the Phycocyanin-Mediated Antineoplastic Function of Non-Small Cell Lung Cancer Cells. Molecules 2021; 26:molecules26164711. [PMID: 34443299 PMCID: PMC8401963 DOI: 10.3390/molecules26164711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Phycocyanin, derived from marine algae, is known to have noteworthy antineoplastic properties. However, the underlying mechanism involved in phycocyanin-mediated anti-growth function on non-small cell lung cancer (NSCLC) cells is still ambiguous. Here, we investigated the mechanism of action of phycocyanin on H1299, A549, and LTEP-a2 cells. According to the results obtained, insulin receptor substrate 1 (IRS-1) expression was reduced by phycocyanin. Cell phenotype tests showed that siRNA knockdown of IRS-1 expression significantly inhibited the growth, migration, colony formation, but promoted the apoptosis of NSCLC cells. Meanwhile, phycocyanin and IRS-1 siRNA treatment both reduced the PI3K-AKT activities in NSCLC cells. Moreover, overexpression of IRS-1 accelerated the proliferation, colony formation, and migration rate of H1299, A549, and LTEP-a2 cells, which was contradicting to the knockdown results. Overall, this study uncovered a regulatory mechanism by which phycocyanin inhibited the growth of NSCLC cells via IRS-1/AKT pathway, laying the foundation for the potential target treatment of NSCLC.
Collapse
|
180
|
Lee HJ, Shin DH, Song JS, Park JY, Kim SY, Hwang CS, Na JY, Lee JH, Kim JY, Park SW, Sol MY. mTOR Inhibition Increases Transcription Factor E3 (TFE3) Activity and Modulates Programmed Death-Ligand 1 (PD-L1) Expression in Translocation Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1999-2008. [PMID: 34358517 DOI: 10.1016/j.ajpath.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
The efficacy of programmed cell death protein ligand (PD-L)-1/PD-1 checkpoint blockade in renal cell carcinoma (RCC) remains unknown. The effects of mTOR inhibitors are uncertain, and patients may develop resistance to them. The limited understanding of cancer cell-intrinsic mTOR-mediated pathways remains a challenge in developing effective treatments. Whether transcription factor (TF)-E3 regulates PD-L1 expression and the tumor microenvironment was investigated, and the effects of an mammalian target of rapamycin (mTOR) inhibitor on translocation RCC were explored. TFE3 was overexpressed in clear cell RCC cell lines, and PD-L1 expression was analyzed by Western blot analysis. PD-L1 activity in relation to TFE3 expression in translocation RCC was also analyzed, via TFE3 knockdown and treatment with an mTOR inhibitor. The results were correlated with the gene expression profile, evaluated using digital multiplex analysis. TFE3 and PD-L1 expression were positively correlated in RCC cells. TFE3 overexpression was associated with the expression of PD-L1 in RCC. Furthermore, mTOR inhibition was associated with enhanced PD-L1 expression via TFE3 activation in translocation RCC. These data support the feasibility of combination therapy based on mTOR inhibition and PD-L1 blockade as a novel strategy for the treatment of patients with translocation RCC.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea; The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| | - Ji Sun Song
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Joon Young Park
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - So Young Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Chung Su Hwang
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ju-Young Na
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jung Hee Lee
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jee Yeon Kim
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sung Woo Park
- Department of Urology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mee Young Sol
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
181
|
Hijioka S, Morizane C, Ikeda M, Ishii H, Okusaka T, Furuse J. Current status of medical treatment for gastroenteropancreatic neuroendocrine neoplasms and future perspectives. Jpn J Clin Oncol 2021; 51:1185-1196. [PMID: 34038547 PMCID: PMC8326384 DOI: 10.1093/jjco/hyab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumors. In this review, we summarize the results of various clinical trials that have been conducted to investigate the efficacy and safety of various therapeutic options for NENs. Based on the encouraging results obtained from these trials, various therapeutic options have been established for the treatment of NENs, including somatostatin analogs (SSAs), molecularly targeted drugs and cytotoxic agents. In addition, peptide receptor radionucleotide therapy has recently been evaluated for the treatment of various NENs. We also discuss the approach for selecting the appropriate drugs and sequence of treatment with the various drug classes, as recommended by different treatment guidelines. Finally, we discuss the scope for future research in this field, especially into the merits of combination therapy with molecularly targeted drugs plus SSAs, along with ongoing studies.
