151
|
Kosaka T, Kikuchi E, Mikami S, Miyajima A, Shirotake S, Ishida M, Okada Y, Oya M. Expression of snail in upper urinary tract urothelial carcinoma: prognostic significance and implications for tumor invasion. Clin Cancer Res 2010; 16:5814-23. [PMID: 20947514 DOI: 10.1158/1078-0432.ccr-10-0230] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are few molecular markers known to predict upper urinary tract urothelial carcinomas (UTUC) prognosis. Snail, which contributes to epithelial-mesenchymal transition (EMT), has been documented in cancer progression, but not clear yet in UTUC. We therefore addressed the expression and biological significance of Snail in UTUC. EXPERIMENTAL DESIGN To elucidate the biological significance of Snail in UTUC, we examined the immunohistochemical expression of snail in UTUC and analyzed its clinical significance in 150 patients with UTUC. Biological effects of Snail in EMT and invasion were evaluated by using small interfering RNA (siRNA) specific for Snail in urothelial carcinoma cell lines and the Matrigel invasion assay. RESULTS Nuclear Snail staining was very weak in superficial UTUC. In contrast, strong Snail staining was observed in many of the nucleus of invasive UTUC. Snail expression was significantly higher in the high tumor stage, high grade, and in tumors showing lymphovascular invasion (LVI). Multivariate Cox regression analysis revealed that elevated Snail expression was a significant and an independent prognostic predictor of recurrence-free survival and cancer-specific survival. Patients with positive LVI and high Snail expression showed the worse outcome. Targeting of Snail mRNA expression in UMUC-3 cells with Snail-specific siRNA downregulated the mRNA expression of Snail, Vimentin, MMP2, and MMP9. Furthermore, the cells with siRNA for Snail showed decreased invasion activity in comparison with the cells transfected with a nontargeting siRNA. CONCLUSION Snail-induced EMT represents a clinically relevant mechanism of UTUC progression and an attractive target for the treatment of patients with UTUC.
Collapse
Affiliation(s)
- Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
The epithelial-mesenchymal transition (EMT) describes a rapid and often reversible modulation of phenotype by epithelial cells. EMT was originally defined in the context of developmental stages, including heart morphogenesis, mesoderm and neural crest formation. Epithelial cells loosen cell-cell adhesion structures throughout EMT. They modulate their polarity, cytoskeleton organization and typically express vimentin filaments and downregulate cytokeratins. They become isolated, mobile and resistant to anoikis. The EMT at least superficially resembles the evolution from normal to transformed cell phenotype during carcinoma progression. The relevance of the concept of EMT in this context was indicated by in vitro models using transformed epithelial cells. Transduction pathways typical of embryogenic EMT in vivo were also found to be activated during cancer progression. More recently, it has been found that such pathways indicate an increased plasticity linked to cellular stemness and ability to generate tumors. However, in the absence of direct evidence, a number of oncologists and pathologists remain skeptical about applying the EMT concept to human tumor progression. Typically in the cancer field, EMT concept appears to be fully relevant in some situations, but the concept has to be adjusted in other situations to reflect tumor cell renewal and plasticity during carcinoma progression and metastasis.
Collapse
Affiliation(s)
- P Savagner
- IRCM U896 INSERM, CRLC Val d'Aurelle-Paul Lamarque, Montpellier, France.
| |
Collapse
|
153
|
Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, Downward J. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 2010; 29:4658-70. [PMID: 20562906 PMCID: PMC7646260 DOI: 10.1038/onc.2010.218] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/29/2010] [Accepted: 05/06/2010] [Indexed: 12/13/2022]
Abstract
Activating mutations in the KRAS gene are among the most prevalent genetic changes in human cancers. To identify synthetic lethal interactions in cancer cells harbouring mutant KRAS, we performed a large-scale screen in isogenic paired colon cancer cell lines that differ by a single allele of mutant KRAS using an inducible short hairpin RNA interference library. Snail2, a zinc finger transcriptional repressor encoded by the SNAI2 gene, was found to be selectively required for the long-term survival of cancer cells with mutant KRAS that have undergone epithelial-mesenchymal transition (EMT), a transdifferentiation event that is frequently seen in advanced tumours and is promoted by RAS activation. Snail2 expression is regulated by the RAS pathway and is required for EMT. Our findings support Snail2 as a possible target for the treatment of the broad spectrum of human cancers of epithelial origin with mutant RAS that have undergone EMT and are characterized by a high degree of chemoresistance and radioresistance.
Collapse
Affiliation(s)
- Y Wang
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | - VN Ngo
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Marani
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Y Yang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Wright
- Biometric Research Branch, DCTD, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - LM Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Downward
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
154
|
A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nat Chem Biol 2010; 6:667-73. [DOI: 10.1038/nchembio.423] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 07/15/2010] [Indexed: 01/21/2023]
|
155
|
Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Badve S, Srour EF, Nakshatri H. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10:411. [PMID: 20691079 PMCID: PMC3087321 DOI: 10.1186/1471-2407-10-411] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/06/2010] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression. Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.
Collapse
Affiliation(s)
- Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Foubert E, De Craene B, Berx G. Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 2010; 12:206. [PMID: 20594364 PMCID: PMC2917026 DOI: 10.1186/bcr2585] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer among women, and despite significant advances in diagnosing and treating it, metastatic spread of cancer cells results in a high mortality rate. Epithelial-to-mesenchymal transition (EMT) is an embryonic program in which epithelial cells lose their characteristics and gain mesenchymal features. Therefore, EMT might play a very important role during malignant tumour progression. In this review we summarise recent advances in breast cancer research with a particular focus on the transcription factors Snail1 and Twist1. Besides discussing the role of EMT in normal mammary gland development, we describe regulatory mechanisms involving newly discovered upstream regulators and microRNAs, the association of EMT with breast cancer stem cells, and the involvement of the tumour microenvironment in breast cancer progression.
