151
|
Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J, Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem 2013; 288:9508-18. [PMID: 23322774 DOI: 10.1074/jbc.m112.367763] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are known to play a vital role in colorectal cancer. We found a widespread disruption in miRNA expression during colorectal tumorigenesis using microarray and quantitative RT-PCR analysis; of the 161 miRNAs altered in colorectal cancer compared with normal adjacent tissue samples, miR-31 was the most significantly dysregulated. We identified candidate targets of miR-31 using bioinformatics approaches and validated RAS p21 GTPase activating protein 1 (RASA1) as a direct target. First, we found an inverse correlation between miR-31 and RASA1 protein levels in vivo. Second, in vitro evidence demonstrated that RASA1 expression was significantly decreased by treatment with pre-miR-31-LV, whereas anti-miR-31-LV treatment increased RASA1 protein levels. Third, a luciferase reporter assay confirmed that miR-31 directly recognizes a specific location within the 3'-untranslated region of RASA1 transcripts. Furthermore, the biological consequences of miR-31 targeting RASA1 were examined by the cell proliferation assay in vitro and by the immunodeficient mouse xenograft tumor model in vivo. Taken together, our results demonstrate for the first time that miR-31 plays a significant role in activating the RAS signaling pathway through the inhibition of RASA1 translation, thereby improving colorectal cancer cell growth and stimulating tumorigenesis.
Collapse
Affiliation(s)
- Defang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 22 Hankou Road, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Huang TC, Pinto SM, Pandey A. Proteomics for understanding miRNA biology. Proteomics 2012; 13:558-67. [PMID: 23125164 DOI: 10.1002/pmic.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology.
Collapse
Affiliation(s)
- Tai-Chung Huang
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
153
|
Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ. Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol 2012; 39:739-46. [PMID: 22409455 DOI: 10.1111/j.1440-1681.2012.05700.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carcinogenesis arises from the malfunction of genes that control cell growth and division. Therefore, the most effective method of hindering tumourigenesis is to induce the death of immortalized cancer cells. Apoptosis or programmed cell death has shown the most promises in impairing cancer growth. A variety of proteins is involved in the regulation of apoptosis and the malfunction of any these regulators may cause cell proliferation. The microRNAs have been shown to play a central role in the regulation of the cell cycle, including apoptosis. The microRNAs are involved in post-transcriptional gene suppression and have been implicated in the regulation of cell differentiation and development. Aberrations in the microRNA regulation of apoptosis lead to tumourigenesis. The present review assesses the current knowledge of apoptotic regulation in cancer and the effect of microRNA aberrations in tumourigenesis.
Collapse
Affiliation(s)
- Chun Li
- Division of Molecular and Gene Therapies, Griffith Institute for Health and Medical Research, School of Medical Science, Griffith University, Gold Coast, Qld, Australia
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Sen CK, Roy S. OxymiRs in cutaneous development, wound repair and regeneration. Semin Cell Dev Biol 2012; 23:971-80. [PMID: 23063665 PMCID: PMC3762568 DOI: 10.1016/j.semcdb.2012.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023]
Abstract
The state of tissue oxygenation is widely recognized as a major microenvironmental cue that is known to regulate the expression of coding genes. Recent works have extended that knowledge to demonstrate that the state of tissue oxygenation may potently regulate the expression of microRNAs (miRs). Collectively, such miRs that are implicated in defining biological outcomes in response to a change in the state of tissue oxygenation may be referred to as oxymiRs. Broadly, oxymiRs may be categorized into three groups: (A) the existence (expression and/or turnover) of which is directly influenced by changes in the state of tissue oxygenation; (B) the existence of which is indirectly (e.g. oxygen-sensitive proteins, metabolites, pH, etc.) influenced by changes in the state of tissue oxygenation; and (C) those that modify biological outcomes to changes in the state of tissue oxygenation by targeting oxygen sensing pathways. This work represents the first review of how oxymiRs may regulate development, repair and regeneration. Currently known oxymiRs may affect the functioning of a large number of coding genes which have hitherto fore never been linked to oxygen sensing. Many of such target genes have been validated and that number is steadily growing. Taken together, our understanding of oxymiRs has vastly expanded the implications of changes in the state of tissue oxygenation. This emerging paradigm has major implications in untangling the complexities underlying diseases associated with ischemia and related hypoxic insult such as chronic wounds.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies, Comprehensive Wound Center and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
155
|
Jia SZ, Yang Y, Lang J, Sun P, Leng J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod 2012. [PMID: 23203215 DOI: 10.1093/humrep/des413] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Can plasma microRNAs be used as a non-invasive diagnostic test for the detection of endometriosis? SUMMARY ANSWER Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis compared with those without endometriosis in mainland China. WHAT IS KNOWN ALREADY There is currently a pressing need to develop a non-invasive diagnostic test for endometriosis. Altered circulating microRNA profiles have already been linked to various disease states. STUDY DESIGN, SIZE, AND DURATION This was a prospective laboratory study in a tertiary-referral university hospital in Beijing, PR China, between January 2012 and May 2012. Twenty-three women with histologically proven endometriosis and 23 endometriosis-free controls were enrolled in this study. PARTICIPANTS/MATERIALS, SETTING, AND METHODS Laparoscopic inspection of the abdominopelvic cavity was performed for each patient, and peripheral blood samples were collected before laparoscopy. Microarray-based microRNA expression profiling was used to identify differentially expressed microRNAs in plasma samples between women with and without endometriosis, and quantification of selected microRNAs was performed using quantitative RT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE Twenty-seven microRNAs were differentially expressed between women with and without endometriosis, of which six microRNAs (miR-15b-5p, miR-17-5p, miR-20a, miR-21, miR-22 and miR-26a) were selected for validation. MiR-17-5p, miR-20a and miR-22 were significantly down-regulated in women with endometriosis compared with controls (P = 0.011, 0.0020 and 0.0002, respectively), yielding an area under the receiver operator characteristics curve of 0.74 [95% confidence interval (CI): 0.58-0.90], 0.79 (95% CI: 0.65-0.93) and 0.85 (95% CI: 0.71-0.98) in discriminating endometriosis from controls, respectively. LIMITATIONS AND REASONS FOR CAUTION Our sample size was small and all cases were rAFS stage III-IV, which may limit generalization of plasma microRNAs for early diagnosis of endometriosis. Moreover, only six microRNAs were selected for validation. WIDER IMPLICATIONS OF THE FINDINGS Plasma microRNAs provide a promising opportunity for detection of endometriosis.