Collapse
Affiliation(s)
- Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Ishii
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
182
|
Ceccarelli M, D'Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, Papoff G, Tirone F. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1 +/-/Tis21 KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol 2021; 11:692053. [PMID: 34395258 PMCID: PMC8362831 DOI: 10.3389/fonc.2021.692053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously generated a mouse model (Ptch1+/−/Tis21KO), which displays high frequency spontaneous medulloblastoma, a pediatric tumor of the cerebellum. Early postnatal cerebellar granule cell precursors (GCPs) of this model show, in consequence of the deletion of Tis21, a defect of the Cxcl3-dependent migration. We asked whether this migration defect, which forces GCPs to remain in the proliferative area at the cerebellar surface, would be the only inducer of their high frequency transformation. In this report we show, by further bioinformatic analysis of our microarray data of Ptch1+/−/Tis21KO GCPs, that, in addition to the migration defect, they show activation of the PI3K/AKT/mTOR pathway, as the mRNA levels of several activators of this pathway (e.g., Lars, Rraga, Dgkq, Pdgfd) are up-regulated, while some inhibitors (e.g. Smg1) are down-regulated. No such change is observed in the Ptch1+/− or Tis21KO background alone, indicating a peculiar synergy between these two genotypes. Thus we investigated, by mRNA and protein analysis, the role of PI3K/AKT/mTOR signaling in MBs and in nodules from primary Ptch1+/−/Tis21KO MB allografted in the flanks of immunosuppressed mice. Activation of the PI3K/AKT/mTOR pathway is seen in full-blown Ptch1+/−/Tis21KO MBs, relative to Ptch1+/−/Tis21WT MBs. In Ptch1+/−/Tis21KO MBs we observe that the proliferation of neoplastic GCPs increases while apoptosis decreases, in parallel with hyper-phosphorylation of the mTOR target S6, and, to a lower extent, of AKT. In nodules derived from primary Ptch1+/−/Tis21KO MBs, treatment with MEN1611, a novel PI3K inhibitor, causes a dramatic reduction of tumor growth, inhibiting proliferation and, conversely, increasing apoptosis, also of tumor CD15+ stem cells, responsible for long-term relapses. Additionally, the phosphorylation of AKT, S6 and 4EBP1 was significantly inhibited, indicating inactivation of the PI3K/AKT/mTOR pathway. Thus, PI3K/AKT/mTOR pathway activation contributes to Ptch1+/−/Tis21KO MB development and to high frequency tumorigenesis, observed when the Tis21 gene is down-regulated. MEN1611 could provide a promising therapy for MB, especially for patient with down-regulation of Btg2 (human ortholog of the murine Tis21 gene), which is frequently deregulated in Shh-type MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | | | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
183
|
Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:586-602. [PMID: 32418525 DOI: 10.2174/1570163817666200518081955] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer accounting for 15-20% of cases and is defined by the lack of hormonal receptors viz., estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth receptor 2 (HER2). Treatment of TNBC is more challenging than other subtypes of breast cancer due to the lack of markers for the molecularly targeted therapies (ER, PR, and HER-2/ Neu), the conventional chemotherapeutic agents are still the mainstay of the therapeutic protocols of its patients. Despite, TNBC being more chemo-responsive than other subtypes, unfortunately, the initial good response to the chemotherapy eventually turns into a refractory drug-resistance. Using a monotherapy for the treatment of cancer, especially high-grade tumors like TNBC, is mostly worthless due to the inherent genetic instability of tumor cells to develop intrinsic and acquired resistance. Thus, a cocktail of two or more drugs with different mechanisms of action is more effective and could successfully control the disease. Furthermore, combination therapy reveals more, or at least the same, effectiveness with lower doses of every single agent and decreases the likelihood of chemoresistance. Herein, we shed light on the novel combinatorial approaches targeting PARP, EGFR, PI3K pathway, AR, and wnt signaling, HDAC, MEK pathway for efficient treatment of high-grade tumors like TNBC and decreasing the onset of resistance.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Basharat Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nissar A Wani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
184
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
185
|
The Small-Molecule Inhibitor MRIA9 Reveals Novel Insights into the Cell Cycle Roles of SIK2 in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13153658. [PMID: 34359562 PMCID: PMC8345098 DOI: 10.3390/cancers13153658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The current standard therapy of ovarian cancers comprises a reductive surgery followed by a combination of taxane-platinum-based primary chemotherapy. However, despite an initial positive response, patients in the advanced stage showed relapse within months or even weeks. Thus, there is a need to find combinatorial therapies that permit overcoming the paclitaxel-associated resistance in patients. Here, we found that MRIA9, a newly developed small-molecule inhibitor of the salt-inducible-kinase 2, interferes with the cell division of cancer cells. More importantly, MRIA9 increases paclitaxel efficiency in eliminating ovarian cancer cells and patient derived cancer cells by inducing apoptosis or programmed cell death. Thus, our study indicates that MRIA9 might represent a novel therapeutical tool for translational studies to overcome paclitaxel resistance in ovarian cancer. Abstract The activity of the Salt inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK)-related kinase family, has been linked to several biological processes that maintain cellular and energetic homeostasis. SIK2 is overexpressed in several cancers, including ovarian cancer, where it promotes the proliferation of metastases. Furthermore, as a centrosome kinase, SIK2 has been shown to regulate the G2/M transition, and its depletion sensitizes ovarian cancer to paclitaxel-based chemotherapy. Here, we report the consequences of SIK2 inhibition on mitosis and synergies with paclitaxel in ovarian cancer using a novel and selective inhibitor, MRIA9. We show that MRIA9-induced inhibition of SIK2 blocks the centrosome disjunction, impairs the centrosome alignment, and causes spindle mispositioning during mitosis. Furthermore, the inhibition of SIK2 using MRIA9 increases chromosomal instability, revealing the role of SIK2 in maintaining genomic stability. Finally, MRIA9 treatment enhances the sensitivity to paclitaxel in 3D-spheroids derived from ovarian cancer cell lines and ovarian cancer patients. Our study suggests selective targeting of SIK2 in ovarian cancer as a therapeutic strategy for overcoming paclitaxel resistance.