Collapse
Affiliation(s)
- Ellen Foubert
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Bram De Craene
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
157
|
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010; 7:51-63. [PMID: 20621050 DOI: 10.1016/j.stem.2010.04.014] [Citation(s) in RCA: 924] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/02/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:
Collapse
Affiliation(s)
- Ronghui Li
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 2010; 12:1383-430. [PMID: 19903090 DOI: 10.1089/ars.2009.2737] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS). Current literature data involving EMT in both physiological conditions (i.e., embryogenesis) and major human diseases are then critically analyzed, with a special final focus on the emerging role of hypoxia as a relevant independent condition able to trigger EMT.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Experimental Medicine and Oncology and Interuniversity Center for Hepatic Pathophysiology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
159
|
Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:235-52. [PMID: 20521089 DOI: 10.1007/s10911-010-9175-z] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/20/2010] [Indexed: 02/06/2023] Open
Abstract
We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44(high)CD24(low). Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.
Collapse
Affiliation(s)
- Tony Blick
- Invasion and Metastasis Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, Melbourne 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 2010; 15:149-68. [PMID: 20461450 DOI: 10.1007/s10911-010-9180-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Nathan J Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, East Melbourne, VIC 3002, Australia
| | | | | | | |
Collapse
|
161
|
Zhang KJ, Zhang BY, Zhang KP, Tang LM, Liu SS, Zhu DM, Zhang DL. Clinicopathologic significance of slug expression in human intrahepatic cholangiocarcinoma. World J Gastroenterol 2010; 16:2554-7. [PMID: 20503457 PMCID: PMC2877187 DOI: 10.3748/wjg.v16.i20.2554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression and function of slug, a transcriptional repressor, in human intrahepatic cholangiocarcinoma (IHCC) and identify its role in IHCC progression.
METHODS: Expression of slug was detected in 36 cases of IHCC and 12 cases of normal intrahepatic bile ducts and liver parenchyma by immunohistochemistry. The patients were divided into low slug expression group (< 20% of carcinoma cells stained) and high slug expression group (≥ 20% of carcinoma cells stained). Slug expression was correlated with clinicopathological parameters of IHCC patients. The patients were defined as short-term survivors if their survival time was < 12 mo and as long-term survivors if their survival time was ≥ 12 mo.
RESULTS: Slug was not expressed in normal liver epithelium samples, lowly expressed in 15 tissue samples (10 -, 5 +) and highly expressed in 21 tissue samples (16 ++; 5 +++) from IHCC patients. The survival rate of patients with a low slug expression was 33.3% (n = 5) and 66.7% (n = 10), respectively. The survival rate of patients with a high slug expression was 61.9% (n = 13) and 38.1% (n = 8), respectively (P = 0.02). Lymph node metastasis was found in 4 (26.7%) out of the 15 patients with a low slug expression and in 14 (66.7%) out of the 21 patients with a high slug expression, respectively. The incidence rate of lymph node metastasis increased with the increasing slug expression level (P = 0.003), and higher in patients with a high slug expression than in those with a low slug expression. Slug expression did not significantly correlate with the tumor size and stage or histologic grade, or with the gender and age of patients.
CONCLUSION: Slug expression is a novel prognostic marker for IHCC with lymph node metastasis.
Collapse
|
162
|
Jin H, Yu Y, Zhang T, Zhou X, Zhou J, Jia L, Wu Y, Zhou BP, Feng Y. Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int J Cancer 2010; 126:2102-11. [PMID: 19795442 DOI: 10.1002/ijc.24901] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Snail, a key inducer of epithelial-mesenchymal transition (EMT), plays an important role in cancer metastasis. To better understand the role of Snail in the metastasis of ovarian carcinoma, expression of Snail was knocked down by antisense-Snail in the highly metastatic ovarian cancer cell line HO8910PM. Gene array analysis revealed that blocking Snail expression suppressed the activity of matrix metalloproteinases (MMPs) and upregulated TIMP3, an MMP inhibitor. These findings suggest that Snail interacts with MMP during tumor invasion and metastasis. In addition, we examined the role of Snail in an ovarian cancer orthotopic model by using the antisense-Snail HO8910PM cell line. We found that the size of primary ovarian cancer tumor and the number of metastatic lesions were significantly reduced when Snail was knocked down. Confirming our initial findings, the activity of MMP2 was greatly inhibited in tumors from antisense-Snail cells. Furthermore, immunohistochemical analysis on ovarian cancer progression tissue array demonstrated that the expression of Snail was significantly higher in metastatic lesions, and Snail expression correlated with the stage of ovarian cancer. Interestingly, in early-stage tumors, Snail was localized in both the cytoplasm and nucleus. In late stage and metastatic lesions, the level of Snail was elevated, and Snail was localized to the nucleus. The expression level and nuclear localization of Snail were also inversely correlated with E-cadherin expression. Overall, our study indicates that Snail plays a critical role in tumor growth and metastasis of ovarian carcinoma through regulation of MMP activity.
Collapse
Affiliation(s)
- Hongyan Jin
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Mittal MK, Myers JN, Bailey CK, Misra S, Chaudhuri G. Mode of action of the retrogene product SNAI1P, a SNAIL homolog, in human breast cancer cells. Mol Biol Rep 2010; 37:1221-7. [PMID: 19277896 PMCID: PMC2824646 DOI: 10.1007/s11033-009-9492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/24/2009] [Indexed: 01/16/2023]
Abstract
SNAI1P, a protein coded by a retrogene, is a member of the SNAI family of E2-box binding transcriptional repressors. To evaluate whether the mode of action of SNAI1P is similar to those of the other predominant members of the SNAI family, we studied its action on human claudin 7 (CLDN7) gene promoter which has seven E2-boxes. We over-expressed FLAG-tagged SNAI1P in MCF7 and MDA-MB-468 cells. SNAI1P inhibited the expression of CLDN7 in these recombinant cells. SNAI1P also inhibited cloned CLDN7 gene promoter activity in human breast cancer cells. ChIP assays revealed that SNAI1P is recruited on the CLDN7 gene promoter along with the co-repressor CtBP1 and the effector HDAC1. Treatment of the cells with trichostatin A, an inhibitor of HDAC1, abrogated the repressor activity of SNAI1P. These data suggest that SNAI1P inhibits CLDN7 gene promoter epigenetically in breast cancer cells through chromatin remodeling.
