151
|
Hasselluhn MC, Schlösser D, Versemann L, Schmidt GE, Ulisse M, Oschwald J, Zhang Z, Hamdan F, Xiao H, Kopp W, Spitalieri J, Kellner C, Schneider C, Reutlinger K, Nagarajan S, Steuber B, Sastra SA, Palermo CF, Appelhans J, Bohnenberger H, Todorovic J, Kostyuchek I, Ströbel P, Bockelmann A, König A, Ammer-Herrmenau C, Schmidleitner L, Kaulfuß S, Wollnik B, Hahn SA, Neesse A, Singh SK, Bastians H, Reichert M, Sax U, Olive KP, Johnsen SA, Schneider G, Ellenrieder V, Hessmann E. An NFATc1/SMAD3/cJUN Complex Restricted to SMAD4-Deficient Pancreatic Cancer Guides Rational Therapies. Gastroenterology 2024; 166:298-312.e14. [PMID: 37913894 DOI: 10.1053/j.gastro.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND & AIMS The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Collapse
Affiliation(s)
- Marie C Hasselluhn
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Denise Schlösser
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Joana Oschwald
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Feda Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harry Xiao
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica Spitalieri
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christin Kellner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kristina Reutlinger
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Sankari Nagarajan
- Manchester Breast Centre and Manchester Cancer Research Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephen A Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Carmine F Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Appelhans
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jovan Todorovic
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Irina Kostyuchek
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Aiko Bockelmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander König
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Schmidleitner
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Silke Kaulfuß
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Bernd Wollnik
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Goettingen, Germany
| | - Stephan A Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Holger Bastians
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; German Cancer Consortium (a partnership between Deutsches Krebsforschungszentrum and University Hospital Klinikum Rechts der Isar), Munich, Germany; Center for Protein Assemblies, Technical University of Munich, Garching, Germany; Center for Organoid Systems and Tissue Engineering, Technical University Munich, Garching, Germany
| | - Ulrich Sax
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Medical Informatics, University Medical Center Goettingen, Goettingen, Germany
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Günter Schneider
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany.
| |
Collapse
|
152
|
Chen K, Ma Y, Zhong X, Lan J, Long D, Tian X, Yang Y, Yang Y. Single-cell transcriptome profiling of primary tumors and paired organoids of pancreatobiliary cancer. Cancer Lett 2024; 582:216586. [PMID: 38081505 DOI: 10.1016/j.canlet.2023.216586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) and cancer organoid model have shown promise in investigating tumor microenvironment heterogeneity and facilitating chemotherapeutic drug testing to inform treatment selection. It is still unknown whether the scRNA-seq results based on organoid can faithfully reflect the heterogeneity of primary pancreatobiliary cancer. To reveal the similarities and differences between primary tumors and their matched organoids at transcriptome level, we conducted scRNA-seq for paired primary tumors and organoids from one cholangiocarcinoma (CCA) and two pancreatic ductal adenocarcinoma (PDAC) patients. We identified inter-patient and intra-tumor heterogeneity and found that the organoids retained copy number variation (CNV) patterns of primary tumors. There was no significant difference in cancer stem cell (CSC) properties between the primary tumors and the organoids, whereas organoid from one PDAC case had increased mesenchymal-score and decreased epithelial-score compared with the primary tumors. All organoids showed a transition tendency from the classical subtype to the basal-like subtype in the transcriptional level. Organoids and primary tumors differed in metabolic and unfolded protein response (UPR) signatures. In addition, we revealed the heterogeneity of cancer associated fibroblasts (CAFs) and T cells, and explored the developmental trajectory of T cells. Our findings facilitate further understanding of organoid model and confirm its application prospects in pancreatobiliary cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xiejian Zhong
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jianqiang Lan
- Guangdong Research Center of Organoid Engineering and Technology, Accurate International Biotechnology Co Ltd., Guangzhou, China
| | - Di Long
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China.
| |
Collapse
|
153
|
Xu J, Roe J, Lee E, Tonelli C, Ji KY, Younis OW, Somervile TD, Yao M, Milazzo JP, Tiriac H, Kolarzyk AM, Lee E, Grem JL, Lazenby AJ, Grunkemeyer JA, Hollingsworth MA, Grandgenett PM, Borowsky AD, Park Y, Vakoc CR, Tuveson DA, Hwang C. Engrailed-1 Promotes Pancreatic Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308537. [PMID: 38110836 PMCID: PMC10853725 DOI: 10.1002/advs.202308537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/20/2023]
Abstract
Engrailed-1 (EN1) is a critical homeodomain transcription factor (TF) required for neuronal survival, and EN1 expression has been shown to promote aggressive forms of triple negative breast cancer. Here, it is reported that EN1 is aberrantly expressed in a subset of pancreatic ductal adenocarcinoma (PDA) patients with poor outcomes. EN1 predominantly repressed its target genes through direct binding to gene enhancers and promoters, implicating roles in the activation of MAPK pathways and the acquisition of mesenchymal cell properties. Gain- and loss-of-function experiments demonstrated that EN1 promoted PDA transformation and metastasis in vitro and in vivo. The findings nominate the targeting of EN1 and downstream pathways in aggressive PDA.
Collapse
Affiliation(s)
- Jihao Xu
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Comprehensive Cancer CenterUniversity of California DavisSacramentoCA95817USA
| | - Jae‐Seok Roe
- Department of BiochemistryYonsei UniversitySeoul03722South Korea
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - EunJung Lee
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Claudia Tonelli
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Keely Y. Ji
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
| | - Omar W. Younis
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
| | | | - Melissa Yao
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | | | - Herve Tiriac
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Anna M. Kolarzyk
- Nancy E. and Peter C. Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Jean L. Grem
- Department of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Audrey J. Lazenby
- Department of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | | | | | | | - Alexander D. Borowsky
- Department of PathologySchool of MedicineUniversity of California DavisSacramentoCA95817USA
| | - Youngkyu Park
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | | | - David A. Tuveson
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborNY11724USA
| | - Chang‐Il Hwang
- Department of Microbiology and Molecular GeneticsUniversity of California DavisDavisCA95616USA
- Comprehensive Cancer CenterUniversity of California DavisSacramentoCA95817USA
| |
Collapse
|
154
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
155
|
Stebbins K, Somaiya RD, Sabbagh U, Liang Y, Su J, Fox MA. Retinal input is required for the maintenance of neuronal laminae in the ventral lateral geniculate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575402. [PMID: 38293194 PMCID: PMC10827117 DOI: 10.1101/2024.01.12.575402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retinal ganglion cell (RGC) axons provide direct input into several nuclei of the mouse visual thalamus, including the dorsal lateral geniculate nucleus (dLGN), which is important for classical image-forming vision, and the ventral lateral geniculate nucleus (vLGN), which is associated with non-image-forming vision. Through both activity- and morphogen-dependent mechanisms, retinal inputs play important roles in the development of dLGN, including the refinement of retinal projections, morphological development of thalamocortical relay cells (TRCs), the timing of corticogeniculate innervation, and the recruitment of inhibitory interneurons from progenitor zones. In contrast, little is known about the role of retinal inputs in the development of vLGN. Grossly, vLGN is divided into two domains, the retinorecipient external vLGN (vLGNe) and the non-retinorecipient internal vLGN (vLGNi). We previously found that vLGNe consists of transcriptionally distinct GABAergic subtypes that are distributed into at least four adjacent laminae. At present, it remains unclear whether retinal inputs influence the development of these cell-specific neuronal laminae in vLGNe. Here, we elucidated the developmental timeline for the formation and maintenance of these laminae in the mouse vLGNe and results indicate that these laminae are specified at or before birth, well before eye-opening and the emergence of experience-dependent visual activity. We observed that mutant mice without retinal inputs have a normal laminar distribution of GABAergic cells at birth; however, after the first week of postnatal development, these mutants exhibited a dramatic disruption in the laminar organization of inhibitory neurons and clear boundaries between vLGNe and vLGNi. Overall, our results show that while the formation of cell type-specific layers in vLGNe does not depend on RGC inputs, retinal signals are critical for their maintenance.