Collapse
|
186
|
Gandhi N, Oturkar CC, Das GM. Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer. Cancers (Basel) 2021; 13:3612. [PMID: 34298826 PMCID: PMC8306694 DOI: 10.3390/cancers13143612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Luminal breast cancer (LBC) driven by dysregulated estrogen receptor-alpha (ERα) signaling accounts for 70% of the breast cancer cases diagnosed. Although endocrine therapy (ET) is effective against LBC, about one-third of these patients fail to respond to therapy owing to acquired or inherent resistance mechanisms. Aberrant signaling via ERα, oncogenes, growth factor receptors, and mutations in tumor suppressors such as p53 impinge on downstream regulators such as AMPK and mTOR. While both AMPK and mTOR have been reported to play important roles in determining sensitivity of LBC to ET, how the ERα-p53 crosstalk impinges on regulation of AMPK and mTOR, thereby influencing therapeutic efficacy remains unknown. Here, we have addressed this important issue using isogenic breast cancer cell lines, siRNA-mediated RNA knockdown, and different modes of drug treatments. Interaction of p53 with ERα and AMPK was determined by in situ proximity ligation assay (PLA), and endogenous gene transcripts were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Further, the effect of concurrent and sequential administration of Fulvestrant-Everolimus combination on colony formation was determined. The studies showed that in cells expressing wild type p53, as well as in cells devoid of p53, ERα represses AMPK, whereas in cells harboring mutant p53, repression of AMPK is sustained even in the absence of ERα. AMPK is a major negative regulator of mTOR, and to our knowledge, this is the first study on the contribution of AMPK-dependent regulation of mTOR by ERα. Furthermore, the studies revealed that independent of the p53 mutation status, combination of Fulvestrant and Everolimus may be a viable first line therapeutic strategy for potentially delaying resistance of ERα+/HER2- LBC to ET.
Collapse
Affiliation(s)
| | | | - Gokul M. Das
- Center for Genetics & Pharmacology, Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.G.); (C.C.O.)
| |
Collapse
|
187
|
Terren C, Nisolle M, Munaut C. Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. J Ovarian Res 2021; 14:95. [PMID: 34275490 PMCID: PMC8287691 DOI: 10.1186/s13048-021-00846-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cryopreservation and transplantation of ovarian tissue (OTCTP) represent a promising fertility preservation technique for prepubertal patients or for patients requiring urgent oncological management. However, a major obstacle of this technique is follicle loss due to, among others, accelerated recruitment of primordial follicles during the transplantation process, leading to follicular reserve loss in the graft and thereby potentially reducing its lifespan. This study aimed to assess how cryopreservation itself impacts follicle activation. RESULTS Western blot analysis of the PI3K/PTEN/Akt and mTOR signalling pathways showed that they were activated in mature or juvenile slow-frozen murine ovaries compared to control fresh ovaries. The use of pharmacological inhibitors of follicle signalling pathways during the cryopreservation process decreased cryopreservation-induced follicle recruitment. The second aim of this study was to use in vitro organotypic culture of cryopreserved ovaries and to test pharmacological inhibitors of the PI3K/PTEN/Akt and mTOR pathways. In vitro organotypic culture-induced activation of the PI3K/PTEN/Akt pathway is counteracted by cryopreservation with rapamycin and in vitro culture in the presence of LY294002. These results were confirmed by follicle density quantifications. Indeed, follicle development is affected by in vitro organotypic culture, and PI3K/PTEN/Akt and mTOR pharmacological inhibitors preserve primordial follicle reserve. CONCLUSIONS Our findings support the hypothesis that inhibitors of mTOR and PI3K might be an attractive tool to delay primordial follicle activation induced by cryopreservation and culture, thus preserving the ovarian reserve while retaining follicles in a functionally integrated state.