Collapse
Affiliation(s)
- Mukul K. Mittal
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, 1005 D. B. Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Jeremy N. Myers
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, 1005 D. B. Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Charvann K. Bailey
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, 1005 D. B. Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Smita Misra
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, 1005 D. B. Todd, Jr. Blvd., Nashville, TN 37208, USA
| | - Gautam Chaudhuri
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, 1005 D. B. Todd, Jr. Blvd., Nashville, TN 37208, USA
| |
Collapse
|
164
|
Radaelli E, Damonte P, Cardiff RD. Epithelial-mesenchymal transition in mouse mammary tumorigenesis. Future Oncol 2010; 5:1113-27. [PMID: 19852725 DOI: 10.2217/fon.09.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition tumorigenesis in the mouse has been described for over 100 years using various terms and with little comprehension of the underlying mechanisms. Recently, epithelial-mesenchymal transition tumors have been recognized in mammary glands of genetically engineered mice. This review provides a historical perspective and the current observations in the context of some of the key molecular biology. The biology of mouse mammary epithelial-mesenchymal transition tumorigenesis is discussed with comparisons to human breast cancer.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Veterinary Pathology, Hygiene and Public Health, Section of Veterinary and Avian Pathology, Faculty of Veterinary Medicine, University of Milan, Via Celoria, 10 20133 Milano, Italy
| | | | | |
Collapse
|
165
|
Abstract
The ERalpha signaling pathway is one of the most important and most studied pathways in human breast cancer, yet numerous questions still exist such as how hormonally responsive cancers progress to a more aggressive and hormonally independent phenotype. We have noted that human breast cancers exhibit a strong direct correlation between ERalpha and E-cadherin expression by immunohistochemistry, suggesting that ERalpha signaling might regulate E-cadherin and implying that this regulation might influence epithelial-mesenchymal transition (EMT) and tumor progression. To investigate this hypothesis and the mechanisms behind it, we studied the effects of ERalpha signaling in ERalpha-transfected ERalpha-negative breast carcinoma cell lines, the MDA-MB-468 and the MDA-MB-231 and the effects of ERalpha knockdown in naturally expressing ERalpha-positive lines, MCF-7 and T47D. When ERalpha was overexpressed in the ERalpha-negative lines, 17beta-estradiol (E2) decreased slug and increased E-cadherin. Clones maximally exhibiting these changes grew more in clumps and became less invasive in Matrigel. When ERalpha was knocked down in the ERalpha-positive lines, slug increased, E-cadherin decreased, cells became spindly and exhibited increased Matrigel invasion. ERalpha signaling decreased slug expression by two different mechanisms: directly, by repression of slug transcription by the formation of a corepressor complex of ligand-activated ERalpha, HDAC inhibitor (HDAC1), and nuclear receptor corepressor (N-CoR) that bound the slug promoter in three half-site estrogen response elements (EREs); indirectly by phosphorylation and inactivation of GSK-3beta through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt). The GSK-3beta inactivation, in turn, repressed slug expression and increased E-cadherin. In human breast cancer cases, there was a strong inverse correlation between slug and ERalpha and E-cadherin immunoreactivity. Our findings indicate that ERalpha signaling through slug regulates E-cadherin and EMT.
Collapse
|
166
|
Sphyris N, Mani SA. The importance of the epithelial-mesenchymal transition in breast cancer. CURRENT BREAST CANCER REPORTS 2009. [DOI: 10.1007/s12609-009-0032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
167
|
McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. ADVANCES IN ENZYME REGULATION 2009; 50:285-307. [PMID: 19895837 PMCID: PMC2862855 DOI: 10.1016/j.advenzreg.2009.10.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
168
|
Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V, Chia D, Goodglick L, Elashoff DA, Luo J, Magyar CE, Dohadwala M, Lee JM, St John MA, Strieter RM, Sharma S, Dubinett SM. Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 2009; 15:6820-9. [PMID: 19887480 DOI: 10.1158/1078-0432.ccr-09-1558] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE As a transcriptional repressor of E-cadherin, Snail has predominantly been associated with epithelial-mesenchymal transition, invasion, and metastasis. However, other important Snail-dependent malignant phenotypes have not been fully explored. Here, we investigate the contributions of Snail to the progression of non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Immunohistochemistry was done to quantify and localize Snail in human lung cancer tissues, and tissue microarray analysis was used to correlate these findings with survival. NSCLC cell lines gene-modified to stably overexpress Snail were evaluated in vivo in two severe combined immunodeficiency murine tumor models. Differential gene expression between Snail-overexpressing and control cell lines was evaluated using gene expression microarray analysis. RESULTS Snail is upregulated in human NSCLC tissue, and high levels of Snail expression correlate with decreased survival (P < 0.026). In a heterotopic model, mice bearing Snail-overexpressing tumors developed increased primary tumor burden (P = 0.008). In an orthotopic model, mice bearing Snail-overexpressing tumors also showed a trend toward increased metastases. In addition, Snail overexpression led to increased angiogenesis in primary tumors as measured by MECA-32 (P < 0.05) positivity and CXCL8 (P = 0.002) and CXCL5 (P = 0.0003) concentrations in tumor homogenates. Demonstrating the importance of these proangiogenic chemokines, the Snail-mediated increase in tumor burden was abrogated with CXCR2 blockade. Gene expression analysis also revealed Snail-associated differential gene expression with the potential to affect angiogenesis and diverse aspects of lung cancer progression. CONCLUSION Snail upregulation plays a role in human NSCLC by promoting tumor progression mediated by CXCR2 ligands.
Collapse
Affiliation(s)
- Jane Yanagawa
- Lung Cancer Research Program, Division of Pulmonary and Critical Care Medicine, 10833 Le Conte Avenue, 37-131 CHS, Los Angeles, CA 90095-1690, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Joseph MJ, Dangi-Garimella S, Shields MA, Diamond ME, Sun L, Koblinski JE, Munshi HG. Slug is a downstream mediator of transforming growth factor-β1-induced matrix metalloproteinase-9 expression and invasion of oral cancer cells. J Cell Biochem 2009; 108:726-36. [DOI: 10.1002/jcb.22309] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
170
|
Prasad CP, Rath G, Mathur S, Bhatnagar D, Parshad R, Ralhan R. Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast. BMC Cancer 2009; 9:325. [PMID: 19751508 PMCID: PMC2753637 DOI: 10.1186/1471-2407-9-325] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022] Open
Abstract
Background Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast. Methods In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast. Results Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression. Conclusion The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells.