Collapse
Affiliation(s)
- Shuang-Zheng Jia
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | | | | | | | | |
Collapse
|
156
|
Abstract
microRNAs (miRNAs) represent the most abundant class of gene expression regulators that bind complementarily to transcripts to repress their translation or mRNA degradation. These small ( 21-23 nucleotides in length) noncoding RNAs are derived through a multistep process by miRNA genes located in genomic DNA. Because miRNAs regulate fundamental cellular functions, their dysregulation affects a large range of physiological processes, such as development, immune responses, metabolism, and diseases as well as toxicological outcomes. Cancer-related miRNAs have been extensively studied; however, the roles of miRNAs in xenobiotic metabolism and in toxicology have only recently been explored. This review focuses on the current knowledge of miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and the associated potential toxicological implications. The potential modulation of toxicology-related changes in miRNA expression, the role of miRNA in immune-mediated drug-induced liver injuries, the use of circulating miRNAs in body fluids as potential toxicological biomarkers, and the link between miRNA-related pharmacogenomics and adverse drug reactions are highlighted.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
157
|
The Warburg effect: insights from the past decade. Pharmacol Ther 2012; 137:318-30. [PMID: 23159371 DOI: 10.1016/j.pharmthera.2012.11.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 02/07/2023]
Abstract
Several decades ago, Otto Warburg discovered that cancer cells produce energy predominantly by glycolysis; a phenomenon now termed "Warburg effect". Warburg linked mitochondrial respiratory defects in cancer cells to aerobic glycolysis; this theory of his gradually lost its importance with the lack of conclusive evidence confirming the presence of mitochondrial defects in cancer cells. Scientists began to believe that this altered mechanism of energy production in cancer cells was more of an effect than the cause. More than 50 years later, the clinical use of FDG-PET imaging in the diagnosis and monitoring of cancers rekindled the interest of the scientific community in Warburg's hypothesis. In the last ten years considerable progress in the field has advanced our understanding of the Warburg effect. However, it still remains unclear if the Warburg effect plays a causal role in cancers or it is an epiphenomenon in tumorigenesis. In this review we aim to discuss the molecular mechanisms associated with the Warburg effect with emphasis on recent advances in the field including the role of epigenetic changes, miRNAs and post-translational modification of proteins. In addition, we also discuss emerging therapeutic strategies that target the dependence of cancer cells on altered energy processing through aerobic glycolysis.
Collapse
|
158
|
Huang YF, Yang CH, Huang CC, Hsu KS. Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. J Biol Chem 2012; 287:40938-55. [PMID: 23074224 DOI: 10.1074/jbc.m112.392076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Current antidepressant treatments remain limited by poor efficacy and a slow onset of action. Increasing evidence demonstrates that enriched environment (EE) treatment can promote structural and behavioral plasticity in the brain and dampen stress-induced alterations of neuroplasticity. Here, we have examined whether short term exposure to EE is able to produce antidepressant-like effects. Our results show that housing adult mice in an EE cage for 7 days led to antidepressant-like behavioral profiles and a significant increase in the number of dendritic spines in hippocampal CA1 pyramidal neurons. These EE-induced antidepressant-like effects are primarily attributed to increased vascular endothelial growth factor (VEGF) expression through a hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional mechanism. Blockade of HIF-1α synthesis by lentiviral infection with HIF-1α small hairpin RNAs completely blocked the increase in expression of VEGF and the antidepressant-like effects induced by EE. Moreover, no significant antidepressant-like effects were observed with EE treatment in VEGF receptor 2 (Flk-1) knock-out mice. The increase in HIF-1α expression in the hippocampus induced by EE was associated with a decrease in endogenous levels of microRNA-107 (miR-107). Overexpression of miR-107 in the hippocampus completely blocked EE-induced HIF-1α expression and the antidepressant-like effects. These results support a model in which the down-regulation of miR-107, acting through HIF-1α, mediates VEGF-dependent spinogenesis to underlie the EE-induced antidepressant-like effects.
Collapse
Affiliation(s)
- Yu-Fei Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
159
|
He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, Duan CW, Hong DL, Tanaka T, Chen GQ, Zhao Q. HIF-1α downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ 2012; 20:408-18. [PMID: 23059786 DOI: 10.1038/cdd.2012.130] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a crucial transcription factor for the cellular adaptive response to hypoxia, which contributes to multiple events in cancer biology. MicroRNAs (miRNAs) are involved in almost all cellular activities such as differentiation, proliferation, and apoptosis. In this work, we use miRNA microarrays to profile miRNA expression in acute myeloid leukemia (AML) cells with inducible HIF-1α expression, and identify 19 differentially expressed miRNAs. Our study shows that HIF-1α represses the expression of miR-17 and miR-20a by downregulating c-Myc expression. These two miRNAs alleviate hypoxia and HIF-1α-induced differentiation of AML cells. More intriguingly, miR-17 and miR-20a directly inhibit the p21 and STAT3 (signal transducer and activator of transcription 3) expression, both of which can reverse miR-17/miR-20a-mediated abrogation of HIF-1α-induced differentiation. Moreover, we show in vivo that miR-20a contributes to HIF-1α-induced differentiation of leukemic cells. Taken together, our results suggest that HIF-1α regulates the miRNA network to interfere with AML cell differentiation, representing a novel molecular mechanism for HIF-1-mediated anti-leukemic action.
Collapse
Affiliation(s)
- M He
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Zhang D, Li J, Zhang M, Gao G, Zuo Z, Yu Y, Zhu L, Gao J, Huang C. The requirement of c-Jun N-terminal kinase 2 in regulation of hypoxia-inducing factor-1α mRNA stability. J Biol Chem 2012; 287:34361-71. [PMID: 22910906 PMCID: PMC3464542 DOI: 10.1074/jbc.m112.365882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
The mRNA of hif-1α is considered as being constitutively and ubiquitously expressed, regardless of the level of oxygen tension. However many recent reports have showed that hif-1α mRNA could be regulated by natural antisense transcripts, potential microRNAs, and low O(2). In this study, it was found that a deficiency of JNK2 expression reduced HIF-1α protein induction in response to nickel treatment resulting from the impaired expression of hif-1α mRNA. Both the promoter luciferase assay and mRNA degradation assay clearly showed that depletion of JNK2 affected stability of hif-1α mRNA, rather than regulated its transcription. In addition, nucleolin, a classic histone chaperone, was demonstrated to physically bind to hif-1α mRNA and maintain its stability. Further investigation indicated that JNK2 regulated nucleolin expression and might in turn stabilize hif-1α mRNA. Collectively, we provided one more piece of evidence for the oncogenic role of JNK2 and nucleolin in regulating the cancer microenvironments by controlling HIF-1α expression.