Collapse
Affiliation(s)
- Carmen Terren
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Tour de Pathologie (B23), Site Sart-Tilman, Building 23/4, Avenue Hippocrate, 13, 4000, Liege, Belgium
| | - Michelle Nisolle
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Tour de Pathologie (B23), Site Sart-Tilman, Building 23/4, Avenue Hippocrate, 13, 4000, Liege, Belgium.,Department of Obstetrics and Gynecology, Hôpital de La Citadelle, University of Liège, B-4000, Liège, Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Tour de Pathologie (B23), Site Sart-Tilman, Building 23/4, Avenue Hippocrate, 13, 4000, Liege, Belgium.
| |
Collapse
|
188
|
Colombo I, Genta S, Martorana F, Guidi M, Frattini M, Samartzis EP, Brandt S, Gaggetta S, Moser L, Pascale M, Terrot T, Sessa C, Stathis A. Phase I Dose-Escalation Study of the Dual PI3K-mTORC1/2 Inhibitor Gedatolisib in Combination with Paclitaxel and Carboplatin in Patients with Advanced Solid Tumors. Clin Cancer Res 2021; 27:5012-5019. [PMID: 34266890 DOI: 10.1158/1078-0432.ccr-21-1402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study evaluated safety, tolerability, pharmacokinetics, and preliminary activity of the PI3K/mTORC1/2 dual inhibitor gedatolisib combined with carboplatin and paclitaxel. PATIENTS AND METHODS Patients with advanced solid tumors treated with ≤ 2 prior chemotherapies received intravenous gedatolisib on days 1, 8, 15, and 22 (95, 110, or 130 mg according to dose level); carboplatin (AUC5) on day 8 (day 1 following protocol amendment); and paclitaxel at 80 mg/m2 on days 8, 15, and 22 (1, 8, and 15 after amendment), every 28 days. Patients without progressive disease after cycle 6 received maintenance gedatolisib until progression. RESULTS Seventeen patients were enrolled [11 ovarian (10 clear cell ovarian cancer, CCOC), 4 endometrial, 2 lung cancers]. Median number of prior chemotherapies was 1 (range, 0-2). Median number of administered cycles was 6 (range, 2-16). Dose-limiting toxicities occurred in 4 patients: 2 (cycle 2 delay due to G2-G3 neutropenia) at 110 mg leading to a change in the treatment schedule, 2 at 130 mg (G2 mucositis causing failure to deliver ≥ 75% of gedatolisib at cycle 1). The recommended phase II dose is gedatolisib 110 mg on days 1, 8, 15, and 22 with carboplatin AUC5 on day 1 and paclitaxel 80 mg/m2 on days 1, 8, and 15. The most frequent ≥G3 treatment-related adverse events were neutropenia (35%), anemia (18%), and mucositis (12%). The overall response rate was 65% (80% in CCOC). Pharmacokinetic parameters of gedatolisib were consistent with single-agent results. CONCLUSIONS Gedatolisib combined with carboplatin and paclitaxel is tolerable, and preliminary efficacy was observed especially in CCOC.
Collapse
Affiliation(s)
- Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Sofia Genta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Federica Martorana
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milo Frattini
- Molecular Pathology Laboratory, Cantonal Institute of Pathology, Locarno, Switzerland
| | | | - Simone Brandt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sheila Gaggetta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Laura Moser
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
189
|
Li H, Prever L, Hirsch E, Gulluni F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers (Basel) 2021; 13:3517. [PMID: 34298731 PMCID: PMC8304822 DOI: 10.3390/cancers13143517] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the primary cause of cancer death in women worldwide. Although early diagnosis and cancer growth inhibition has significantly improved breast cancer survival rate over the years, there is a current need to develop more effective systemic treatments to prevent metastasis. One of the most commonly altered pathways driving breast cancer cell growth, survival, and motility is the PI3K/AKT/mTOR signaling cascade. In the past 30 years, a great surge of inhibitors targeting these key players has been developed at a rapid pace, leading to effective preclinical studies for cancer therapeutics. However, the central role of PI3K/AKT/mTOR signaling varies among diverse biological processes, suggesting the need for more specific and sophisticated strategies for their use in cancer therapy. In this review, we provide a perspective on the role of the PI3K signaling pathway and the most recently developed PI3K-targeting breast cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (H.L.); (L.P.); (E.H.)