Collapse
|
156
|
Fang X, Shu L, Chen T, Zhao X, Yang L, Dou T, Yang L, Li X, Feng M. Organoids derived from patients provide a new opportunity for research and individualized treatment of malignant peritoneal mesothelioma. Mol Cancer 2024; 23:12. [PMID: 38200517 PMCID: PMC10782772 DOI: 10.1186/s12943-023-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPM) is an extremely rare and highly invasive tumor. Due to the lack of accurate models that reflect the biological characteristics of primary tumors, studying MPM remains challenging and is associated with an exceedingly unfavorable prognosis. This study was aimed to establish a new potential preclinical model for MPM using patient-derived MPM organoids (MPMOs) and to comprehensively evaluate the practicality of this model in medical research and its feasibility in guiding individualized patient treatment. METHODS MPMOs were constructed using tumor tissue from MPM patients. Histopathological analysis and whole genome sequencing (WGS) were employed to determine the ability of MPMOs to replicate the original tumor's genetic and histological characteristics. The subcutaneous and orthotopic xenograft models were employed to assess the feasibility of establishing an in vivo model of MPM. MPMOs were also used to conduct drug screening and compare the results with retrospective analysis of patients after treatment, in order to evaluate the potential of MPMOs in predicting the effectiveness of drugs in MPM patients. RESULTS We successfully established a culture method for human MPM organoids using tumor tissue from MPM patients and provided a comprehensive description of the necessary medium components for MPMOs. Pathological examination and WGS revealed that MPMOs accurately represented the histological characteristics and genomic heterogeneity of the original tumors. In terms of application, the success rate of creating subcutaneous and orthotopic xenograft models using MPMOs was 88% and 100% respectively. Drug sensitivity assays demonstrated that MPMOs have different medication responses, and these differences were compatible with the real situation of the patients. CONCLUSION This study presents a method for generating human MPM organoids, which can serve as a valuable research tool and contribute to the advancement of MPM research. Additionally, these organoids can be utilized as a means to evaluate the effectiveness of drug treatments for MPM patients, offering a model for personalized treatment approaches.
Collapse
Affiliation(s)
- XiaoChang Fang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Lin Shu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - TianLiang Chen
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - XiaoLe Zhao
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - LiuCui Yang
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Lijie Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Xuanfei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China.
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.
- Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China.
| |
Collapse
|
157
|
Lumibao JC, Okhovat SR, Peck KL, Lin X, Lande K, Yomtoubian S, Ng I, Tiriac H, Lowy AM, Zou J, Engle DD. The effect of extracellular matrix on the precision medicine utility of pancreatic cancer patient-derived organoids. JCI Insight 2024; 9:e172419. [PMID: 38051586 PMCID: PMC10906458 DOI: 10.1172/jci.insight.172419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The use of patient-derived organoids (PDOs) to characterize therapeutic sensitivity and resistance is a promising precision medicine approach, and its potential to inform clinical decisions is now being tested in several large multiinstitutional clinical trials. PDOs are cultivated in the extracellular matrix from basement membrane extracts (BMEs) that are most commonly acquired commercially. Each clinical site utilizes distinct BME lots and may be restricted due to the availability of commercial BME sources. However, the effect of different sources of BMEs on organoid drug response is unknown. Here, we tested the effect of BME source on proliferation, drug response, and gene expression in mouse and human pancreatic ductal adenocarcinoma (PDA) organoids. Both human and mouse organoids displayed increased proliferation in Matrigel compared with Cultrex and UltiMatrix. However, we observed no substantial effect on drug response when organoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources, and PDOs maintained their classical or basal-like designation. Overall, we found that the BME source (Matrigel, Cultrex, UltiMatrix) does not shift PDO dose-response curves or drug testing results, indicating that PDO pharmacotyping is a robust approach for precision medicine.
Collapse
Affiliation(s)
- Jan C. Lumibao
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira R. Okhovat
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kristina L. Peck
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Xiaoxue Lin
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kathryn Lande
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shira Yomtoubian
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Isabella Ng
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, and
| | - Jingjing Zou
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, UCSD, San Diego, California, USA
| | | |
Collapse
|
158
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
159
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
160
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
161
|
Huffman BM, Feng H, Parmar K, Wang J, Kapner KS, Kochupurakkal B, Martignetti DB, Sadatrezaei G, Abrams TA, Biller LH, Giannakis M, Ng K, Patel AK, Perez KJ, Singh H, Rubinson DA, Schlechter BL, Andrews E, Hannigan AM, Dunwell S, Getchell Z, Raghavan S, Wolpin BM, Fortier C, D’Andrea AD, Aguirre AJ, Shapiro GI, Cleary JM. A Phase I Expansion Cohort Study Evaluating the Safety and Efficacy of the CHK1 Inhibitor LY2880070 with Low-dose Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clin Cancer Res 2023; 29:5047-5056. [PMID: 37819936 PMCID: PMC10842136 DOI: 10.1158/1078-0432.ccr-23-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Anuj K. Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Alison M. Hannigan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Stanley Dunwell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Zoe Getchell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | | | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
162
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
163
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
164
|
Gao J, Lan J, Liao H, Yang F, Qiu P, Jin F, Wang S, Shen L, Chao T, Zhang C, Zhu Y. Promising preclinical patient-derived organoid (PDO) and xenograft (PDX) models in upper gastrointestinal cancers: progress and challenges. BMC Cancer 2023; 23:1205. [PMID: 38062430 PMCID: PMC10702130 DOI: 10.1186/s12885-023-11434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers (gastric cancer, oesophageal cancer, liver cancer, colorectal cancer, etc.) are the most common cancers with the highest morbidity and mortality in the world. The therapy for most GI cancers is difficult and is associated with a poor prognosis. In China, upper GI cancers, mainly gastric cancer (GC) and oesophageal cancer (EC), are very common due to Chinese people's characteristics, and more than half of patients are diagnosed with distant metastatic or locally advanced disease. Compared to other solid cancers, such as lung cancer and breast cancer, personalized therapies, especially targeted therapy and immunotherapy, in GC and EC are relatively lacking, leading to poor prognosis. For a long time, most studies were carried out by using in vitro cancer cell lines or in vivo cell line-derived xenograft models, which are unable to reproduce the characteristics of tumours derived from patients, leading to the possible misguidance of subsequent clinical validation. The patient-derived models represented by patient-derived organoid (PDO) and xenograft (PDX) models, known for their high preservation of patient tumour features, have emerged as a very popular platform that has been widely used in numerous studies, especially in the research and development of antitumour drugs and personalized medicine. Herein, based on some of the available published literature, we review the research and application status of PDO and PDX models in GC and EC, as well as detail their future challenges and prospects, to promote their use in basic and translational studies or personalized therapy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianqiang Lan
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fang Yang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Pei Qiu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, China.
| | - Cheng Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China.