Collapse
Affiliation(s)
- Dongyun Zhang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Min Zhang
- the Zhejiang Province Key Laboratory of Medical Genetics, School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Zhenghong Zuo
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Yonghui Yu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Linda Zhu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- the Zhejiang Province Key Laboratory of Medical Genetics, School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| |
Collapse
|
161
|
De Lella Ezcurra AL, Bertolin AP, Melani M, Wappner P. Robustness of the hypoxic response: Another job for miRNAs? Dev Dyn 2012; 241:1842-8. [DOI: 10.1002/dvdy.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
|
162
|
Mizuno S, Bogaard HJ, Gomez-Arroyo J, Alhussaini A, Kraskauskas D, Cool CD, Voelkel NF. MicroRNA-199a-5p is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD. Chest 2012; 142:663-672. [PMID: 22383663 PMCID: PMC3435138 DOI: 10.1378/chest.11-2746] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/01/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that silence target gene expression posttranscriptionally, and their impact on gene expression has been reported in various diseases. It has been reported that the expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced and that of p53 is increased in lungs from patients with COPD. However, the role of miRNAs associated with these genes in lungs from patients with COPD is unknown. METHODS Lung tissue samples from 55 patients were included in this study. Total RNA, miRNA, and protein were extracted from lung tissues and used for reverse transcriptase polymerase chain reaction and Western blot analysis. Cell culture experiments were performed using cultured human pulmonary microvascular endothelial cells (HPMVECs). RESULTS miR-34a and miR-199a-5p expressions were increased, and the phosphorylation of AKT was decreased in the lung tissue samples of patients with COPD. The miR-199a-5p expression was correlated with HIF-1α protein expression in the lungs of patients with COPD. Transfection of HPMVECs with the miR-199a-5p precursor gene decreased HIF-1α protein expression, and transfection with the miR-34a precursor gene increased miR-199a-5p expression. CONCLUSIONS These data suggest that miR-34a and miR-199a-5p contribute to the pathogenesis of COPD, and these miRNAs may also affect the HIF-1α-dependent lung structure maintenance program.
Collapse
Affiliation(s)
- Shiro Mizuno
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; Division of Respiratory Disease, Kanazawa Medical University, Ishikawa, Japan
| | - Harm J Bogaard
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; VU University Medical Center, Amsterdam, The Netherlands
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Aysar Alhussaini
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
163
|
Ouchida M, Kanzaki H, Ito S, Hanafusa H, Jitsumori Y, Tamaru S, Shimizu K. Novel direct targets of miR-19a identified in breast cancer cells by a quantitative proteomic approach. PLoS One 2012; 7:e44095. [PMID: 22952885 PMCID: PMC3431339 DOI: 10.1371/journal.pone.0044095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022] Open
Abstract
The miR-17-92 cluster encodes 7 miRNAs inside a single polycistronic transcript, and is known as a group of oncogenic miRNAs that contribute to tumorigenesis in several cancers. However, their direct targets remain unclear, and it has been suggested that a single miRNA is capable of reducing the production of hundreds of proteins. The majority of reports on the identification of miRNA targets are based on computational approaches or the detection of altered mRNA levels, despite the fact that most miRNAs are thought to regulate their targets primarily by translational inhibition in higher organisms. In this study, we examined the target profiles of miR-19a, miR-20a and miR-92-1 in MCF-7 breast cancer cells by a quantitative proteomic strategy to identify their direct targets. A total of 123 proteins were significantly increased after the endogenous miR-19a, miR-20a and miR-92-1 were knocked down, and were identified as potential targets by two-dimensional electrophoresis and a mass spectrometric analysis. Among the upregulated proteins, four (PPP2R2A, ARHGAP1, IMPDH1 and NPEPL1) were shown to have miR-19a or miR-20a binding sites on their mRNAs. The luciferase activity of the plasmids with each binding site was observed to decrease, and an increased luciferase activity was observed in the presence of the specific anti-miRNA-LNA. A Western blot analysis showed the expression levels of IMPDH1 and NPEPL1 to increase after treatment with anti-miR-19a, while the expression levels of PPP2R2A and ARHGAP1 did not change. The expression levels of IMPDH1 and NPEPL1 did not significantly change by anti-miR-19a-LNA at the mRNA level. These results suggest that the IMPDH1 and NPEPL1 genes are direct targets of miR-19a in breast cancer, while the exogenous expression of these genes is not associated with the growth suppression of MCF-7 cells. Furthermore, our proteomic approaches were shown to be valuable for identifying direct miRNA targets.
Collapse
Affiliation(s)
- Mamoru Ouchida
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
164
|
Du L, Pertsemlidis A. microRNA regulation of cell viability and drug sensitivity in lung cancer. Expert Opin Biol Ther 2012; 12:1221-39. [PMID: 22731874 DOI: 10.1517/14712598.2012.697149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION microRNAs (miRNAs) are 19 - 23 nucleotide long RNAs found in multiple organisms that regulate gene expression and have been shown to play important roles in tumorigenesis. In the context of lung cancer, numerous studies have shown that tumor suppressor genes and oncogenes that play crucial roles in lung tumor development and progression are targets of miRNA regulation. Manipulation of miRNA levels that modulate lung cancer cell survival and drug sensitivity can therefore provide novel therapeutic targets and agents. AREAS COVERED Here, the authors review the published in vitro, in vivo and preclinical studies on the functional role of miRNAs in modulating lung cancer cell viability and drug response, and discuss the limitations and promise of translating current findings into miRNA-based therapeutic and diagnostic strategies. EXPERT OPINION Although many miRNAs have been identified as potent regulators of cell viability and drug sensitivity in lung cancer, most of them have not been characterized for potential clinical application. Further study is warranted to evaluate translation of the current findings to the clinic to improve the diagnosis and treatment of lung cancer. In addition, most studies have focused on non-small cell lung cancer (NSCLC). It is therefore important to raise interest in investigating miRNAs in small cell lung cancer (SCLC) as well as in comparative studies of miRNA expression and function in different histological subtypes of lung cancer.
Collapse
Affiliation(s)
- Liqin Du
- Greehey Children's Cancer Research Institute, Department of Cellular and Structural Biology, UT Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
165
|
miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 2012; 15:593-608. [PMID: 22696064 DOI: 10.1007/s10456-012-9283-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 01/01/2023]
Abstract
Endothelial cell migration induced in response to vascular endothelial growth factor (VEGF) is a crucial step of angiogenesis and it depends on the activation of the p38 MAP-kinase pathway downstream of VEGFR2. In this study, we investigated the role of microRNAs (miRNAs) in regulating these processes. We found that the VEGF-induced p38 activation and cell migration are modulated by overexpression of Argonaute 2, a key protein in the functioning of miRNAs. Thereafter, we found that miR-20a expression is increased by VEGF and that its ectopic expression inhibits VEGF-induced actin remodeling and cell migration. Moreover, the expression of miR-20a impairs the formation of branched capillaries in a tissue-engineered model of angiogenesis. In addition, the lentivirus-mediated expression of miR-20a precursor (pmiR-20a) is associated with a decrease in the VEGF-induced activation of p38. In contrast, these processes are increased by inhibiting miR-20a with a specific antagomir. Interestingly, miR-20a does not modulate VEGFR2 or p38 protein expression level. miR-20a does not affect either the expression of other known actors of the p38 MAP kinase pathway except MKK3. Indeed, by using quantitative PCR and Western Blot analysis, we found that pmiR-20a decreases the expression of MKK3 and we obtained evidence indicating that miR-20a specifically binds to the 3'UTR region of MKK3 mRNA. In accordance, the VEGF-induced activation of p38 and cell migration are impaired when the MKK3 expression is knocked down by siRNA. We conclude that miR-20a acts in a feedback loop to repress the expression of MKK3 and to negatively regulate the p38 pathway-mediated VEGF-induced endothelial cell migration and angiogenesis.