| |
Collapse
|
190
|
van der Ploeg P, Uittenboogaard A, Thijs AMJ, Westgeest HM, Boere IA, Lambrechts S, van de Stolpe A, Bekkers RLM, Piek JMJ. The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecol Oncol 2021; 163:433-444. [PMID: 34253390 DOI: 10.1016/j.ygyno.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the clinical benefit of monotherapy with PI3K/AKT/mTOR inhibitors in patients diagnosed with advanced or recurrent ovarian cancer and to investigate the predictive value of current PI3K/AKT/mTOR biomarkers on therapy response. METHODS A systematic search was conducted in PubMed, Embase and the Cochrane Library for articles reporting on treatment with PI3K/AKT/mTOR inhibitors in ovarian cancer. The primary endpoint was defined as the clinical benefit rate (CBR), including the proportion of patients with complete (CR) and partial response (PR) and stable disease (SD). Secondary endpoints included the overall response rate (ORR, including CR and PR) and drug-related grade 3 and 4 adverse events. RESULTS We included 233 patients from 19 studies and observed a pooled CBR of 32% (95% CI 20-44%) and ORR of 3% (95% CI 0-6%) in advanced or recurrent ovarian cancer patients treated with PI3K/AKT/mTOR inhibitors. Subgroup analysis tended to favor the studies who selected patients based on current PI3K/AKT/mTOR biomarker criteria (e.g. genomic alterations or loss of PTEN protein expression), but the difference in CBR was not statistically significant from studies with unselected populations (respectively, CBR of 42% (95% CI 23-62%) and 27% (95% CI 14-42%), P = 0.217). To better reflect true patient benefit, we excluded SD <6 months as a beneficial outcome which resulted in a pooled CBR of 7% (95% CI 2-13%). The overall proportion of patients with drug-related grade 3 and 4 adverse events was 36%. CONCLUSIONS The efficacy of monotherapy with PI3K/AKT/mTOR inhibitors in advanced recurrent ovarian cancer patients is limited to a small subgroup and selection of patients with the use of current biomarkers did not improved the CBR significantly. Given the toxicity profile, we suggest that current treatment with PI3K/AKT/mTOR inhibitors should not be initiated unless in clinical trials. Furthermore, improved biomarkers to measure functional PI3K/AKT/mTOR pathway activity are needed to optimize patient selection.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Aniek Uittenboogaard
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Anna M J Thijs
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | | | - Ingrid A Boere
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Ruud L M Bekkers
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
191
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
192
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
193
|
Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity. PLoS Genet 2021; 17:e1009651. [PMID: 34197453 PMCID: PMC8279410 DOI: 10.1371/journal.pgen.1009651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS. Smith-Kingsmore Syndrome is a rare disease caused by damage in a gene named MTOR that is associated with excessive growth of the head and brain, delays in development and deficits in intellectual functioning. We report 7 patients who have changes in MTOR that have never been reported before. We describe new medical findings in these patients that may be common in Smith-Kingsmore Syndrome more broadly. We then identify how these new gene changes impact the function of the MTOR protein and thus cell function downstream. Lastly, we show that changes in the gene that lie deep inside the 3D structure of the MTOR protein are more likely to cause disease than those changes that lie on the surface of the protein. We may be able to use the 3D properties of MTOR gene changes to predict if future changes we see are likely to cause disease or not.
Collapse
|
194
|
Randomized Phase II Trial of Capecitabine and Lapatinib with or without IMC-A12 (Cituxumumab) in Patients with HER2-Positive Advanced Breast Cancer Previously Treated with Trastuzumab and Chemotherapy: NCCTG N0733 (Alliance). Breast Cancer Res Treat 2021; 188:477-487. [PMID: 33852121 PMCID: PMC8262517 DOI: 10.1007/s10549-021-06221-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE To compare efficacy and safety of capecitabine and lapatinib with or without IMC-A12 (cituxumumab) in patients with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab. PATIENTS AND METHODS Following an initial safety run-in cohort, patients were randomized 1:2 to Arm A (capecitabine and lapatinib) or to Arm B (capecitabine, lapatinib, and cituxumumab). Given the frequency of non-hematologic grade ≥ 3 adverse events in those receiving the three-drug combination in the safety cohort, lapatinib and capecitabine doses were reduced in Arm B only. The primary objective was to determine if the addition of cituxumumab to capecitabine and lapatinib improved progression-free survival (PFS) compared with capecitabine and lapatinib. Secondary objectives included a comparison between arms of other clinical endpoints, safety, change in overall quality of life (QOL) and self-assessed fatigue, rash, diarrhea, and hand-foot syndrome. RESULTS From July 2008 to March 2012, 68 patients (out of 142 planned) were enrolled and 63 were evaluable, including 8 for the safety run-in and 55 for the randomized cohort. Study enrollment was stopped early due to slow accrual. The addition of cituxumumab to capecitabine and lapatinib did not improve PFS (HR 0.93, 95% CI: 0.52-1.64). Furthermore, no difference in objective response rate or overall survival (OS) was observed. No difference between arms was observed in grade ≥ 3 adverse events, overall QOL change from baseline after 4 cycles of treatment. CONCLUSION The addition of cituxumumab to lapatinib and capecitabine did not improve PFS or OS compared with lapatinib and capecitabine in patients with HER2-positive MBC. CLINICAL TRIAL REGISTRY ClinicalTrials.gov Identifier: NCT00684983.