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China.
| |
Collapse
|
165
|
Liang G, Oh TG, Hah N, Tiriac H, Shi Y, Truitt ML, Antal CE, Atkins AR, Li Y, Fraser C, Ng S, Pinto AFM, Nelson DC, Estepa G, Bashi S, Banayo E, Dai Y, Liddle C, Yu RT, Hunter T, Engle DD, Han H, Von Hoff DD, Downes M, Evans RM. Inhibiting stromal Class I HDACs curbs pancreatic cancer progression. Nat Commun 2023; 14:7791. [PMID: 38057326 PMCID: PMC10700526 DOI: 10.1038/s41467-023-42178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.
Collapse
Affiliation(s)
- Gaoyang Liang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Nasun Hah
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Hervé Tiriac
- Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Bristol Myer Squibb, 10300 Campus Point Drive, Suite 100, San Diego, CA, 92121, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Cory Fraser
- HonorHealth Scottsdale Osborn Medical Center and Shea Medical Center, Scottsdale, AZ, 85260, USA
| | - Serina Ng
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dylan C Nelson
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yang Dai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel D Von Hoff
- HonorHealth Scottsdale Osborn Medical Center and Shea Medical Center, Scottsdale, AZ, 85260, USA
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
166
|
Wasko UN, Jiang J, Curiel-Garcia A, Wang Y, Lee B, Orlen M, Drizyte-Miller K, Menard M, Dilly J, Sastra SA, Palermo CF, Dalton T, Hasselluhn MC, Decker-Farrell AR, Chang S, Jiang L, Wei X, Yang YC, Helland C, Courtney H, Gindin Y, Zhao R, Kemp SB, Clendenin C, Sor R, Vostrejs W, Amparo AA, Hibshman PS, Rees MG, Ronan MM, Roth JA, Bakir B, Badgley MA, Chabot JA, Kluger MD, Manji GA, Quintana E, Wang Z, Smith JAM, Holderfield M, Wildes D, Aguirre AJ, Der CJ, Vonderheide RH, Stanger BZ, Singh M, Olive KP. Tumor-selective effects of active RAS inhibition in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569791. [PMID: 38105998 PMCID: PMC10723304 DOI: 10.1101/2023.12.03.569791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.
Collapse
Affiliation(s)
- Urszula N. Wasko
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | - Alvaro Curiel-Garcia
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | - Bianca Lee
- Revolution Medicines, Inc., Redwood City, CA
| | - Margo Orlen
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Stephen A. Sastra
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Carmine F. Palermo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Tanner Dalton
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Marie C. Hasselluhn
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Amanda R. Decker-Farrell
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | | | - Xing Wei
- Revolution Medicines, Inc., Redwood City, CA
| | - Yu C. Yang
- Revolution Medicines, Inc., Redwood City, CA
| | | | | | | | | | - Samantha B. Kemp
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Cynthia Clendenin
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | - Rina Sor
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | - Will Vostrejs
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Amber A. Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priya S. Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Basil Bakir
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Michael A. Badgley
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - John A. Chabot
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Michael D. Kluger
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Gulam A. Manji
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | | | | | | | | | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert H. Vonderheide
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
- Parker Institute for Cancer Immunotherapy
| | - Ben Z. Stanger
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | | | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
167
|
Obreque J, Vergara-Gómez L, Venegas N, Weber H, Owen GI, Pérez-Moreno P, Leal P, Roa JC, Bizama C. Advances towards the use of gastrointestinal tumor patient-derived organoids as a therapeutic decision-making tool. Biol Res 2023; 56:63. [PMID: 38041132 PMCID: PMC10693174 DOI: 10.1186/s40659-023-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In December 2022 the US Food and Drug Administration (FDA) removed the requirement that drugs in development must undergo animal testing before clinical evaluation, a declaration that now demands the establishment and verification of ex vivo preclinical models that closely represent tumor complexity and that can predict therapeutic response. Fortunately, the emergence of patient-derived organoid (PDOs) culture has enabled the ex vivo mimicking of the pathophysiology of human tumors with the reassembly of tissue-specific features. These features include histopathological variability, molecular expression profiles, genetic and cellular heterogeneity of parental tissue, and furthermore growing evidence suggests the ability to predict patient therapeutic response. Concentrating on the highly lethal and heterogeneous gastrointestinal (GI) tumors, herein we present the state-of-the-art and the current methodology of PDOs. We highlight the potential additions, improvements and testing required to allow the ex vivo of study the tumor microenvironment, as well as offering commentary on the predictive value of clinical response to treatments such as chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Javiera Obreque
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vergara-Gómez
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Nicolás Venegas
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
| | - Helga Weber
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Gareth I Owen
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Pérez-Moreno
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Pamela Leal
- Centre of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Biomedicine and Translational Research Lab, Universidad de La Frontera, 4810296, Temuco, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Office 526, 8330024, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Prevención y Control de Cáncer (CECAN), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
168
|
Usman OH, Kumar S, Walker RR, Xie G, Sumajit HC, Jalil AR, Ramakrishnan S, Dooling LJ, Wang YJ, Irianto J. Differential modulation of cellular phenotype and drug sensitivity by extracellular matrix proteins in primary and metastatic pancreatic cancer cells. Mol Biol Cell 2023; 34:ar130. [PMID: 37903222 PMCID: PMC10848942 DOI: 10.1091/mbc.e23-02-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is reported to be the third highest cause of cancer-related deaths in the United States. PDAC is known for its high proportion of stroma, which accounts for 90% of the tumor mass. The stroma is made up of extracellular matrix (ECM) and nonmalignant cells such as inflammatory cells, cancer-associated fibroblasts, and lymphatic and blood vessels. Here, we decoupled the effects of the ECM on PDAC cell lines by culturing cells on surfaces coated with different ECM proteins. Our data show that the primary tumor-derived cell lines have different morphology depending on the ECM proteins on which they are cultured, while metastatic lesion-derived PDAC lines' morphology does not change with respect to the different ECM proteins. Similarly, ECM proteins modulate the proliferation rate and the gemcitabine sensitivity of the primary tumor PDAC cell lines, but not the metastatic PDAC lines. Lastly, transcriptomics analysis of the primary tumor PDAC cells cultured on different ECM proteins reveals the regulation of various pathways, such as cell cycle, cell-adhesion molecules, and focal adhesion, including the regulation of several integrin genes that are essential for ECM recognition.