Collapse
|
166
|
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31:2448-60. [PMID: 22562152 PMCID: PMC3365421 DOI: 10.1038/emboj.2012.125] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the past decade, unprecedented molecular insight has been gained into the mammalian oxygen-sensing pathway involving the canonical oxygen-dependent prolyl-hydroxylase domain-containing enzyme (PHD)-von Hippel-Lindau tumour suppressor protein (pVHL) axis and its connection to cellular metabolism. Here we review recent notable advances in the field of hypoxia that have shaped a more complex model of HIF regulation and revealed unique roles of HIF in a diverse range of biological processes, including immunity, development and stem cell biology.
Collapse
Affiliation(s)
- Samantha N Greer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Julie L Metcalf
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Yi Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| |
Collapse
|
167
|
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs which regulate numerous cellular processes at the posttranscriptional and translational level. In endometriosis, expression of miRNAs is frequently dysregulated. miRNAs are predicted to modulate several relevant processes involved in the pathogenesis of endometriosis, including cell proliferation, apoptosis, cell migration and invasiveness, angiogenesis, and inflammation, as well as stem cell properties. miRNA expression has been studied by microarray profiling and quantitative real-time PCR, enabling the identification of specific miRNAs as potential novel diagnostic markers for endometriosis. The future application of locked-nucleic acid miRNA inhibitors, miRNA decoys, and synergistic approaches involving conventional therapeutics may open up promising new perspectives in endometriosis therapy.
Collapse
|
168
|
Qi J, Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med 2012; 6:134-55. [PMID: 22528868 DOI: 10.1007/s11684-012-0188-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the US and worldwide. Better understanding of the disease is warranted for improvement in clinical management. Here we summarize the functions of small-RNA-based, posttranscriptional gene regulators, i.e. microRNAs, in the pathogenesis of lung cancers. We discuss the microRNAs that play oncogenic as well as tumor suppressive roles. We also touch on the value of microRNAs as markers for diagnosis, prognosis and the promising field of microRNA-based novel therapies for lung cancers.
Collapse
Affiliation(s)
- Ji Qi
- Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
169
|
Abstract
Advances in understanding the biology of tumour progression and metastasis have clearly highlighted the importance of aberrant tumour metabolism, which supports not only the energy requirements but also the enormous biosynthetic needs of tumour cells. Such metabolic alterations modulate glucose, amino acid and fatty-acid-dependent metabolite biosynthesis and energy production. Although much progress has been made in understanding the somatic mutations and expression genomics behind these alterations, the regulation of these processes by microRNAs (miRNAs) is only just beginning to be appreciated. This Review focuses on the miRNAs that are potential regulators of the expression of genes whose protein products either directly regulate metabolic machinery or serve as master regulators, indirectly modulating the expression of metabolic enzymes. We focus particularly on miRNAs in pancreatic cancer.
Collapse
|
170
|
WHITE KATIE, KANE NICOLEM, MILLIGAN GRAEME, BAKER ANDREWH. The Role of miRNA in Stem Cell Pluripotency and Commitment to the Vascular Endothelial Lineage. Microcirculation 2012; 19:196-207. [DOI: 10.1111/j.1549-8719.2012.00161.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
171
|
Kang SG, Lee WH, Lee YH, Lee YS, Kim SG. Hypoxia-inducible factor-1α inhibition by a pyrrolopyrazine metabolite of oltipraz as a consequence of microRNAs 199a-5p and 20a induction. Carcinogenesis 2012; 33:661-669. [DOI: 10.1093/carcin/bgr320] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
172
|
Lichner Z, Mejia-Guerrero S, Ignacak M, Krizova A, Bao TT, Girgis AHF, Youssef YM, Yousef GM. Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1675-87. [PMID: 22326755 DOI: 10.1016/j.ajpath.2011.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/19/2011] [Accepted: 12/27/2011] [Indexed: 01/05/2023]
Abstract
The von Hippel-Lindau (VHL) gene is lost in ≈ 70% of all renal cell carcinomas (RCCs); however, increasing evidence supports the involvement of alternative mechanisms in the regulation of VHL expression, including suppression by microRNAs (miRNAs). miRNAs are small, noncoding RNA molecules that regulate gene expression through binding to target mRNAs. In this study, we found that miRNAs, which are dysregulated in cases of RCC, can target multiple members of RCC-related signaling pathways. Importantly, both VHL and the hypoxia-inducible factor 1-α gene are experimentally validated and are likely direct targets of miR-17-5p and miR-224, as shown by both luciferase assay and Western blot analysis. We found a negative correlation between miR-17-5p and its two predicted targets, VEGF-A and EGLN3, and between miR-224 and its targets SMAD4 and SMAD5 in RCC specimens, suggesting that downstream signaling pathways are also modulated by clear cell RCC-dysregulated miRs. Results from our bioinformatics analysis show that a single miRNA molecule can target multiple components of the same pathway and that multiple miRNAs can target the same molecule. Our results also indicate that miRNAs represent a mechanism for the inactivation of VHL in cases of RCC and can elucidate a new dimension in cancer pathogenesis. As such, miRNAs exemplify new potential therapeutic targets with a significant effect on both tumor growth and metastatic potential.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
174
|
Kuschel A, Simon P, Tug S. Functional regulation of HIF-1α under normoxia--is there more than post-translational regulation? J Cell Physiol 2012; 227:514-24. [PMID: 21503885 DOI: 10.1002/jcp.22798] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is an oxygen-regulated transcriptional activator playing a pivotal role in mammalian physiology and disease pathogenesis, e.g., HIF-1 is indispensable in a broad range of developmental stages in different tumors. Its post-translational regulation via PHDs under the influence of hypoxia is widely investigated and accepted. Different non-hypoxic stimuli such as lipopolysaccharides (LPS), thrombin, and angiotensin II (Ang II), have been proven to enhance HIF-1 levels through activation of regulative mechanisms distinct from protein stabilization. Some of these stimuli specifically regulate HIF-1α at the transcriptional, post-transcriptional, or translational level, whereas others additionally influence post-translational modifications. Thus, it is difficult for the investigators to discern the impact of the different mechanisms leading to functional HIF-1 protein. Nevertheless, profound knowledge of additional regulatory networks appears to depict new therapeutic opportunities and thus is an interesting and important field for further investigations.