Collapse
|
195
|
Lee BJ, Boyer JA, Burnett GL, Thottumkara AP, Tibrewal N, Wilson SL, Hsieh T, Marquez A, Lorenzana EG, Evans JW, Hulea L, Kiss G, Liu H, Lee D, Larsson O, McLaughlan S, Topisirovic I, Wang Z, Wang Z, Zhao Y, Wildes D, Aggen JB, Singh M, Gill AL, Smith JAM, Rosen N. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nat Chem Biol 2021; 17:1065-1074. [PMID: 34168367 DOI: 10.1038/s41589-021-00813-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/07/2021] [Indexed: 12/28/2022]
Abstract
The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.
Collapse
Affiliation(s)
- Bianca J Lee
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Jacob A Boyer
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Program in Molecular Pharmacology, Department of Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - G Leslie Burnett
- Department of Chemistry, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Arun P Thottumkara
- Department of Chemistry, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Nidhi Tibrewal
- Department of Discovery Technologies, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Stacy L Wilson
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Tientien Hsieh
- Department of Discovery Technologies, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Abby Marquez
- Department of Discovery Technologies, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Edward G Lorenzana
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - James W Evans
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Laura Hulea
- Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, Lady Davis Institute, McGill University, Montréal, QC, Canada.,Département de Médecine, Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Gert Kiss
- Department of Discovery Technologies, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Hui Liu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| | - Dong Lee
- Department of Non-clinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| | - Shannon McLaughlan
- Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, Lady Davis Institute, McGill University, Montréal, QC, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, Lady Davis Institute, McGill University, Montréal, QC, Canada
| | - Zhengping Wang
- Department of Non-clinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Zhican Wang
- Department of Non-clinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Yongyuan Zhao
- Department of Non-clinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - David Wildes
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - James B Aggen
- Department of Chemistry, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Mallika Singh
- Department of Biology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Adrian L Gill
- Department of Chemistry, Revolution Medicines, Inc., Redwood City, CA, USA
| | | | - Neal Rosen
- Program in Molecular Pharmacology, Department of Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA.
| |
Collapse
|
196
|
Spaan I, Timmerman LM, Kimman T, Slomp A, Cuenca M, van Nieuwenhuijzen N, Moesbergen LM, Minnema MC, Raymakers RA, Peperzak V. Direct P70S6K1 inhibition to replace dexamethasone in synergistic combination with MCL-1 inhibition in multiple myeloma. Blood Adv 2021; 5:2593-2607. [PMID: 34152396 PMCID: PMC8270664 DOI: 10.1182/bloodadvances.2020003624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Novel combination therapies have markedly improved the lifespan of patients with multiple myeloma (MM), but drug resistance and disease relapse remain major clinical problems. Dexamethasone and other glucocorticoids are a cornerstone of conventional and new combination therapies for MM, although their use is accompanied by serious side effects. We aimed to uncover drug combinations that act in synergy and, as such, allow reduced dosing while remaining effective. Dexamethasone and the myeloid cell leukemia 1 (MCL-1) inhibitor S63845 (MCL-1i) proved the most potent combination in our lethality screen and induced apoptosis of human myeloma cell lines (HMCLs) that was 50% higher compared with an additive drug effect. Kinome analysis of dexamethasone-treated HMCLs revealed a reduction in serine/threonine peptide phosphorylation, which was predicted to result from reduced Akt activity. Biochemical techniques showed no dexamethasone-induced effects on FOXO protein or GSK3 but did show a 50% reduction in P70S6K phosphorylation, downstream of the Akt-mTORC1 axis. Replacing dexamethasone by the P70S6K1 isoform-specific inhibitor PF-4708671 (S6K1i) revealed similar and statistically significant synergistic apoptosis of HMCLs in combination with MCL-1i. Interestingly, apoptosis induced by the P70S6K1i and MCL-1i combination was more-than-additive in all 9 primary MM samples tested; this effect was observed for 6 of 9 samples with the dexamethasone and MCL-1i combination. Toxicity on stem and progenitor cell subsets remained minimal. Combined, our results show a strong rationale for combination treatments using the P70S6K inhibitor in MM. Direct and specific inhibition of P70S6K may also provide a solution for patients ineligible or insensitive to dexamethasone or other glucocorticoids.