Collapse
Affiliation(s)
- Olalekan H. Usman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Sampath Kumar
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Reddick R. Walker
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Hyeje C. Sumajit
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - AbdelAziz R. Jalil
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310
| | - Lawrence J. Dooling
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Yue Julia Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
169
|
Zhang S, Shen J, Wang X, Sun X, Wu Y, Zhang M, Wang R, Hu K. Integration of organoids in peptide drug discovery: Rise of the high‐throughput screening. VIEW 2023; 4. [DOI: 10.1002/viw.20230010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/13/2023] [Indexed: 04/05/2025] Open
Abstract
AbstractOrganoids are three‐dimensional cell aggregates with near‐physiologic cell behaviors and can undergo long‐term expansion in vitro. They are amenable to high‐throughput drug screening processes, which renders them a viable preclinical model for drug development. The procedure of organoid‐based high‐throughput screening has been extensively employed to discover small‐molecule drugs, encompassing the steps of generating organoids, examining efficient drugs in organoid cultures, and data assessment. Compared to small molecules, peptides are more straightforward to synthesize, can be modified chemically, and demonstrate high target specificity and low cytotoxicity. Therefore, they have emerged as promising carriers to deliver drugs to disease‐associated targets and could be efficient therapeutic drugs for various diseases. To date, organoids have been used to evaluate the efficacy of certain peptide agents; however, no organoid‐based high‐throughput screening of peptide drugs has been reported. Given the advantages of peptide drugs, there is an urgent need to establish organoid‐based peptide high‐throughput screening platforms. In this review, we discuss the typical approach of screening small‐molecular drugs with the use of organoid cultures, as well as provide an overview of the studies that have incorporated organoids in peptide research. Drawing on the knowledge from small molecular screens, we explore the difficulties and potential avenues for creating new platforms to identify peptide agents using organoid models.
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jieting Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiaona Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yuxuan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences Institute of Quantum Medical Science National Institutes for Quantum Science and Technology Chiba Japan
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
170
|
Zhang Z, Hui L. Progress in patient-derived liver cancer cell models: a step forward for precision medicine. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1707-1717. [PMID: 37766458 PMCID: PMC10679880 DOI: 10.3724/abbs.2023224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of effective precision treatments for liver cancers has been hindered by the scarcity of preclinical models that accurately reflect the heterogeneity of this disease. Recent progress in developing patient-derived liver cancer cell lines and organoids has paved the way for precision medicine research. These expandable resources of liver cancer cell models enable a full spectrum of pharmacogenomic analysis for liver cancers. Moreover, patient-derived and short-term cultured two-dimensional tumor cells or three-dimensional organoids can serve as patient avatars, allowing for the prediction of patients' response to drugs and facilitating personalized treatment for liver cancer patients. Furthermore, the current novel techniques have expanded the scope of cancer research, including innovative organoid culture, gene editing and bioengineering. In this review, we provide an overview of the progress in patient-derived liver cancer cell models, focusing on their applications in precision and personalized medicine research. We also discuss the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengtao Zhang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijian Hui
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
171
|
Ren X, Huang M, Weng W, Xie Y, Wu Y, Zhu S, Zhang Y, Li D, Lai J, Shen S, Lin J, Kuang M, Li X, Yu J, Xu L. Personalized drug screening in patient-derived organoids of biliary tract cancer and its clinical application. Cell Rep Med 2023; 4:101277. [PMID: 37944531 PMCID: PMC10694672 DOI: 10.1016/j.xcrm.2023.101277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Patients with biliary tract cancer (BTC) show different responses to chemotherapy, and there is no effective way to predict chemotherapeutic response. We have generated 61 BTC patient-derived organoids (PDOs) from 82 tumors (74.4%) that show similar histological and genetic characteristics to the corresponding primary BTC tissues. BTC tumor tissues with enhanced stemness- and proliferation-related gene expression by RNA sequencing can more easily form organoids. As expected, BTC PDOs show different responses to the chemotherapies of gemcitabine, cisplatin, 5-fluoruracil, oxaliplatin, etc. The drug screening results in PDOs are further validated in PDO-based xenografts and confirmed in 92.3% (12/13) of BTC patients with actual clinical response. Moreover, we have identified gene expression signatures of BTC PDOs with different drug responses and established gene expression panels to predict chemotherapy response in BTC patients. In conclusion, BTC PDO is a promising precision medicine tool for anti-cancer therapy in BTC patients.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Mingle Huang
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Weixiang Weng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yubin Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Yifan Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Shenghua Zhu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Ying Zhang
- Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Dongming Li
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Jie Lin
- Second Department of General Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong Province 528300, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China.
| | - Jun Yu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lixia Xu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China; Department of Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China.
| |
Collapse
|
172
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
173
|
Iqbal W, Wang Y, Sun P, Zhou X. Modeling Liver Development and Disease in a Dish. Int J Mol Sci 2023; 24:15921. [PMID: 37958904 PMCID: PMC10650907 DOI: 10.3390/ijms242115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Historically, biological research has relied primarily on animal models. While this led to the understanding of numerous human biological processes, inherent species-specific differences make it difficult to answer certain liver-related developmental and disease-specific questions. The advent of 3D organoid models that are either derived from pluripotent stem cells or generated from healthy or diseased tissue-derived stem cells have made it possible to recapitulate the biological aspects of human organs. Organoid technology has been instrumental in understanding the disease mechanism and complements animal models. This review underscores the advances in organoid technology and specifically how liver organoids are used to better understand human-specific biological processes in development and disease. We also discuss advances made in the application of organoid models in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yaru Wang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
174
|
Bondi D, Bevere M, Piccirillo R, Sorci G, Di Felice V, Re Cecconi AD, D'Amico D, Pietrangelo T, Fulle S. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome. Mol Genet Metab 2023; 140:107705. [PMID: 37837864 DOI: 10.1016/j.ymgme.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Daniela D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| |
Collapse
|
175
|
Hao X, Zu M, Ning J, Zhou X, Gong Y, Han X, Meng Q, Li D, Ding S. Antitumor effect of luteolin proven by patient-derived organoids of gastric cancer. Phytother Res 2023; 37:5315-5327. [PMID: 37469042 DOI: 10.1002/ptr.7963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Luteolin (Lut) has been shown to inhibit gastric cancer (GC); however, its efficacy compared to other clinical drugs has not been examined in human samples. This study aimed to elucidate the antitumor activity of Lut in GC patient-derived organoids (PDOs). PDOs were established from GC cancer tissues, and the characterization of tissues and PDOs was performed using whole-exome sequencing. Drug sensitivity tests were performed by treating PDOs with Lut, norcantharidin (NCTD), and carboplatin (CP). RNA sequencing of PDOs was performed to elucidate the antitumor mechanism of Lut, which was further verified in three GC cell lines. Eleven PDOs were successfully constructed, and were highly consistent with the pathophysiology and genetic changes in the corresponding tumors. The IC50s of Lut, NCTD, and CP of PDOs were 27.19, 23.9, and 37.87 μM, respectively. Lut treatment upregulated FOXO3, DUSP1, and CDKN1A expression and downregulated IL1R1 and FGFR4 expression in GC cell lines, which was consistent with the results of PDOs. We demonstrate that Lut exerted stronger antitumor effects than CP, but a similar effect to that of NCTD, which was obtained in an in vitro PDO system. Additionally, Lut exerted varying degrees of antitumor effects against the PDOs, thereby indicating that PDO may be a useful preclinical drug screening tool for personalized treatment.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ming Zu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
176
|
Kim S, Woo KJ, Yang CM, Park SH, Hwang JC, Yoo BM, Kim JH, Lee D, Yang MJ. Simultaneous establishment of pancreatic cancer organoid and cancer-associated fibroblast using a single-pass endoscopic ultrasound-guided fine-needle biopsy specimen. Dig Endosc 2023; 35:918-926. [PMID: 37522250 DOI: 10.1111/den.14648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Considering the critical roles of cancer-associated fibroblasts (CAFs) in pancreatic cancer, recent studies have attempted to incorporate stromal elements into organoid models to recapitulate the tumor microenvironment. This study aimed to evaluate the feasibility of patient-derived organoid (PDO) and CAF cultures by using single-pass endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) samples from prospectively enrolled pancreatic cancer patients. The obtained samples were split into two portions for PDO and CAF cultures. PDOs and CAFs were cultured successfully in 54.4% (31/57) and 47.4% (27/57) of the cases, respectively. Both components were established in 21 cases (36.8%). Various clinicopathologic factors, including the tumor size, tumor location, clinical stage, histologic subtype, and tumor differentiation, did not influence the PDO establishment. Instead, the presence of necrosis in tumor samples was associated with initial PDO generation but no further propagation beyond passage 5 (P = 0.024). The "poorly cohesive cell carcinoma pattern" also negatively influenced the PDO establishment (P = 0.018). Higher stromal proportion in tumor samples was a decisive factor for successful CAF culture (P = 0.005). Our study demonstrated that the coestablishment of PDOs and CAFs is feasible even with a single-pass EUS-FNB sample, implying an expanding role of endoscopists in future precision medicine.