Collapse
Affiliation(s)
- A Kuschel
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes-Gutenberg-University Mainz, Germany
| | | | | |
Collapse
|
175
|
Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 2011; 185:409-19. [PMID: 22161164 DOI: 10.1164/rccm.201106-1093oc] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RATIONALE MicroRNAs (miRs) control various cellular processes in tissue homeostasis and disease by regulating gene expression on the posttranscriptional level. Recently, it was demonstrated that the expression of miR-21 and members of the miR-17-92 cluster was significantly altered in experimental pulmonary hypertension (PH). OBJECTIVES To evaluate the therapeutic efficacy and antiremodeling potential of miR inhibitors in the pathogenesis of PH. METHODS We first tested the effects of miR inhibitors (antagomirs), which were specifically designed to block miR-17 (A-17), miR-21 (A-21), and miR-92a (A-92a) in chronic hypoxia-induced PH in mice and A-17 in monocrotaline-induced PH in rats. Moreover, biological function of miR-17 was analyzed in cultured pulmonary artery smooth muscle cells. MEASUREMENTS AND MAIN RESULTS In the PH mouse model, A-17 and A-21 reduced right ventricular systolic pressure, and all antagomirs decreased pulmonary arterial muscularization. However, only A-17 reduced hypoxia-induced right ventricular hypertrophy and improved pulmonary artery acceleration time. In the monocrotaline-induced PH rat model, A-17 treatment significantly decreased right ventricular systolic pressure and total pulmonary vascular resistance index, increased pulmonary artery acceleration time, normalized cardiac output, and decreased pulmonary vascular remodeling. Among the tested miR-17 targets, the cyclin-dependent kinase inhibitor 1A (p21) was up-regulated in lungs undergoing A-17 treatment. Likewise, in human pulmonary artery smooth muscle cells, A-17 increased p21. Overexpression of miR-17 significantly reduced p21 expression and increased proliferation of smooth muscle cells. CONCLUSIONS Our data demonstrate that A-17 improves heart and lung function in experimental PH by interfering with lung vascular and right ventricular remodeling. The beneficial effects may be related to the up-regulation of p21. Thus, inhibition of miR-17 may represent a novel therapeutic concept to ameliorate disease state in PH.
Collapse
Affiliation(s)
- Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
miRNA-mediated immune regulation and immunotherapeutic potential in glioblastoma. ACTA ACUST UNITED AC 2011; 1:1637-1650. [PMID: 22468222 DOI: 10.4155/cli.11.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GB), the most common primary neoplasm of the CNS, remains universally fatal with standard therapies and has a mean overall survival time of only 14.6 months. Even in the most favorable situations most patients do not survive longer than 2 years. Another hallmark of GBs, apart from the poor control of proliferation, is an immune suppressed tumor microenvironment. miRNAs usually bind the 3' untranslated region of target mRNAs and direct their post-transcriptional repression. Certain miRNAs are known to have altered expression levels in GB tumors, and in many immune cell subtypes. miRNAs have been found to serve important roles in gene regulation and are implicated in many processes in oncogenesis and immune deregulation. In this article we focus on the miRNAs involved in gliomagenesis and in the regulation of the immune response. We also present current challenges and miRNA immunotherapeutic strategies that should be investigated further.
Collapse
|
177
|
Abstract
A group of small non-coding RNA molecules, termed microRNAs (miRNAs), have generated considerable interest in recent years due to their central role in a growing number of biologic processes. Serving as post-transcriptional regulators of gene expression, miRNAs have also emerged as critical factors in the pathogenesis of many diseases. As a result, they show great potential as accurate diagnostic and prognostic markers, as well as viable therapeutic targets for treating disease. It has been proposed that miRNAs play a significant role in cutaneous wound repair and that aberrant miRNA expression may result in disorganized or poor healing. Specific patterns of miRNA expression have been identified in wound healing models. miRNAs are important regulators of leucocyte function and the cytokine network, and are necessary for endothelial cell migration and capillary formation. These molecules also control proliferation and differentiation of wound-specific cells and can determine extracellular matrix composition. This article reviews the evidence for miRNA regulation of inflammation, angiogenesis, fibroblast function, keratinocyte function, and apoptosis, which are essential components for effective wound repair. The future potential for improving wound healing outcomes using miRNA-based therapies is also discussed.
Collapse
|
178
|
Wang C, Song B, Song W, Liu J, Sun A, Wu D, Yu H, Lian J, Chen L, Han J. Underexpressed microRNA-199b-5p targets hypoxia-inducible factor-1α in hepatocellular carcinoma and predicts prognosis of hepatocellular carcinoma patients. J Gastroenterol Hepatol 2011; 26:1630-7. [PMID: 21557766 DOI: 10.1111/j.1440-1746.2011.06758.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM MicroRNAs are short noncoding RNA molecules that are responsible for the posttranscriptional regulation of target genes. The aim of this study was to determine whether microRNA-199b-5p (miR-199b) plays a role in the progression and prognosis of hepatocellular carcinoma (HCC), and to elucidate whether hypoxia-inducible factor-1α (Hif1α) is regulated by miR-199b. METHODS In this study, 35 matched HCCs and cirrhosis tissues were assayed for miR-199b and Hif1α expression. To evaluate the role of miR-199b, we assessed cell proliferation rate and clonogenic survival of miR-199b- or negative control-transfected cells by MTT and clone formation assay, respectively. In addition, the regulation of Hif1α by miR-199b was evaluated by Western blotting and luciferase assay. MiR-199b was downregulated in 77% of HCCs, whereas Hif1α protein was upregulated in 69% of cases. A significant inverse correlation between miR-199b and Hif1α was observed in HCCs. RESULTS Patients with lower levels of miR-199b expression had poorer overall survival and progression-free survival rates, whereas patients with higher levels of miR-199b expression had better survival. Moreover, miR-199b could restrain cell growth and obviously enhance the radiosensitizing effect of HepG2 cells. MiR-199b and pGL3-Hif1α vector-transfected cells showed suppressed Hif1α protein expression and significant reduced luciferase activity. CONCLUSIONS Underexpressed miR-199b, which may be via the upregulation of Hif1α in HCCs, is inversely correlated with survival and directly correlated with the malignant status of HCC patients.
Collapse
Affiliation(s)
- Chuanxi Wang
- Department of Oncology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep 2011; 39:4509-18. [PMID: 21952822 DOI: 10.1007/s11033-011-1241-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/14/2011] [Indexed: 01/07/2023]
Abstract
The functionality of endothelial cells is fundamental for the homoeostasis of the vascular system. Increasing evidence shows that endothelial inflammation and senescence contribute greatly to multiple vascular diseases including atherosclerosis. However, little is known regarding the complex upstream regulators of gene expression and translation involved in these responses. MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. During the past few years, miRNAs have emerged as key regulators for endothelial biology and function. Endothelial inflammation is critically regulated by miRNAs such as miR-126 and miR-10a in vitro and in vivo. Endothelial aging is additionally controlled by miR-217 and miR-34a. In this review, we summarize the role of miRNAs and their target genes in endothelial inflammation and senescence, and discuss their applicability as drug targets.