Collapse
Affiliation(s)
- Chandra P Prasad
- Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
171
|
Côme C, Laine A, Chanrion M, Edgren H, Mattila E, Liu X, Jonkers J, Ivaska J, Isola J, Darbon JM, Kallioniemi O, Thézenas S, Westermarck J. CIP2A is associated with human breast cancer aggressivity. Clin Cancer Res 2009; 15:5092-100. [PMID: 19671842 DOI: 10.1158/1078-0432.ccr-08-3283] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the clinical relevance of the recently characterized human oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) in human breast cancer. EXPERIMENTAL DESIGN CIP2A expression (mRNA and protein) was measured in three different sets of human mammary tumors and compared with clinicopathologic variables. The functional role of CIP2A in breast cancer cells was evaluated by small interfering RNA-mediated depletion of the protein followed by an analysis of cell proliferation, migration, anchorage-independent growth, and xenograft growth. RESULTS CIP2A mRNA is overexpressed (n = 159) and correlates with higher Scarff-Bloom-Richardson grades (n = 251) in samples from two independent human breast cancer patients. CIP2A protein was found to be overexpressed in 39% of 33 human breast cancer samples. Furthermore, CIP2A mRNA expression positively correlated with lymph node positivity of the patients and with the expression of proliferation markers and p53 mutations in the tumor samples. Moreover, CIP2A protein expression was induced in breast cancer mouse models presenting mammary gland-specific depletion of p53 and either BRCA1 or BRCA2. Functionally, CIP2A depletion was shown to inhibit the expression of its target protein c-Myc. Loss of CIP2A also inhibited anchorage-independent growth in breast cancer cells. Finally, CIP2A was shown to support MDA-MB-231 xenograft growth in nude mice. CONCLUSIONS Our data show that CIP2A is associated with clinical aggressivity in human breast cancer and promotes the malignant growth of breast cancer cells. Thus, these results validate the role of CIP2A as a clinically relevant human oncoprotein and warrant further investigation of CIP2A as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Christophe Côme
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hugo HJ, Wafai R, Blick T, Thompson EW, Newgreen DF. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction - a model for cross-modulation. BMC Cancer 2009; 9:235. [PMID: 19604397 PMCID: PMC2717979 DOI: 10.1186/1471-2407-9-235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/deltaEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. METHODS PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/deltaEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. RESULTS When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/deltaEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/deltaEF1 showed a reverse correlation with lower expression values being predictive of increased risk. CONCLUSION ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/deltaEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.
Collapse
Affiliation(s)
- Honor J Hugo
- Embryology Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- VBCRC Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Razan Wafai
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, Australia
| | - Tony Blick
- VBCRC Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Erik W Thompson
- VBCRC Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, Australia
| | - Donald F Newgreen
- Embryology Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
173
|
Larriba MJ, Martín-Villar E, García JM, Pereira F, Peña C, de Herreros AG, Bonilla F, Muñoz A. Snail2 cooperates with Snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis 2009; 30:1459-68. [PMID: 19502595 DOI: 10.1093/carcin/bgp140] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin D receptor (VDR) mediates the antitumoral action of the active vitamin D metabolite 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). VDR expression is lost during colon cancer progression causing unresponsiveness to 1,25(OH)(2)D(3) and its analogs. Previously, Snail1, an inducer of epithelial-to-mesenchymal transition (EMT), was reported to inhibit VDR expression. Here, we show that Snail2/Slug, but not other EMT inducers such as Zeb1, Zeb2, E47 or Twist1, represses VDR gene promoter. Moreover, Snail2 and Snail1 show additive repressing effect on VDR promoter. Snail2 inhibits VDR RNA and protein and blocks the induction of E-cadherin and an adhesive phenotype by 1,25(OH)(2)D(3). Snail2 reduces the ligand-induced VDR transcriptional activation of a consensus response element and of the CYP24 promoter. Concordantly, Snail2 inhibits the induction of CYP24 RNA and p21(CIP1), filamin A and vinculin proteins and the repression of c-MYC by 1,25(OH)(2)D(3). Additionally, Snail2 abrogates beta-catenin nuclear export and the antagonism of the transcriptional activity of beta-catenin-T-cell factor complexes by 1,25(OH)(2)D(3). SNAI2 expression is upregulated in 58% of colorectal tumors and correlates inversely with that of VDR. However, VDR downregulation is higher in tumors coexpressing SNAI2 and SNAI1 than in those expressing only one of these genes. Together, these data indicate that Snail2 and Snail1 cooperate for VDR repression in colon cancer.
Collapse
Affiliation(s)
- María Jesús Larriba
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1588-93. [PMID: 19342369 PMCID: PMC2671246 DOI: 10.2353/ajpath.2009.080545] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2009] [Indexed: 12/27/2022]
Abstract
Epithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis. Based on clinical observations, it is more appropriate in most cases to describe the emergence of an EMT-like phenotype during tumor progression. Although EMT implies complete trans-differentiation, EMT-like emphasizes the intermediary phenotype associated with tumor cell renewal and adaptation to specific microenvironments. Here, we categorize the various EMT-like phenotypes found in human carcinomas that, depending on the tumor type, may or not represent analogous stages in tumor progression. We based these categories on the global tumor phenotype. The tumor microenvironment, which is associated with stromal reactions, hypoxia, paucity of nutrients, impaired differentiation, and activation of various EMT-associated pathways, modulates overall tumor phenotype and leads to tumor heterogeneity.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular, and Development Biology, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
175
|
Heebøll S, Borre M, Ottosen PD, Dyrskjøt L, Orntoft TF, Tørring N. Snail1 is over-expressed in prostate cancer. APMIS 2009; 117:196-204. [PMID: 19245592 DOI: 10.1111/j.1600-0463.2008.00007.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcription factor Snail1 is a mediator of cell migration and survival, and expression is elevated in several cancer types. The Snail1 gene is reportedly amplified in prostate cancer (PC), and we investigated Snail1 expression in PC. Immunohistochemical Snail1 staining was determined on a tissue microarray which includes 327 specimens of PC, 30 specimens from patients with benign prostatic hyperplasia (BPH), benign tissue from 30 PC patients and 15 high-grade prostate intraepithelial neoplasia (high-grade PIN) specimens. Clinicopathological and follow-up data were available for all patients. No BPH specimen and only 21% of benign tissue from PC patients showed high expression of Snail1. Only 7% of high-grade PIN patients expressed a high level of Snail1. In contrast, approximately 50% of PC tissue from patients with PC showed marked nuclear immunostaining. Snail1 immunostaining was significantly associated with Gleason score (p<0.05). Snail1 expression was not correlated to T stage, metastasis at time of diagnosis, risk of or time to recurrence. Snail1 expression was significantly increased in PC with a positive correlation to dedifferentiation, but not to cancer progression or prognosis. The presented data indicate that Snail1 expression is upregulated from the early stages of PC.