Collapse
Affiliation(s)
- Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Kyoung Jin Woo
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Chan Mo Yang
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Jae Chul Hwang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Byung Moo Yoo
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Hong Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Min Jae Yang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
177
|
Garajová I, Peroni M, Gelsomino F, Leonardi F. A Simple Overview of Pancreatic Cancer Treatment for Clinical Oncologists. Curr Oncol 2023; 30:9587-9601. [PMID: 37999114 PMCID: PMC10669959 DOI: 10.3390/curroncol30110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Pancreatic cancer (PDAC) is one of the most aggressive solid tumors and is showing increasing incidence. The aim of our review is to provide practical help for all clinical oncologists and to summarize the current management of PDAC using a simple "ABC method" (A-anatomical resectability, B-biological resectability and C-clinical conditions). For anatomically resectable PDAC without any high-risk factors (biological or conditional), the actual standard of care is represented by surgery followed by adjuvant chemotherapy. The remaining PDAC patients should all be treated with initial systemic therapy, though the intent for each is different: for borderline resectable patients, the intent is neoadjuvant; for locally advanced patients, the intent is conversion; and for metastatic PDAC patients, the intent remains just palliative. The actual standard of care in first-line therapy is represented by two regimens: FOLFIRINOX and gemcitabine/nab-paclitaxel. Recently, NALIRIFOX showed positive results over gemcitabine/nab-paclitaxel. There are limited data for maintenance therapy after first-line treatment, though 5-FU or FOLFIRI after initial FOLFIRINOX, and gemcitabine, after initial gemcitabine/nab-paclitaxel, might be considered. We also dedicate space to special rare conditions, such as PDAC with germline BRCA mutations, pancreatic acinar cell carcinoma and adenosquamous carcinoma of the pancreas, with few clinically relevant remarks.
Collapse
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43125 Parma, Italy; (M.P.)
| | - Marianna Peroni
- Medical Oncology Unit, University Hospital of Parma, 43125 Parma, Italy; (M.P.)
| | - Fabio Gelsomino
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Francesco Leonardi
- Medical Oncology Unit, University Hospital of Parma, 43125 Parma, Italy; (M.P.)
| |
Collapse
|
178
|
Cartry J, Bedja S, Boilève A, Mathieu JRR, Gontran E, Annereau M, Job B, Mouawia A, Mathias P, De Baère T, Italiano A, Besse B, Sourrouille I, Gelli M, Bani MA, Dartigues P, Hollebecque A, Smolenschi C, Ducreux M, Malka D, Jaulin F. Implementing patient derived organoids in functional precision medicine for patients with advanced colorectal cancer. J Exp Clin Cancer Res 2023; 42:281. [PMID: 37880806 PMCID: PMC10598932 DOI: 10.1186/s13046-023-02853-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Patient Derived Organoids (PDOs) emerged as the best technology to develop ex vivo tumor avatars. Whether drug testing on PDOs to identify efficient therapies will bring clinical utility by improving patient survival remains unclear. To test this hypothesis in the frame of clinical trials, PDO technology faces three main challenges to be implemented in routine clinical practices: i) generating PDOs with a limited amount of tumor material; ii) testing a wide panel of anti-cancer drugs; and iii) obtaining results within a time frame compatible with patient disease management. We aimed to address these challenges in a prospective study in patients with colorectal cancer (CRC). METHODS Fresh surgical or core needle biopsies were obtained from patients with CRC. PDOs were established and challenged with a panel of 25 FDA-approved anti-cancer drugs (chemotherapies and targeted therapies) to establish a scoring method ('chemogram') identifying in vitro responders. The results were analyzed at the scale of the cohort and individual patients when the follow-up data were available. RESULTS A total of 25 PDOs were successfully established, harboring 94% concordance with the genomic profile of the tumor they were derived from. The take-on rate for PDOs derived from core needle biopsies was 61.5%. A chemogram was obtained with a 6-week median turnaround time (range, 4-10 weeks). At least one hit (mean 6.16) was identified for 92% of the PDOs. The number of hits was inversely correlated to disease metastatic dissemination and the number of lines of treatment the patient received. The chemograms were compared to clinical data obtained from 8 patients and proved to be predictive of their response with 75% sensitivity and specificity. CONCLUSIONS We show that PDO-based drug tests can be achieved in the frame of routine clinical practice. The chemogram could provide clinicians with a decision-making tool to tailor patient treatment. Thus, PDO-based functional precision oncology should now be tested in interventional trials assessing its clinical utility for patients who do not harbor activable genomic alterations or have developed resistance to standard of care treatments.
Collapse
Affiliation(s)
- Jérôme Cartry
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
| | - Sabrina Bedja
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Alice Boilève
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Jacques R R Mathieu
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Emilie Gontran
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Maxime Annereau
- Département de Pharmacie Clinique, Gustave Roussy, 94805, Villejuif, France
| | - Bastien Job
- Inserm US23, Plateforme de Bioinformatique, Gustave Roussy, 94805, Villejuif, France
| | - Ali Mouawia
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Pierre Mathias
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Thierry De Baère
- Département de Radiologie Interventionnelle, Gustave Roussy, 94805, Villejuif, France
- UFR Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Gustave Roussy, Unité de Médecine de Précision, 94805, Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Unité de Médecine de Précision, 94805, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | | | - Maximiliano Gelli
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Chirurgie Viscérale, Gustave Roussy, 94805, Villejuif, France
| | | | - Peggy Dartigues
- Département de Pathologie, Gustave Roussy, 94805, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Cristina Smolenschi
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy, Villejuif, 94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Michel Ducreux
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - David Malka
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
- Département de Médecine Oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
- Département d'Oncologie Médicale, Institut Mutualiste Montsouris, Paris, France
| | - Fanny Jaulin
- Inserm U-1279, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France.