Collapse
Affiliation(s)
| | | | | | | | | | - Niels van Nieuwenhuijzen
- Center for Translational Immunology and
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Reinier A Raymakers
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
197
|
Rivera-Soto R, Yu Y, Dittmer DP, Damania B. Combined Inhibition of Akt and mTOR Is Effective Against Non-Hodgkin Lymphomas. Front Oncol 2021; 11:670275. [PMID: 34221985 PMCID: PMC8253055 DOI: 10.3389/fonc.2021.670275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) are a diverse group of hematological malignancies comprised of over 60 subtypes. These subtypes range from indolent to aggressive. The PI3K/Akt/mTOR pathway has been shown to contribute to cell survival and proliferation and is constitutively active in most NHL. MK-7075 (miransertib) and MK-4440 are small molecules that effectively inhibit Akt and have entered clinical development. Using in vitro and in vivo models of NHL, we explored targeting the kinase Akt with miransertib and MK-4440 alone or in combination with the mTORC1 inhibitor, rapamycin (sirolimus). Both Akt inhibitors inhibited the pathway and NHL proliferation in a subtype-dependent manner. However, these compounds had a minimal effect on the viability of primary B-cells. Importantly, the combination of miransertib and sirolimus synergistically reduced cell proliferation in NHL, including in one indolent subtype, e.g., follicular lymphoma (FL), and two aggressive subtypes, e.g., diffuse large B-cell lymphoma (DLBCL) and primary effusion lymphoma (PEL). To establish in vivo efficacy, we used several xenograft models of FL, DLBCL, and PEL. The results obtained in vivo were consistent with the in vitro studies. The FL xenograft was highly sensitive to the inhibition of Akt alone; however, the tumor burden of PEL xenografts was only significantly reduced when both Akt and mTORC1 were targeted. These data suggest that targeting the PI3K/Akt/mTOR pathway with Akt inhibitors such as miransertib in combination with mTOR inhibitors serves as a broadly applicable therapeutic in NHL.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yi Yu
- ArQule, Inc., A Wholly Owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States
| | - Dirk P. Dittmer
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Curriculum in Genetics and Molecular Biology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
198
|
Lim B, Potter DA, Salkeni MA, Silverman P, Haddad TC, Forget F, Awada A, Canon JL, Danso M, Lortholary A, Bourgeois H, Tan-Chiu E, Vincent S, Bahamon B, Galinsky KJ, Patel C, Neuwirth R, Leonard EJ, Diamond JR. Sapanisertib Plus Exemestane or Fulvestrant in Women with Hormone Receptor-Positive/HER2-Negative Advanced or Metastatic Breast Cancer. Clin Cancer Res 2021; 27:3329-3338. [PMID: 33820779 DOI: 10.1158/1078-0432.ccr-20-4131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE This open-label, multicenter, phase IB/II study evaluated sapanisertib, a dual inhibitor of mTOR kinase complexes 1/2, plus exemestane or fulvestrant in postmenopausal women with hormone receptor-positive (HR+)/HER2-negative (HER2-) advanced/metastatic breast cancer. PATIENTS AND METHODS Eligible patients had previously progressed on everolimus with exemestane/fulvestrant and received ≤3 (phase IB) or ≤1 (phase II) prior chemotherapy regimens. Patients received sapanisertib 3 to 5 mg every day (phase IB), or 4 mg every day (phase II) with exemestane 25 mg every day or fulvestrant 500 mg monthly in 28-day cycles. Phase II enrolled parallel cohorts based on prior response to everolimus. The primary objective of phase II was to evaluate antitumor activity by clinical benefit rate at 16 weeks (CBR-16). RESULTS Overall, 118 patients enrolled in phase IB (n = 24) and II (n = 94). Five patients in phase IB experienced dose-limiting toxicities, at sapanisertib doses of 5 mg every day (n = 4) and 4 mg every day (n = 1); sapanisertib 4 mg every day was the MTD in combination with exemestane or fulvestrant. In phase II, in everolimus-sensitive versus everolimus-resistant cohorts, CBR-16 was 45% versus 23%, and overall response rate was 8% versus 2%, respectively. The most common adverse events were nausea (52%), fatigue (47%), diarrhea (37%), and hyperglycemia (33%); rash occurred in 17% of patients. Molecular analysis suggested positive association between AKT1 mutation status and best treatment response (complete + partial response; P = 0.0262). CONCLUSIONS Sapanisertib plus exemestane or fulvestrant was well tolerated and exhibited clinical benefit in postmenopausal women with pretreated everolimus-sensitive or everolimus-resistant breast cancer.