Collapse
Affiliation(s)
- Sara Heebøll
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Brenstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | | | | | |
Collapse
|
176
|
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9:265-73. [PMID: 19262571 DOI: 10.1038/nrc2620] [Citation(s) in RCA: 2562] [Impact Index Per Article: 160.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transitions between epithelial and mesenchymal states have crucial roles in embryonic development. Emerging data suggest a role for these processes in regulating cellular plasticity in normal adult tissues and in tumours, where they can generate multiple, distinct cellular subpopulations contributing to intratumoural heterogeneity. Some of these subpopulations may exhibit more differentiated features, whereas others have characteristics of stem cells. Owing to the importance of these tumour-associated phenotypes in metastasis and cancer-related mortality, targeting the products of such cellular plasticity is an attractive but challenging approach that is likely to lead to improved clinical management of cancer patients.
Collapse
Affiliation(s)
- Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
177
|
Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. THE AMERICAN JOURNAL OF PATHOLOGY 2009. [PMID: 19342369 DOI: 10.2353/ajpath.2009.080545.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis. Based on clinical observations, it is more appropriate in most cases to describe the emergence of an EMT-like phenotype during tumor progression. Although EMT implies complete trans-differentiation, EMT-like emphasizes the intermediary phenotype associated with tumor cell renewal and adaptation to specific microenvironments. Here, we categorize the various EMT-like phenotypes found in human carcinomas that, depending on the tumor type, may or not represent analogous stages in tumor progression. We based these categories on the global tumor phenotype. The tumor microenvironment, which is associated with stromal reactions, hypoxia, paucity of nutrients, impaired differentiation, and activation of various EMT-associated pathways, modulates overall tumor phenotype and leads to tumor heterogeneity.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Department of Molecular, Cellular, and Development Biology, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
178
|
Otterbach F, Callies R, Adamzik M, Kimmig R, Siffert W, Schmid KW, Bankfalvi A. Aquaporin 1 (AQP1) expression is a novel characteristic feature of a particularly aggressive subgroup of basal-like breast carcinomas. Breast Cancer Res Treat 2009; 120:67-76. [DOI: 10.1007/s10549-009-0370-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 03/05/2009] [Indexed: 12/30/2022]
|
179
|
Proteomic analysis of tumor necrosis factor-alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype. Breast Cancer Res 2008; 10:R105. [PMID: 19087274 PMCID: PMC2656902 DOI: 10.1186/bcr2210] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 10/29/2008] [Accepted: 12/16/2008] [Indexed: 12/21/2022] Open
Abstract
Introduction Despite intensive study of the mechanisms of chemotherapeutic drug resistance in human breast cancer, few reports have systematically investigated the mechanisms that underlie resistance to the chemotherapy-sensitizing agent tumor necrosis factor (TNF)-α. Additionally, the relationship between TNF-α resistance mediated by MEK5/Erk5 signaling and epithelial-mesenchymal transition (EMT), a process associated with promotion of invasion, metastasis, and recurrence in breast cancer, has not previously been investigated. Methods To compare differences in the proteome of the TNF-α resistant MCF-7 breast cancer cell line MCF-7-MEK5 (in which TNF-α resistance is mediated by MEK5/Erk5 signaling) and its parental TNF-a sensitive MCF-7 cell line MCF-7-VEC, two-dimensional gel electrophoresis and high performance capillary liquid chromatography coupled with tandem mass spectrometry approaches were used. Differential protein expression was verified at the transcriptional level using RT-PCR assays. An EMT phenotype was confirmed using immunofluorescence staining and gene expression analyses. A short hairpin RNA strategy targeting Erk5 was utilized to investigate the requirement for the MEK/Erk5 pathway in EMT. Results Proteomic analyses and PCR assays were used to identify and confirm differential expression of proteins. In MCF-7-MEK5 versus MCF-7-VEC cells, vimentin (VIM), glutathione-S-transferase P (GSTP1), and creatine kinase B-type (CKB) were upregulated, and keratin 8 (KRT8), keratin 19 (KRT19) and glutathione-S-transferase Mu 3 (GSTM3) were downregulated. Morphology and immunofluorescence staining for E-cadherin and vimentin revealed an EMT phenotype in the MCF-7-MEK5 cells. Furthermore, EMT regulatory genes SNAI2 (slug), ZEB1 (δ-EF1), and N-cadherin (CDH2) were upregulated, whereas E-cadherin (CDH1) was downregulated in MCF-7-MEK5 cells versus MCF-7-VEC cells. RNA interference targeting of Erk5 reversed MEK5-mediated EMT gene expression. Conclusions This study demonstrates that MEK5 over-expression promotes a TNF-α resistance phenotype associated with distinct proteomic changes (upregulation of VIM/vim, GSTP1/gstp1, and CKB/ckb; and downregulation of KRT8/krt8, KRT19/krt19, and GSTM3/gstm3). We further demonstrate that MEK5-mediated progression to an EMT phenotype is dependent upon intact Erk5 and associated with upregulation of SNAI2 and ZEB1 expression.
Collapse
|
180
|
Fabre-Guillevin E, Malo M, Cartier-Michaud A, Peinado H, Moreno-Bueno G, Vallée B, Lawrence DA, Palacios J, Cano A, Barlovatz-Meimon G, Charrière-Bertrand C. PAI-1 and functional blockade of SNAI1 in breast cancer cell migration. Breast Cancer Res 2008; 10:R100. [PMID: 19055748 PMCID: PMC2656896 DOI: 10.1186/bcr2203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/14/2008] [Accepted: 12/03/2008] [Indexed: 02/08/2023] Open
Abstract
Introduction Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration. Methods We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining. Results We demonstrated by both cDNA microarrays and real-time quantitative RT-PCR that the functional blockade of SNAI1 induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found structures in these cells. Conclusions In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.