- Département de Recherche, Gustave Roussy, 94800, Villejuif, France.
| |
Collapse
|
179
|
Su P, Mao X, Ma J, Huang L, Yu L, Tang S, Zhuang M, Lu Z, Osafo KS, Ren Y, Wang X, Lin X, Huang L, Huang X, Braicu EI, Sehouli J, Sun P. ERRα promotes glycolytic metabolism and targets the NLRP3/caspase-1/GSDMD pathway to regulate pyroptosis in endometrial cancer. J Exp Clin Cancer Res 2023; 42:274. [PMID: 37864196 PMCID: PMC10588109 DOI: 10.1186/s13046-023-02834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Tumor cells can resist chemotherapy-induced pyroptosis through glycolytic reprogramming. Estrogen-related receptor alpha (ERRα) is a central regulator of cellular energy metabolism associated with poor cancer prognosis. Herein, we refine the oncogenic role of ERRα in the pyroptosis pathway and glycolytic metabolism. METHODS The interaction between ERRα and HIF-1α was verified using co-immunoprecipitation. The transcriptional binding sites of ERRα and NLRP3 were confirmed using dual-luciferase reporter assay and cleavage under targets and tagmentation (CUT&Tag). Flow cytometry, transmission electron microscopy, scanning electron microscopy, cell mito stress test, and extracellular acidification rate analysis were performed to investigate the effects of ERRα on the pyroptosis pathway and glycolytic metabolism. The results of these experiments were further confirmed in endometrial cancer (EC)-derived organoids and nude mice. In addition, the expression of ERRα-related pyroptosis genes was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus database. RESULTS Triggered by a hypoxic microenvironment, highly expressed ERRα could bind to the promoter of NLRP3 and inhibit caspase-1/GSDMD signaling, which reduced inflammasome activation and increased pyroptosis resistance, thereby resulting in the resistance of cancer cells to cisplatin. Moreover, ERRα activated glycolytic rate-limiting enzyme to bridge glycolytic metabolism and pyroptosis in EC. This phenomenon was further confirmed in EC-derived organoids and nude mice. CUT & Tag sequencing and The Cancer Genome Atlas database analysis showed that ERRα participated in glycolysis and programmed cell death, which resulted in EC progression. CONCLUSIONS ERRα inhibits pyroptosis in an NLRP3-dependent manner and induces glycolytic metabolism, resulting in cisplatin resistance in EC cells.
Collapse
Affiliation(s)
- Pingping Su
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Jincheng Ma
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Lirui Yu
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Shuting Tang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Mingzhi Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Kelvin Stefan Osafo
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xinrui Wang
- Medical Research Center, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
| | - Xite Lin
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoli Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, FuzhouFujian, 350005, China
| | - Elena Ioana Braicu
- Department of Gynecology and Obstetrics, Charité Virchow University Hospital, Augustenberger Platz1, 13353, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology and Obstetrics, Charité Virchow University Hospital, Augustenberger Platz1, 13353, Berlin, Germany
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Clinical Research Center for Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Fujian Obstetrics and Gynecology Hospital, Fuzhou, 350001, Fujian, China.
- National Key Clinical Specialty Construction Program of China (Gynecology), Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
180
|
Liu C, Leighow SM, McIlroy K, Lu M, Dennis KA, Abello K, Brown DJ, Moore CJ, Shah A, Inam H, Rivera VM, Pritchard JR. Excessive concentrations of kinase inhibitors in translational studies impede effective drug repurposing. Cell Rep Med 2023; 4:101227. [PMID: 37852183 PMCID: PMC10591048 DOI: 10.1016/j.xcrm.2023.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Drug repositioning seeks to leverage existing clinical knowledge to identify alternative clinical settings for approved drugs. However, repositioning efforts fail to demonstrate improved success rates in late-stage clinical trials. Focusing on 11 approved kinase inhibitors that have been evaluated in 139 repositioning hypotheses, we use data mining to characterize the state of clinical repurposing. Then, using a simple experimental correction with human serum proteins in in vitro pharmacodynamic assays, we develop a measurement of a drug's effective exposure. We show that this metric is remarkably predictive of clinical activity for a panel of five kinase inhibitors across 23 drug variant targets in leukemia. We then validate our model's performance in six other kinase inhibitors for two types of solid tumors: non-small cell lung cancer (NSCLC) and gastrointestinal stromal tumors (GISTs). Our approach presents a straightforward strategy to use existing clinical information and experimental systems to decrease the clinical failure rate in drug repurposing studies.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Scott M Leighow
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kyle McIlroy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mengrou Lu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kady A Dennis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerry Abello
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donovan J Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Connor J Moore
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anushka Shah
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haider Inam
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Justin R Pritchard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institute for the Life Sciences, Center for Resistance Evolution, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
181
|
Dai LJ, Li YW, Ma D, Shao ZM, Jiang YZ. Next-generation antibody-drug conjugates revolutionize the precise classification and treatment of HER2-expressing breast cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0286. [PMID: 37823691 PMCID: PMC10618949 DOI: 10.20892/j.issn.2095-3941.2023.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yu-Wei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
182
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
183
|
Qin H, Chen J, Bouchekioua-Bouzaghou K, Meng YM, Griera JB, Jiang X, Kong X, Wang M, Xu Q, Wong PP. Immunization with a multi-antigen targeted DNA vaccine eliminates chemoresistant pancreatic cancer by disrupting tumor-stromal cell crosstalk. J Transl Med 2023; 21:702. [PMID: 37814317 PMCID: PMC10561406 DOI: 10.1186/s12967-023-04519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance. METHODS We used clinical samples to explore the correlation between MAGEA expression and patient prognosis in multiple cancers. We utilized cancer cell lines, patient derived organoids and orthotopic PDAC model to examine the function of MAGEA in chemoresistance. We performed biochemical, proteome profiler array and transcriptional analysis to uncover a mechanism that governs tumor-stromal crosstalk. We developed a multi-MAGEA antigen targeted DNA vaccine and tested its effect on PDAC tumor growth. RESULTS We establish MAGEA as a regulator of the tumor-stromal crosstalk in PDAC. We provide strong clinical evidence indicating that high MAGEA expression, including MAGEA2, MAGEA3 and MAGEA10, correlates with worse chemotherapeutic response and poor prognosis in multiple cancers, while their expression is up-regulated in chemoresistant PDAC patient derived organoids and cancer cell lines. Mechanistically, MAGEA2 prohibits gemcitabine-induced JNK-c-Jun-p53 mediated cancer cell apoptosis, while gemcitabine stimulated pancreatic stellate cells secretes GDF15 to further enhance the gemcitabine resistance of MAGEA2 expressing cells by activating GFRAL-RET mediated Akt and ERK1/2 dependent survival pathway. Strikingly, immunization with a DNA vaccine that targeting multiple MAGEA antigens, including MAGEA2, MAGEA3 and MAGEA10, elicits robust immune responses against the growth of gemcitabine resistant tumors. CONCLUSIONS These findings suggest that targeting MAGEA-mediated paracrine regulation of chemoresistance by immunotherapy can be an improved pancreatic cancer treatment strategy.