Collapse
Affiliation(s)
- Bora Lim
- M.D. Anderson Cancer Center, Houston, Texas.
| | | | | | - Paula Silverman
- University Hospitals Seidman Cancer Center Cleveland, Cleveland, Ohio
| | | | | | - Ahmad Awada
- Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | - Michael Danso
- Virginia Oncology Associates - Hampton, Chesapeake, Virginia
| | | | | | | | - Sylvie Vincent
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Brittany Bahamon
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Kevin J Galinsky
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Chirag Patel
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Rachel Neuwirth
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - E Jane Leonard
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | | |
Collapse
|
199
|
Dey N, Aske J, Lin X, Sun Y, Leyland-Jones B, Friedman L, De P. A tipping-point for apoptosis following dual inhibition of HER2 signaling network by T-DM1 plus GDC-0980 maximizes anti-tumor efficacy. Am J Cancer Res 2021; 11:2867-2892. [PMID: 34249433 PMCID: PMC8263639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023] Open
Abstract
HER2 signaling network and its complex relationship with the PI3K-AKT-mTOR pathway explain the acquired resistance to anti-HER2 therapy observed in clinics. Such complexity has been clinically evident from the limited efficacy of data in the BOLERO-1 and BOLERO-3 trials, which tested combinations of trastuzumab (T), everolimus, and chemotherapy in women with HER2+ advanced BC. In the following MARIANNE trial also, a combination of T-DM1 plus pertuzumab delivered a non-inferior but yet not superior PFS compared to trastuzumab plus a taxane. Algorithmic inhibition of PI3K/mTOR along with T or T-DM1 is, therefore, an attractive drug combination, and we tested the combination(s) in HER2+ BC, especially in T-resistant and PIK3CA mutated conditions. GDC-0980, a dual pan-PI3K/mTOR inhibitor alone or in combination with T or T-DM1, was examined in a panel of HER2+ T-sensitive (BT474, SKBR3), HER2+ T-resistant (BT474HerR), HER2+/PIK3CA mutant (HCC1954, MDA-MB453), and HER2+/PTEN mutant (HCC1569) BC cell lines. GDC-0980 re-sensitized trastuzumab-resistant, PIK3CA mutant, or PTEN mutant cells to T and acted additively with T. Importantly, this activity was more when GDC-0980 is combined with T-DM1. The combination (with T or with T-DM1) was then tested in the HER2+/T-sensitive, HER2+/T-resistant, and HER2+/PIK3CA mutated BC xenograft models for the anti-tumor effect. Along with its anti-tumor effect, GDC-0980 effectively decreased tumor angiogenesis (CD31 staining). Maximum anti-tumor (from tumor growth inhibition to tumor regression) efficiency was observed in all three xenograft models when T-DM1 was combined with GDC-0980. The anti-proliferative effects of GDC-0980 as evidenced by a decreased p-AKT (Ser473, The308), p-P70S6K, p-S6RP, and p-4EBP1, along with blockade of clonogenic 3D growth was accompanied by the initiation of apoptotic activity (annexin V, CASPASE3, cleaved PARP1 and mitochondrial depolarization); and was significantly superior when GDC-0980 combined with T-DM1. Interestingly, both trastuzumab and T-DM1 induce PD-L1 expression in HER2 amplified BC cells. Our data provide evidence that an oncogenic mutation of PIK3CA and HER2-amplification may represent biomarkers to identify patients who may benefit most from the use of GDC-0980 and an opportunity to include immunotherapy in the combination of anti-HER2 therapy.
Collapse
Affiliation(s)
- Nandini Dey
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD, USA
| | - Jennifer Aske
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
| | - Yuliang Sun
- Cancer Genomics, Avera Cancer InstituteSioux Falls, SD, USA
| | | | | | - Pradip De
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD, USA
| |
Collapse
|
200
|
Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13122978. [PMID: 34198652 PMCID: PMC8232221 DOI: 10.3390/cancers13122978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous tumor characterized by early recurrence, high invasion, and poor prognosis. Currently, its treatment includes chemotherapy, which shows a suboptimal efficacy. However, with the increasing studies on TNBC subtypes and tumor molecular biology, great progress has been made in targeted therapy for TNBC. The new developments in the treatment of breast cancer include targeted therapy, which has the advantages of accurate positioning, high efficiency, and low toxicity, as compared to surgery, radiotherapy, and chemotherapy. Given its importance as cancer treatment, we review the latest research on the subtypes of TNBC and relevant targeted therapies.
Collapse
|