Collapse
|
180
|
MicroRNAs regulating cell pluripotency and vascular differentiation. Vascul Pharmacol 2011; 55:69-78. [PMID: 21854874 DOI: 10.1016/j.vph.2011.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/26/2011] [Accepted: 08/02/2011] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESC) offer broad potential for regenerative medicine owing to their capacity for self renewal, exponential scale up and differentiation into any cell type in the adult body. hESC have been proposed as a potentially unlimited source for the generation of transplantable, healthy, functional vascular cells for repair of ischemic tissues. To optimally harness this potential necessitates precise control over biological processes that govern maintenance, pluripotency and cell differentiation including signalling cascades, gene expression profiles and epigenetic modification. Such control may be elicited by microRNAs, which are powerful negative regulators of gene expression. Here, we review the role for miRNAs in both the maintenance of pluripotency and differentiation of cells to a cardiovascular lineage including endothelial cells, vascular smooth muscle cells and cardiomyocytes and put this into context for regenerative medicine in the cardiovascular system.
Collapse
|
181
|
Kanzaki H, Ito S, Hanafusa H, Jitsumori Y, Tamaru S, Shimizu K, Ouchida M. Identification of direct targets for the miR-17-92 cluster by proteomic analysis. Proteomics 2011; 11:3531-9. [DOI: 10.1002/pmic.201000501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 05/02/2011] [Accepted: 06/08/2011] [Indexed: 01/07/2023]
|
182
|
MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 2011; 31:4087-96. [PMID: 21807897 DOI: 10.1128/mcb.01276-10] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1α (but not HIF-2α) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxia-inducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1α mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1α in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1α mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1α stabilization and activity. Based on these data and a mathematical model of HIF-1α suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1α activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1α-dependent transcription.
Collapse
|
183
|
Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ, Cherradi N. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 2011; 22:3366-78. [PMID: 21775632 PMCID: PMC3172262 DOI: 10.1091/mbc.e10-07-0617] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelial cells (ECs) are the primary sensors of variations in blood oxygen concentrations. They use the hypoxia-sensitive stabilization of the hypoxia-inducible factor-1α (HIF-1α) transcription factor to engage specific transcriptional programs in response to oxygen changes. The regulation of HIF-1α expression is well documented at the protein level, but much less is known about the control of its mRNA stability. Using small interfering RNA knockdown experiments, reporter gene analyses, ribonucleoprotein immunoprecipitations, and mRNA half-life determinations, we report a new regulatory mechanism of HIF-1α expression in ECs. We demonstrate that 1) sustained hypoxia progressively decreases HIF-1α mRNA while HIF-1α protein levels rapidly peak after 3 h and then slowly decay; 2) silencing the mRNA-destabilizing protein tristetraprolin (TTP) in ECs reverses hypoxia-induced down-regulation of HIF-1α mRNA; 3) the decrease in the half-life of Luciferase-HIF-1α-3'UTR reporter transcript that is observed after prolonged hypoxia is mediated by TTP; 4) TTP binds specifically to HIF-1α 3'UTR; and 5) the most distal AU-rich elements present in HIF-1α 3'UTR (composed of two hexamers) are sufficient for TTP-mediated repression. Finally, we bring evidence that silencing TTP expression enhances hypoxia-induced increase in HIF-1α protein levels with a concomitant increase in the levels of the carbonic anhydrase enzyme CA IX, thus suggesting that TTP physiologically controls the expression of a panel of HIF-1α target genes. Altogether, these data reveal a new role for TTP in the control of gene expression during the response of endothelial cell to hypoxia.
Collapse
Affiliation(s)
- Sandrine Chamboredon
- Institut National de la Santé et de la Recherche Médicale, Unité 1036 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
184
|
Liang R, Bates DJ, Wang E. Epigenetic Control of MicroRNA Expression and Aging. Curr Genomics 2011; 10:184-93. [PMID: 19881911 PMCID: PMC2705851 DOI: 10.2174/138920209788185225] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/27/2009] [Accepted: 03/14/2009] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs are a major category among the noncoding RNA fraction that negatively regulate gene expression at the post-transcriptional level, by either degrading the target messages or inhibiting their translation. MicroRNAs may be referred to as ‘dimmer switches’ of gene expression, because of their ability to repress gene expression without completely silencing it. Whether through up-regulating specific groups of microRNAs to suppress unwanted gene expressions, or by down-regulating other microRNAs whose target genes’ expression is necessary for cellular function, such as cell proliferation, apoptosis, or differentiation, these regulatory RNAs play pivotal roles in a wide variety of cellular processes. The equilibrium between these two groups of microRNA expressions largely determines the function of particular cell types. Our recent results with several model systems show that upon aging, there is a trend of up-regulation of microRNA expression, with concomitant inverse down-regulation of target genes. This review addresses molecular mechanisms that may provide the underlying control for this up-regulating trend, focusing on activation by various microRNAs’ own promoters, through binding with pivotal transcription factors, stress response, methylation of clustered DNA domains, etc. Thus, epigenomic control of aging may be due in part to heightened promoter activation of unwanted microRNA expressions, which in turn down-regulate their target gene products. Overriding and dampening the activation of these noncoding RNAs may prove to be a new frontier for future research, to delay aging and extend healthy life-span.
Collapse
Affiliation(s)
- Ruqiang Liang
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | |
Collapse
|
185
|
Yokoi T, Nakajima M. Toxicological implications of modulation of gene expression by microRNAs. Toxicol Sci 2011; 123:1-14. [PMID: 21715665 DOI: 10.1093/toxsci/kfr168] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
186
|
Lin N, Davis A, Bahr S, Borgschulte T, Achtien K, Kayser K. Profiling highly conserved microrna expression in recombinant IgG-producing and parental Chinese hamster ovary cells. Biotechnol Prog 2011; 27:1163-71. [DOI: 10.1002/btpr.556] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/19/2010] [Indexed: 12/16/2022]
|
187
|
A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition. PLoS One 2011; 6:e20804. [PMID: 21687740 PMCID: PMC3110206 DOI: 10.1371/journal.pone.0020804] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/13/2011] [Indexed: 11/28/2022] Open
Abstract
Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as Bayesian networks, only provide an averaged network for all samples. Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects, which was consistent with the predictions obtained by NetworkProfiler.