Collapse
|
181
|
Waldmann J, Feldmann G, Slater EP, Langer P, Buchholz M, Ramaswamy A, Saeger W, Rothmund M, Fendrich V. Expression of the zinc-finger transcription factor Snail in adrenocortical carcinoma is associated with decreased survival. Br J Cancer 2008; 99:1900-7. [PMID: 19018264 PMCID: PMC2600683 DOI: 10.1038/sj.bjc.6604755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we evaluate whether Snail is expressed in adrenocortical cancer (ACC) and if its expression is related to patient outcome. One of the best known functions of the zinc-finger transcription factor Snail is to induce epithelial-to-mesenchymal transition (EMT). Increasing evidence suggests that EMT plays a pivotal role in tumour progression and metastatic spread. Snail and E-cadherin expression were assessed by immunohistochemistry in 26 resected ACCs and real-time quantitative RT–PCR expression analysis was performed. Data were correlated with clinical outcome and in particular with overall patient survival. Seventeen of 26 (65%) ACC tumour samples expressed Snail when assessed by immunohistochemistry. Snail expression was neither detected in normal adrenocortical tissue, nor in benign adrenocortical adenomas. Expression levels were confirmed on the mRNA level by Real-Time–PCR. Survival rates were significantly decreased in Snail-positive tumours compared to Snail-negative tumours: 10 out of 16 vs one out of eight patients succumbed to disease after a median follow up of 14.5 and 28.5 months, respectively (P=0.03). Patients with Snail-expressing ACCs presented in advanced disease (11 out of 12 vs 6 out of 14, P=0.01) and tend to develop distant metastases more frequently than patients with negative staining (7 out of 11 vs two out of eight, P=0.19). In conclusion, we describe for the first time that Snail is expressed in a large subset of ACCs. Furthermore, Snail expression is associated with decreased survival, advanced disease and higher risk of developing distant metastases.
Collapse
Affiliation(s)
- J Waldmann
- Department of Surgery, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Arnoux V, Nassour M, L'Helgoualc'h A, Hipskind RA, Savagner P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell 2008; 19:4738-49. [PMID: 18716062 DOI: 10.1091/mbc.e07-10-1078] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reepithelialization during cutaneous wound healing involves numerous signals that result in basal keratinocyte activation, spreading, and migration, all linked to a loosening of cell-cell adhesion structures. The transcription factor Slug is required for this process, and EGF treatment of human keratinocytes induced activating phosphorylation of Erk5 that coincides with slug transcription. Accordingly, ectopic activation of Erk5 led to increased Slug mRNA levels and faster wound healing, whereas keratinocyte migration was totally blocked by Erk5 pathway inhibition. Expression of a shRNA specific for Erk5 strongly diminished Erk5 levels in keratinocytes and significantly decreased their motility response to EGF, along with induction of Slug expression. These Erk5-deprived keratinocytes showed an altered, more compact morphology, along with disruption of desmosome organization. Accordingly, they displayed an altered ability to form cell aggregates. These results implicate a novel EGFR/Erk5/Slug pathway in the control of cytoskeleton organization and cell motility in keratinocytes treated with EGF.
Collapse
Affiliation(s)
- Valerie Arnoux
- INSERM EMI 229, Genotypes et phenotypes tumoraux, Centre de Recherche en Cancerologie de Montpellier, CRLC Val d'Aurelle-Paul Lamarque, 34298 Montpellier, France
| | | | | | | | | |
Collapse
|
183
|
Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 2008; 25:629-42. [PMID: 18461285 DOI: 10.1007/s10585-008-9170-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/13/2008] [Indexed: 01/23/2023]
Abstract
Epithelial mesenchymal transition (EMT) has long been associated with breast cancer cell invasiveness and evidence of EMT processes in clinical samples is growing rapidly. Genome-wide transcriptional profiling of increasingly larger numbers of human breast cancer (HBC) cell lines have confirmed the existence of a subgroup of cell lines (termed Basal B/Mesenchymal) with enhanced invasive properties and a predominantly mesenchymal gene expression signature, distinct from subgroups with predominantly luminal (termed Luminal) or mixed basal/luminal (termed Basal A) features (Neve et al Cancer Cell 2006). Studies providing molecular and cellular analyses of EMT features in these cell lines are summarised, and the expression levels of EMT-associated factors in these cell lines are analysed. Recent clinical studies supporting the presence of EMT-like changes in vivo are summarised. Human breast cancer cell lines with mesenchymal properties continue to hold out the promise of directing us towards key mechanisms at play in the metastatic dissemination of breast cancer.
Collapse
|
184
|
Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O'Regan RM. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68:2479-88. [PMID: 18381457 DOI: 10.1158/0008-5472.can-07-2559] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is crucial for the migration and invasion of many epithelial tumors, including prostate cancer. Although it is known that ZEB1 overexpression promotes EMT primarily through down-regulation of E-cadherin in a variety of cancers, the soluble ligands responsible for the activation of ZEB1 have yet to be identified. In the present study, we investigated the role of insulin-like growth factor-I (IGF-I) in the regulation of ZEB1 during EMT associated with prostate tumor cell migration. We found that ZEB1 is expressed in highly aggressive prostate cancer cells and that its expression correlates directly with Gleason grade in human prostate tumors (P < 0.001). IGF-I up-regulates ZEB1 expression in prostate cancer cells exhibiting an epithelial phenotype. In prostate cancer cells displaying a mesenchymal phenotype, ZEB1 inhibition reverses the suppression of E-cadherin protein and down-regulates the expression of the mesenchymal markers N-cadherin and fibronectin. Furthermore, ZEB1 blockade decreases migratory and invasive potential in ARCaP(M) compared with the control. These results identify ZEB1 as a key transcriptional regulator of EMT in prostate cancer and suggest that the aberrant expression of ZEB1 in prostate cancer cells occurs in part in response to IGF-I stimulation.