Collapse
Affiliation(s)
- Hongquan Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiali Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Katia Bouchekioua-Bouzaghou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Reserach Center for Obstetrics and Gynecology; Guangdong-HongKong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jordi Bach Griera
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
184
|
Sniegowski T, Rajasekaran D, Sennoune SR, Sunitha S, Chen F, Fokar M, Kshirsagar S, Reddy PH, Korac K, Mahmud Syed M, Sharker T, Ganapathy V, Bhutia YD. Amino acid transporter SLC38A5 is a tumor promoter and a novel therapeutic target for pancreatic cancer. Sci Rep 2023; 13:16863. [PMID: 37803043 PMCID: PMC10558479 DOI: 10.1038/s41598-023-43983-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells have a great demand for nutrients in the form of sugars, amino acids, and lipids. Particularly, amino acids are critical for cancer growth and, as intermediates, connect glucose, lipid and nucleotide metabolism. PDAC cells meet these requirements by upregulating selective amino acid transporters. Here we show that SLC38A5 (SN2/SNAT5), a neutral amino acid transporter is highly upregulated and functional in PDAC cells. Using CRISPR/Cas9-mediated knockout of SLC38A5, we show its tumor promoting role in an in vitro cell line model as well as in a subcutaneous xenograft mouse model. Using metabolomics and RNA sequencing, we show significant reduction in many amino acid substrates of SLC38A5 as well as OXPHOS inactivation in response to SLC38A5 deletion. Experimental validation demonstrates inhibition of mTORC1, glycolysis and mitochondrial respiration in KO cells, suggesting a serious metabolic crisis associated with SLC38A5 deletion. Since many SLC38A5 substrates are activators of mTORC1 as well as TCA cycle intermediates/precursors, we speculate amino acid insufficiency as a possible link between SLC38A5 deletion and inactivation of mTORC1, glycolysis and mitochondrial respiration, and the underlying mechanism for PDAC attenuation. Overall, we show that SLC38A5 promotes PDAC, thereby identifying a novel, hitherto unknown, therapeutic target for PDAC.
Collapse
Affiliation(s)
- Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Souad R Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sukumaran Sunitha
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Fang Chen
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Mosharaf Mahmud Syed
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Tanima Sharker
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
185
|
Farin HF, Mosa MH, Ndreshkjana B, Grebbin BM, Ritter B, Menche C, Kennel KB, Ziegler PK, Szabó L, Bollrath J, Rieder D, Michels BE, Kress A, Bozlar M, Darvishi T, Stier S, Kur IM, Bankov K, Kesselring R, Fichtner-Feigl S, Brüne B, Goetze TO, Al-Batran SE, Brandts CH, Bechstein WO, Wild PJ, Weigert A, Müller S, Knapp S, Trajanoski Z, Greten FR. Colorectal Cancer Organoid-Stroma Biobank Allows Subtype-Specific Assessment of Individualized Therapy Responses. Cancer Discov 2023; 13:2192-2211. [PMID: 37489084 PMCID: PMC10551667 DOI: 10.1158/2159-8290.cd-23-0050] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Henner F. Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammed H. Mosa
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Benardina Ndreshkjana
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Britta M. Grebbin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Birgit Ritter
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Constantin Menche
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Kilian B. Kennel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Paul K. Ziegler
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Lili Szabó
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Julia Bollrath
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Dietmar Rieder
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgitta E. Michels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Alena Kress
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Müge Bozlar
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Sara Stier
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Ivan-Maximilano Kur
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Katrin Bankov
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Rebecca Kesselring
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of General and Visceral Surgery, University of Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, University of Freiburg, Freiburg, Germany
| | - Bernhard Brüne
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | | | | | - Christian H. Brandts
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Wolf O. Bechstein
- Department of General and Visceral Surgery, Goethe University, Frankfurt am Main, Germany
| | - Peter J. Wild
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Weigert
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Stefan Knapp
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
186
|
Aldea M, Friboulet L, Apcher S, Jaulin F, Mosele F, Sourisseau T, Soria JC, Nikolaev S, André F. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision? ESMO Open 2023; 8:101642. [PMID: 37769400 PMCID: PMC10539962 DOI: 10.1016/j.esmoop.2023.101642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Precision medicine for cancer is rapidly moving to an approach that integrates multiple dimensions of the biology in order to model mechanisms of cancer progression in each patient. The discovery of multiple drivers per tumor challenges medical decision that faces several treatment options. Drug sensitivity depends on the actionability of the target, its clonal or subclonal origin and coexisting genomic alterations. Sequencing has revealed a large diversity of drivers emerging at treatment failure, which are potential targets for clinical trials or drug repurposing. To effectively prioritize therapies, it is essential to rank genomic alterations based on their proven actionability. Moving beyond primary drivers, the future of precision medicine necessitates acknowledging the intricate spatial and temporal heterogeneity inherent in cancer. The advent of abundant complex biological data will make artificial intelligence algorithms indispensable for thorough analysis. Here, we will discuss the advancements brought by the use of high-throughput genomics, the advantages and limitations of precision medicine studies and future perspectives in this field.
Collapse
Affiliation(s)
- M Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif.
| | | | - S Apcher
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Jaulin
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Mosele
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif
| | | | - J-C Soria
- Paris Saclay University, Orsay; Drug Development Department, Gustave Roussy, Villejuif, France
| | - S Nikolaev
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F André
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Orsay
| |
Collapse
|
187
|
Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balvers RK, Li Y, Stubbs AP, Kers TV, Kros JM, Lawler SE, Beerepoot LV, Kremer A, Idbaih A, Verreault M, Byrne AT, O'Farrell AC, Connor K, Biswas A, Salvucci M, Prehn JHM, Lambrechts D, Dilcan G, Lodi F, Arijs I, van den Bent MJ, Dirven CMF, Leenstra S, Lamfers MLM. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br J Cancer 2023; 129:1327-1338. [PMID: 37620410 PMCID: PMC10575865 DOI: 10.1038/s41416-023-02402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Kevin Jimenez-Cowell
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Federica Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Michelle Klein
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Sean E Lawler
- Dept of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Laurens V Beerepoot
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| | - Andreas Kremer
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Maite Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands.
| |
Collapse
|
188
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
189
|
Gong M, Meng H, Tan D, Li P, Qin J, An Q, Shi C, An J. Establishment of organoid models for pancreatic ductal adenocarcinoma and screening of individualized therapy strategy. Animal Model Exp Med 2023; 6:409-418. [PMID: 37890865 PMCID: PMC10614126 DOI: 10.1002/ame2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and receive effective chemotherapy have the best chance for long-term survival. Unfortunately, because of the heterogeneity of pancreatic cancer, it is difficult to find a personalized treatment strategy for patients. Organoids are ideal preclinical models for personalized medicine. Therefore, we explore the cultivation conditions and construction methods of PDAC organoid models to screen the individualized therapy strategy. METHODS Fresh PDAC tissues from surgical resection were collected and digested with digestive enzymes; then the tumor cells were embedded in Matrigel with a suitable medium to establish the PDAC organoid models. The genetic stability of the organoids was analyzed using whole exon sequencing; hematoxylin and eosin staining and immunohistochemistry of organoids were performed to analyze their consistency with the pathological morphology of the patient's tumor tissue; After 2 days of organoid culture, we selected four commonly used clinical chemotherapy drugs for single or combined treatment to analyze drug sensitivity. RESULTS Two cases of PDAC organoid models were successfully established, and the results of their pathological characteristics and exome sequencing were consistent with those of the patient's tumor tissue. Both PDAC organoids showed more sensitivity to gemcitabine and cisplatin, and the combined treatment was more effective than monotherapy. CONCLUSION Both organoids better retained the pathological characteristics, genomic stability, and heterogeneity with the original tumor. Individual PDAC organoids exhibited different sensitivities to the same drugs. Thus, this study provided ideal experimental models for screening individualized therapy strategy for patients with PDAC.