Collapse
|
188
|
Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupré I, Rolland D, Salon C, Godfraind C, deFraipont F, Dhobb M, Pelletier L, Wion D, Gay E, Berger F, Issartel JP. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 2011; 6:e20600. [PMID: 21655185 PMCID: PMC3105101 DOI: 10.1371/journal.pone.0020600] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/06/2011] [Indexed: 12/19/2022] Open
Abstract
Gliomas such as oligodendrogliomas (ODG) and glioblastomas (GBM) are brain tumours with different clinical outcomes. Histology-based classification of these tumour types is often difficult. Therefore the first aim of this study was to gain microRNA data that can be used as reliable signatures of oligodendrogliomas and glioblastomas. We investigated the levels of 282 microRNAs using membrane-array hybridisation and real-time PCR in ODG, GBM and control brain tissues. In comparison to these control tissues, 26 deregulated microRNAs were identified in tumours and the tissue levels of seven microRNAs (miR-21, miR-128, miR-132, miR-134, miR-155, miR-210 and miR-409-5p) appropriately discriminated oligodendrogliomas from glioblastomas. Genomic, epigenomic and host gene expression studies were conducted to investigate the mechanisms involved in these deregulations. Another aim of this study was to better understand glioma physiopathology looking for targets of deregulated microRNAs. We discovered that some targets of these microRNAs such as STAT3, PTBP1 or SIRT1 are differentially expressed in gliomas consistent with deregulation of microRNA expression. Moreover, MDH1, the target of several deregulated microRNAs, is repressed in glioblastomas, making an intramitochondrial-NAD reduction mediated by the mitochondrial aspartate-malate shuttle unlikely. Understanding the connections between microRNAs and bioenergetic pathways in gliomas may lead to identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Elodie Lages
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
| | - Audrey Guttin
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
| | - Michèle El Atifi
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
| | - Claire Ramus
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
| | - Hélène Ipas
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
| | - Isabelle Dupré
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
| | - Delphine Rolland
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
- Laboratoire d’Hématologie Cellulaire et Moléculaire, Département d’Hématologie, Onco-Génétique et Immunologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Caroline Salon
- Department of Pathology, Centre Hospitalier Universitaire, Grenoble, France
| | - Catherine Godfraind
- Laboratory of Pathology, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Florence deFraipont
- Unité Médicale de Biochimie des Cancers et Biothérapies, Département de Biochimie, Toxicologie et Pharmacologie, Centre Hospitalier Universitaire, INSERM U823, Université Joseph Fourier, Grenoble, France
| | - Mehdi Dhobb
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
| | - Laurent Pelletier
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
| | - Didier Wion
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
| | - Emmanuel Gay
- Department of Neurosurgery, Centre Hospitalier Universitaire, Grenoble, France
| | - François Berger
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
| | - Jean-Paul Issartel
- Team7 Nanomedicine and Brain, INSERM U836, Grenoble, France
- Institut des Neurosciences, Université Joseph Fourier, Grenoble, France
- Clinical Transcriptomics and Proteomics Platform, Centre Hospitalier Universitaire and Grenoble Institut des Neurosciences, Grenoble, France
- CNRS, Grenoble, France
- * E-mail:
| |
Collapse
|
189
|
Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, Sheng W, He X, Du X. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res 2011; 71:2582-2589. [PMID: 21427358 DOI: 10.1158/0008-5472.can-10-3032] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are strongly implicated in cancer but their specific roles and functions in the major cancers have yet to be fully elucidated. In this study, we defined the oncogenic significance and function of miR-95, which we found to be elevated in colorectal cancer (CRC) tissues by microarray analysis. Evaluation of an expanded CRC cohort revealed that miR-95 expression was up-regulated in nearly half of the tumors examined (42/87) compared with the corresponding noncancerous tissues. Ectopic overexpression of miR-95 in human CRC cell lines promoted cell growth in vitro and tumorigenicity in vivo, whereas RNAi-mediated silencing of miR-95 decreased cell growth ratio. Mechanistic studies revealed that miR-95 repressed the expression of reporter gene coupled to the 3'-untranslated region of sorting nexin 1 (SNX1), whereas miR-95 silencing up-regulated SNX1 expression. Moreover, miR-95 expression levels correlated inversely with SNX1 protein levels in human CRC tissues. RNAi-mediated knockdown of SNX1 phenocopied the proliferation-promoting effect of miR-95, whereas overexpression of SNX1 blocked miR-95-induced proliferation of CRC cells. Taken together, these results demonstrated that miR-95 increases proliferation by directly targeting SNX1, defining miR-95 as a new oncogenic miRNA in CRC.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Semenza GL. Oxygen homeostasis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:336-361. [PMID: 20836033 DOI: 10.1002/wsbm.69] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metazoan life is dependent upon the utilization of O(2) for essential metabolic processes and oxygen homeostasis is an organizing principle for understanding metazoan evolution, ontology, physiology, and pathology. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is expressed by all metazoan species and functions as a master regulator of oxygen homeostasis. Recent studies have elucidated complex mechanisms by which HIF-1 activity is regulated and by which HIF-1 regulates gene expression, with profound consequences for prenatal development, postnatal physiology, and disease pathogenesis.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| |
Collapse
|
191
|
Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 2011; 102:9-17. [PMID: 20735434 DOI: 10.1111/j.1349-7006.2010.01707.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA)-encoding small non-coding RNA have been recognized as important regulators of a number of biological processes that inhibit the expression of hundreds of genes. Accumulating evidence also indicates the involvement of miRNA alterations in various types of human cancer, including lung cancer, which has long been the leading cause of cancer death in economically well-developed countries, including Japan. We previously found that downregulation of members of the tumor-suppressive let-7 miRNA family and overexpression of the oncogenic miR-17-92 miRNA cluster frequently occur in lung cancers, and molecular insight into how these miRNA alterations may contribute to tumor development has been rapidly accumulating. The present review summarizes recent advances in elucidation of the molecular functions of these miRNA in relation to their roles in the pathogenesis of lung cancer. Given the crucial roles of miRNA alterations, additional studies are expected to provide a better understanding of the underlying molecular mechanisms of disease development, as well as a foundation for novel strategies for cancer diagnosis and treatment of this devastating disease.
Collapse
Affiliation(s)
- Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | |
Collapse
|
192
|
|
193
|
Xu Y, Fang F, Zhang J, Josson S, St. Clair WH, St. Clair DK. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One 2010; 5:e14356. [PMID: 21203553 PMCID: PMC3008681 DOI: 10.1371/journal.pone.0014356] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022] Open
Abstract
Aberrant micro RNA (miRNA) expression has been implicated in the pathogenesis of cancer. Recent studies have shown that the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the miR-17–92 cluster has been identified from the 5′ arm of six precursors. However, the function of the miRNAs produced from the 3′ arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD), glutathione peroxidase-2 (GPX2) and thioredoxin reductase-2 (TrxR2). Transfection of miR-17* into prostate cancer PC-3 cells significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-17* binding sequences located in the 3′-untranslated regions of the three target genes. Disulfiram (DSF), a dithiolcarbomate drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity of prostate cancer through inhibition of mitochondrial antioxidant enzymes.