Collapse
Affiliation(s)
- Tisheeka R Graham
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene 2008; 27:4690-701. [DOI: 10.1038/onc.2008.118] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
186
|
Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis 2008; 25:643-55. [PMID: 18398687 PMCID: PMC2836537 DOI: 10.1007/s10585-008-9171-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 03/23/2008] [Indexed: 12/11/2022]
Abstract
The mesodermally derived normal ovarian surface epithelium (OSE) displays both epithelial and mesenchymal characteristics and exhibits remarkable phenotypic plasticity during post-ovulatory repair. The majority of epithelial ovarian carcinomas (EOC) are derived from the OSE and represent the most lethal of all gynecological malignancies, as most patients (approximately 70%) present at diagnosis with disseminated intra-abdominal metastasis. The predominant pattern of EOC metastasis involves pelvic dissemination rather than lymphatic or hematologic spread, distinguishing EOC from other solid tumors. Acquisition of the metastatic phenotype involves a complex series of interrelated cellular events leading to dissociation (shedding) and dispersal of malignant cells. A key event in this process is disruption of cell-cell contacts via modulation of intercellular junctional components. In contrast to most carcinomas that downregulate E-cadherin expression during tumor progression, a unique feature of primary well-differentiated ovarian cancers is a gain of epithelial features, characterized by an increase in expression of E-cadherin. Subsequent reacquisition of mesenchymal features is observed in more advanced tumors with concomitant loss of E-cadherin expression and/or function during progression to metastasis. The functional consequences of this remarkable phenotypic plasticity are not fully understood, but may play a role in modulation of cell survival in suspension (ascites), chemoresistance, and intraperitoneal anchoring of metastatic lesions.
Collapse
Affiliation(s)
- Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM
| | - Reema Zeineldin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM
| | - M. Sharon Stack
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
187
|
Scrideli CA, Carlotti CG, Okamoto OK, Andrade VS, Cortez MAA, Motta FJN, Lucio-Eterovic AK, Neder L, Rosemberg S, Oba-Shinjo SM, Marie SKN, Tone LG. Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 2008; 88:281-91. [PMID: 18398573 DOI: 10.1007/s11060-008-9579-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 03/26/2008] [Indexed: 12/27/2022]
Abstract
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Collapse
Affiliation(s)
- Carlos A Scrideli
- Department of Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Delalande JM, Guyote ME, Smith CM, Shepherd IT. Zebrafish sip1a and sip1b are essential for normal axial and neural patterning. Dev Dyn 2008; 237:1060-9. [PMID: 18351671 PMCID: PMC2443937 DOI: 10.1002/dvdy.21485] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Smad-interacting protein-1 (SIP1) has been implicated in the development of Mowat-Wilson syndrome whose patients exhibit Hirschsprung disease, an aganglionosis of the large intestine, as well as other phenotypes. We have identified and cloned two sip1 orthologues in zebrafish. Both sip1 orthologues are expressed maternally and have dynamic zygotic expression patterns that are temporally and spatially distinct. We have investigated the function of both orthologues using translation and splice-blocking morpholino antisense oligonucleotides. Knockdown of the orthologues causes axial and neural patterning defects consistent with the previously described function of SIP1 as an inhibitor of BMP signaling. In addition, knockdown of both genes leads to a significant reduction/loss of the post-otic cranial neural crest. This results in a subsequent absence of neural crest precursors in the posterior pharyngeal arches and a loss of enteric precursors in the intestine.
Collapse
|
189
|
Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 2008; 213:391-402. [PMID: 17657728 DOI: 10.1002/jcp.21222] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the malignant phenotype of a given tumor is dependent not only on the intrinsic characteristics of tumor cells, but also on the cooperative interactions of non-neoplastic cells, soluble secreted factors and the non-cellular solid-state ECM network that comprise the tumor microenvironment. Given the ability of the tumor microenvironment to regulate the cellular phenotype, recent efforts have focused on understanding the molecular mechanisms by which cells sense, assimilate, interpret, and ultimately respond to their immediate surroundings. Exciting new studies are beginning to unravel the complex interactions between the numerous cell types and regulatory factors within the tumor microenvironment that function cooperatively to control tumor cell invasion and metastasis. Here, we will focus on studies concerning a common theme, which is the central importance of the non-cellular solid-state compartment as a master regulator of the malignant phenotype. We will highlight the non-cellular solid-state compartment as a relatively untapped source of therapeutic and imaging targets and how cellular interactions with these targets may regulate tumor metastasis.
Collapse
Affiliation(s)
- Alexandra Cretu
- Department of Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
190
|
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 2008; 213:374-83. [PMID: 17680632 DOI: 10.1002/jcp.21223] [Citation(s) in RCA: 827] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death--metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed.
Collapse
Affiliation(s)
- Honor Hugo
- Embryology Laboratory, Murdoch Children's Research Institute, The Royal Children's Hospital, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
191
|
Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 2008; 67:11721-31. [PMID: 18089802 DOI: 10.1158/0008-5472.can-07-2318] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor, SNAI1 (Snail), has recently been proposed as an important mediator of tumor invasion because of its role in E-cadherin down-regulation and induction of epithelial-mesenchymal transition. In human breast cancer, the expression of SNAI1 and/or the homologous SNAI2 (Slug) has been associated with E-cadherin repression, local or distant metastasis, tumor recurrence, or poor prognosis in different tumor series. However, the specific contribution of either factor to breast tumor progression is still unclear. We have analyzed the role of SNAI1 in human breast cancer by loss of function studies and provide evidence of a major role for SNAI1 in both primary tumor growth and metastasis of human breast carcinoma MDA-MB-231 cells. Specific silencing of SNAI1 by short hairpin RNA induces a decrease in mesenchymal and proinvasive markers (MMP9, ID1, SPARC) in MDA-MB-231 cells, concomitant with reduced in vitro invasive behavior. More importantly, stable SNAI1 silencing in MDA-MB-231 cells leads to a dramatic reduction of in vivo tumor incidence and growth rate. Tumors induced by MDA-MB-231-SNAI1-silenced cells show extensive necrotic regions and a significant decrease in invasive and angiogenic markers. Moreover, SNAI1 silencing increases the sensitivity of MDA-MB-231 cells to chemotherapeutics relevant in breast cancer treatments, gemcitabine and docetaxel. Remarkably, analysis of cell lines derived from lymph node metastasis indicates that SNAI1 expression is required for metastatic dissemination.
Collapse
Affiliation(s)
- David Olmeda
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
192
|
Abstract
Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets, and suggest a mechanistic model, which has implications for cancer management.