Collapse
Affiliation(s)
- Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Fang Fang
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jiayou Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sajni Josson
- Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
194
|
Mizuno S, Yasuo M, Bogaard HJ, Kraskauskas D, Natarajan R, Voelkel NF. Inhibition of histone deacetylase causes emphysema. Am J Physiol Lung Cell Mol Physiol 2010; 300:L402-13. [PMID: 21224215 DOI: 10.1152/ajplung.00207.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In patients with chronic obstructive pulmonary disease (COPD), histone deacetylase (HDAC) expression and activity are reduced in the lung tissue. However, whether HDAC activity controls the maintenance of the lung alveolar septal structures has not been investigated. To explore the consequences of HDAC inhibition and address the question of whether HDAC inhibition causes lung cell apoptosis and emphysema, male Sprague-Dawley rats and human pulmonary microvascular endothelial cells (HPMVEC) were treated with trichostatin A (TSA), a specific inhibitor of HDACs. Chronic TSA treatment increased the alveolar air space area, mean linear intercept, and the number of caspase-3-positive cells in rat lungs. TSA suppressed hypoxia-inducible factor-1α (HIF-1α), VEGF, and lysyl oxidase (LOX) and increased microtubule-associated protein-1 light chain 3 (LC3), p53, and miR34a microRNA expression in both rat lungs and cultured HPMVEC. Gene silencing of HDAC2 using small interfering RNA (siRNA) in cultured HPMVEC resulted in the suppression of HIF-1α, VEGF, and LOX and an increase of p53 expression. These data indicate that HDAC inhibition causes emphysema and that HDAC-dependent mechanisms contribute to the maintenance of the adult lung structure. Our results also suggest that the increase in apoptosis, as a consequence of HDAC inhibition, is associated with decreased VEGF and HIF-1α expression.
Collapse
Affiliation(s)
- Shiro Mizuno
- Pulmonary and Critical Care Medicine Division, Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth Univ., Richmond, VA 23284, USA
| | | | | | | | | | | |
Collapse
|
195
|
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40:294-309. [PMID: 20965423 PMCID: PMC3143508 DOI: 10.1016/j.molcel.2010.09.022] [Citation(s) in RCA: 1788] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023]
Abstract
Oxygen (O(2)) is an essential nutrient that serves as a key substrate in cellular metabolism and bioenergetics. In a variety of physiological and pathological states, organisms encounter insufficient O(2) availability, or hypoxia. In order to cope with this stress, evolutionarily conserved responses are engaged. In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors (HIFs). While canonically regulated by prolyl hydroxylase domain-containing enzymes (PHDs), the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α (FIH1), sirtuins, and metabolites. These transcription factors function in normal tissue homeostasis and impinge on critical aspects of disease progression and recovery. Insights from basic HIF biology are being translated into pharmaceuticals targeting the HIF pathway.
Collapse
Affiliation(s)
- Amar J Majmundar
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
196
|
Yanagisawa K, Konishi H, Arima C, Tomida S, Takeuchi T, Shimada Y, Yatabe Y, Mitsudomi T, Osada H, Takahashi T. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways. Cancer Res 2010; 70:9949-58. [PMID: 21118962 DOI: 10.1158/0008-5472.can-10-1055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival.
Collapse
Affiliation(s)
- Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
The molecular response of cancer cells to hypoxia is the focus of intense research. In the last decade, research into microRNAs (miRNAs), small RNAs which have a role in regulation of mRNA and translation, has grown exponentially. miR-210 has emerged as the predominant miRNA regulated by hypoxia. Elucidation of its targets points to a variety of roles for this, and other hypoxia-regulated miRNAs (HRMs), in tumour growth and survival. miR-210 expression correlates with poor survival in cancer patients, and shows promise for future use as a tumour marker or therapeutic agent. The role of miR-210 and other HRMs in cancer biology is the subject of this review.
Collapse
|
198
|
Shlomai J. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxid Redox Signal 2010; 13:1429-76. [PMID: 20446770 DOI: 10.1089/ars.2009.3029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.
Collapse
Affiliation(s)
- Joseph Shlomai
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Tropical and Infectious Diseases, Institute for Medical Research Canada-Israel, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
199
|
Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest 2010; 120:3815-7. [PMID: 20972325 DOI: 10.1172/jci45105] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adaptation to hypoxia is an essential cellular response controlled by the oxygen-sensitive master transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 expression is also controlled by specific microRNAs and, in turn, controls the expression of other microRNAs, which fine-tune adaptation to low oxygen tension. In this issue of the JCI, Ghosh and colleagues identify a unique microRNA in hypoxic endothelial cells, miR424, that promotes HIF-1 stabilization and angiogenesis. The actions of this microRNA are considered in the context of the complex interactions that act to ensure optimal endothelial adaptation to this critical environmental condition.
Collapse
Affiliation(s)
- Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115-2394, USA.
| |
Collapse
|
200
|
Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med 2010; 8:64. [PMID: 20964835 PMCID: PMC2978113 DOI: 10.1186/1741-7015-8-64] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/21/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The commonest histological type of renal cancer, clear cell renal cell carcinoma (cc RCC), is associated with genetic and epigenetic changes in the von Hippel-Lindau (VHL) tumour suppressor. VHL inactivation leads to induction of hypoxia-inducible factors (HIFs) and a hypoxic pattern of gene expression. Differential levels of specific microRNAs (miRNAs) are observed in several tumours when compared to normal tissue. Given the central role of VHL in renal cancer formation, we examined the VHL-dependent regulation of miRNAs in renal cancer. METHODS VHL-dependent miRNA expression in cc RCC was determined by microarray analysis of renal cell line RCC4 with mutated VHL (RCC4-VHL) and reintroduced wild-type VHL (RCC4 + VHL). Five miRNAs highly upregulated in RCC4 + VHL and five miRNAs highly downregulated in RCC4 + VHL were studied further, in addition to miR-210, which is regulated by the HIF-VHL system. miRNA expression was also measured in 31 cc RCC tumours compared to adjacent normal tissue. RESULTS A significant increase in miR-210, miR-155 and miR-21 expression was observed in the tumour tissue. miR-210 levels also showed a correlation with a HIF-regulated mRNA, carbonic anhydrase IX (CAIX), and with VHL mutation or promoter methylation. An inverse correlation was observed between miR-210 expression and patient survival, and a putative target of miR-210, iron-sulfur cluster assembly protein (ISCU1/2), shows reciprocal levels of mRNA expression in the tumours. CONCLUSIONS We have identified VHL-regulated miRNAs and found that for some the regulation is HIF-dependent and for others it is HIF-independent. This pattern of regulation was also seen in renal cancer tissue for several of these miRNAs (miR-210, miR-155, let-7i and members of the miR-17-92 cluster) when compared with normal tissue. miR-210 showed marked increases in expression in renal cancer and levels correlated with patient survival. The inverse correlation between miR-210 levels and ISCU1/2 provides support for the hypothesis that ISCU1/2 is a target of miR-210 and that it may contribute to the anaerobic respiration seen in renal (and other) tumours.See Commentary: http://www.biomedcentral.com/1741-7015/8/65.
Collapse
Affiliation(s)
- Calida S Neal
- Renal Unit, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | | | | | | | | |
Collapse
|