Collapse
|
193
|
Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C, Guarnieri T, Paterini P, Pariali M, Montanaro L, Santini D, Chieco P, Bonafé M. The basal-like breast carcinoma phenotype is regulated bySLUGgene expression. J Pathol 2008; 214:25-37. [DOI: 10.1002/path.2254] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
194
|
Hardy RG, Vicente-Dueñas C, González-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA, Sánchez-García I. Snail family transcription factors are implicated in thyroid carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1037-46. [PMID: 17724139 PMCID: PMC1959496 DOI: 10.2353/ajpath.2007.061211] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
E-Cadherin (CDH1) expression is reduced in thyroid carcinomas by primarily unknown mechanisms. In several tissues, SNAIL (SNAI1) and SLUG (SNAI2) induce epithelial-mesenchymal transition by altering target gene transcription, including CDH1 repression, but these transcription factors have not been studied in thyroid carcinoma. Recently, our group has provided direct evidence that ectopic SNAI1 expression induces epithelial and mesenchymal mouse tumors. SNAI1, SNAI2, and CDH1 expression were analyzed in thyroid-derived cell lines and samples of human follicular and papillary thyroid carcinoma by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The effect of SNAI1 expression on CDH1 transcription was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting in ori-3 cells. Thyroid carcinoma development was analyzed in CombitTA-Snail mice, in which SNAI1 levels are up-regulated. SNAI1 and SNAI2 were not expressed in cells derived from normal thyroid tissue, or in normal human thyroid samples, but were highly expressed in cell lines derived from thyroid carcinomas, in human thyroid carcinoma samples, and their metastases. SNAI1 expression in ori-3 cells repressed CDH1 transcription. Combi-TA mice developed papillary thyroid carcinomas, the incidence of which was increased by concomitant radiotherapy. In conclusion, SNAI1 and SNAI2 are ectopically expressed in thyroid carcinomas, and aberrant expression in mice is associated with papillary carcinoma development.
Collapse
Affiliation(s)
- Robert G Hardy
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Division of Clinical and Surgical Sciences, Room FU501, Chancellors Bldg, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Höfler H. Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 2007; 185:204-12. [PMID: 17587826 DOI: 10.1159/000101321] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a normal developmental process, is known to play a crucial role in tumor progression. Molecules involved in this process, such as the E-cadherin repressor Snail, facilitate migration and invasion of carcinoma cells. A growing number of studies addressing the expression of Snail in clinical samples have been reported and are discussed in this review. A total of 2,112 cases from 9 different tumor types were evaluated. So far, a clear picture has emerged only in some cancer types analyzed with regard to overexpression of Snail and clinical-pathological parameters. Currently, it seems that Snail may play a role in hormone-dependent carcinomas but may be of minor importance in gastrointestinal cancers for tumor dedifferentiation and the maintenance of the invasive phenotype. It should be kept in mind, however, that the threshold for Snail activity does not have to be the same in every tumor type analyzed. The recent introduction of well-characterized novel monoclonal antibodies reacting with the short-lived nuclear Snail protein may help to establish a potential clinical usefulness for this master molecule of EMT, at least for certain types of cancer.
Collapse
Affiliation(s)
- K-F Becker
- Institut für Pathologie, Technische Universität München, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
196
|
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7:415-28. [PMID: 17508028 DOI: 10.1038/nrc2131] [Citation(s) in RCA: 2488] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The molecular mechanisms that underlie tumour progression are still poorly understood, but recently our knowledge of particular aspects of some of these processes has increased. Specifically, the identification of Snail, ZEB and some basic helix-loop-helix (bHLH) factors as inducers of epithelial-mesenchymal transition (EMT) and potent repressors of E-cadherin expression has opened new avenues of research with potential clinical implications.
Collapse
Affiliation(s)
- Héctor Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
197
|
Wang Y, Thakur A, Sun Y, Wu J, Biliran H, Bollig A, Liao DJ. Synergistic effect of cyclin D1 and c-Myc leads to more aggressive and invasive mammary tumors in severe combined immunodeficient mice. Cancer Res 2007; 67:3698-707. [PMID: 17440082 DOI: 10.1158/0008-5472.can-06-4000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin D1 is one of the most commonly overexpressed oncogenes in breast cancer; yet, it is not clear whether cyclin D1 alone is capable of causing malignant transformation of mammary epithelial cells. Here, we show that ectopic expression of cyclin D1 in benign mouse mammary epithelial cells promotes cell proliferation, anchorage-independent growth in soft agar, and tumorigenesis in severe combined immunodeficient mice. To address the possible interaction of cyclin D1 and c-myc in malignant transformation, we used cyclin D1/c-myc dual-expressing clones, which displayed more aggressive and invasive phenotype than cyclin D1-expressing clones. These data provide evidence that overexpression of cyclin D1 or coexpression with c-myc could cause invasive malignant transformation of benign mouse mammary epithelial cells. Furthermore, microarray analysis of cyclin D1 and cyclin D1/c-myc clones showed that these two tumor-producing clones might use distinct invasive pathways. In summary, overexpression of cyclin D1 may commit mammary epithelia to a tumor-prone phenotype in which cooperation with other genes, such as synergy with c-myc, may lead to a more aggressive phenotype.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Hudson Webber Cancer Research Center, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Payne SL, Hendrix MJC, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer—A prospect. J Cell Biochem 2007; 101:1338-54. [PMID: 17471532 DOI: 10.1002/jcb.21371] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysyl oxidase (LOX) is an extracellular matrix (ECM) enzyme that catalyzes the cross-linking of collagens or elastin in the extracellular compartment, thereby regulating the tensile strength of tissues. However, recent reports have demonstrated novel roles for LOX, including the ability to regulate gene transcription, motility/migration, and cell adhesion. These diverse functions have led researchers to hypothesize that LOX may have multiple roles affecting both extra- and intracellular cell function(s). Particularly noteworthy is aberrant LOX expression and activity that have been observed in various cancerous tissues and neoplastic cell lines. Both down and upregulation of LOX in tumor tissues and cancer cell lines have been described, suggesting a dual role for LOX as a tumor suppressor, as well as a metastasis promoter gene--creating a conundrum within the LOX research field. Here, we review the body of evidence on LOX gene expression, regulation, and function(s) in various cancer cell types and tissues, as well as stromal-tumor cell interactions. Lastly, we will examine putative mechanisms in which LOX facilitates breast cancer invasion and metastasis. Taken together, the literature demonstrates the increasingly important role(s) that LOX may play in regulating tumor progression and the necessity to elucidate its myriad mechanisms of action in order to identify potentially novel therapeutics.
Collapse
Affiliation(s)
- Stacey L Payne
- Children's Memorial Research Center, Division of Cancer Biology and Epigenomics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL 60614, USA
| | | | | |
Collapse
|