Collapse
Affiliation(s)
- Miaomiao Gong
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
- School of Basic Medical SciencesMedical College of Yan'an UniversityYananChina
| | - Han Meng
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
- Animal Experiment CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal CenterFourth Military Medical UniversityXi'anChina
| | - Jiaze An
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
190
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
191
|
Li Y, Tang S, Shi X, Lv J, Wu X, Zhang Y, Wang H, He J, Zhu Y, Ju Y, Zhang Y, Guo S, Yang W, Yin H, Chen L, Gao D, Jin G. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer. Cell Rep Med 2023; 4:101162. [PMID: 37597521 PMCID: PMC10518604 DOI: 10.1016/j.xcrm.2023.101162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Metabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the metabolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemotherapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated analyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux, G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/G6PD axis inhibitors.
Collapse
Affiliation(s)
- Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Xueyuan Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Ju
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| |
Collapse
|
192
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
193
|
Gulay KCM, Zhang X, Pantazopoulou V, Patel J, Esparza E, Pran Babu DS, Ogawa S, Weitz J, Ng I, Mose ES, Pu M, Engle DD, Lowy AM, Tiriac H. Dual Inhibition of KRASG12D and Pan-ERBB Is Synergistic in Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:3001-3012. [PMID: 37378556 PMCID: PMC10502451 DOI: 10.1158/0008-5472.can-23-1313] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a low survival rate. Recently, new drugs that target KRASG12D, a common mutation in PDAC, have been developed. We studied one of these compounds, MRTX1133, and found it was specific and effective at low nanomolar concentrations in patient-derived organoid models and cell lines harboring KRASG12D mutations. Treatment with MRTX1133 upregulated the expression and phosphorylation of EGFR and HER2, indicating that inhibition of ERBB signaling may potentiate MRTX1133 antitumor activity. Indeed, the irreversible pan-ERBB inhibitor, afatinib, potently synergized with MRTX1133 in vitro, and cancer cells with acquired resistance to MRTX1133 in vitro remained sensitive to this combination therapy. Finally, the combination of MRTX1133 and afatinib led to tumor regression and longer survival in orthotopic PDAC mouse models. These results suggest that dual inhibition of ERBB and KRAS signaling may be synergistic and circumvent the rapid development of acquired resistance in patients with KRAS mutant pancreatic cancer. SIGNIFICANCE KRAS-mutant pancreatic cancer models, including KRAS inhibitor-resistant models, show exquisite sensitivity to combined pan-ERBB and KRAS targeting, which provides the rationale for testing this drug combination in clinical trials.
Collapse
Affiliation(s)
- Kevin Christian Montecillo Gulay
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Xinlian Zhang
- Department of Family Medicine and Public Health, Division of Biostatistics and Bioinformatics, University of California San Diego, San Diego, California
| | - Vasiliki Pantazopoulou
- Salk Institute for Biological Studies, San Diego, California
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Jay Patel
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Edgar Esparza
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Deepa Sheik Pran Babu
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Satoshi Ogawa
- Salk Institute for Biological Studies, San Diego, California
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jonathan Weitz
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Isabella Ng
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Evangeline S. Mose
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Minya Pu
- Department of Family Medicine and Public Health, Division of Biostatistics and Bioinformatics, University of California San Diego, San Diego, California
| | | | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|
194
|
Liang G, Oh TG, Hah N, Tiriac H, Shi Y, Truitt ML, Antal CE, Atkins AR, Li Y, Fraser C, Ng S, Pinto AFM, Nelson DC, Estepa G, Bashi S, Banayo E, Dai Y, Liddle C, Yu RT, Hunter T, Engle DD, Han H, Von Hoff DD, Downes M, Evans RM. Inhibiting Stromal Class I HDACs Curbs Pancreatic Cancer Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557260. [PMID: 37745372 PMCID: PMC10515810 DOI: 10.1101/2023.09.12.557260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.
Collapse
|
195
|
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han H, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun 2023; 14:5195. [PMID: 37673892 PMCID: PMC10482938 DOI: 10.1038/s41467-023-40798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tania Campos
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhang Cheng
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jan C Lumibao
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ruben M Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nicole M Sodir
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Genentech, Department of Translational Oncology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cory R Fraser
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
- Scottsdale Pathology Associates, Scottsdale, AZ, 85260, USA
| | - Erkut Borazanci
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - David Propper
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Andrew M Lowy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael T Barrett
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gerard I Evan
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
196
|
Zhou X, An J, Kurilov R, Brors B, Hu K, Peccerella T, Roessler S, Pfütze K, Schulz A, Wolf S, Hohmann N, Theile D, Sauter M, Burhenne J, Ei S, Heger U, Strobel O, Barry ST, Springfeld C, Tjaden C, Bergmann F, Büchler M, Hackert T, Fortunato F, Neoptolemos JP, Bailey P. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. NATURE CANCER 2023; 4:1362-1381. [PMID: 37679568 PMCID: PMC10518256 DOI: 10.1038/s43018-023-00628-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.
Collapse
Affiliation(s)
- Xu Zhou
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumour Disease (NCT), Heidelberg, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katrin Pfütze
- Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Tjaden
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Department of General, Visceral and Thoracic Surgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
| | - Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
197
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
198
|
Koga T, Soh J, Hamada A, Miyano Y, Fujino T, Obata K, Ohara S, Nishino M, Chiba M, Shimoji M, Takemoto T, Suda K, Sakai K, Sato H, Mitsudomi T. Clinical Relevance of Patient-Derived Organoid of Surgically Resected Lung Cancer as an In Vitro Model for Biomarker and Drug Testing. JTO Clin Res Rep 2023; 4:100554. [PMID: 37681218 PMCID: PMC10480534 DOI: 10.1016/j.jtocrr.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Lung tumor organoids (LTOs) have attracted attention as in vitro preclinical models; however, their clinical and experimental applications have not been fully established. Methods We attempted to establish LTOs from resected specimens of patients with lung cancer who underwent lung resection. Clinicopathologic characteristics related to the establishment of LTOs were evaluated. Histologic assessment and genetic analysis were conducted for both LTOs and their parental tumors. Organoid-derived xenografts were generated in immunocompetent mice. Drug sensitivity was assessed using cell proliferation assays. Results We established 53 LTOs from 79 lung cancer samples, including 10 long-term culture models. The establishment rate was significantly lower in squamous cell carcinomas than in other histologic types (48% versus 75%, p = 0.034). Histologic similarities were confirmed among LTOs, the parental tumors, and organoid-derived xenografts. Seven mutations, including two EGFR L858R and one EGFR exon 20 H773delinsYNPY mutations, were detected in both LTO and parental tumors; the other four mutations were detected in either LTO or parental tumors. The extensive culture ability of LTO (passaged >10 times) correlated with poor patient prognosis. LTO9 cells harboring EGFR H773delinsYNPY were sensitive to osimertinib. The parental patient, who had new metastatic lesions, was treated with osimertinib and exhibited a remarkable response. Conclusions The establishment and growth rates of LTOs were associated with the histologic subtype and tumor size. LTOs derived from resected specimens have become preclinical models that can be used to predict drug responses and accelerate the development of treatment strategies for patients with rare mutations.
Collapse
Affiliation(s)
- Takamasa Koga
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junichi Soh
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yuki Miyano
- Genome Informatics Unit, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshio Fujino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Keiko Obata
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaya Nishino
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hidenori Sato
- Genome Informatics Unit, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Kindai Hospital Global Research Alliance Center, Kindai University Hospital, Osaka-Sayama, Japan
| |
Collapse
|
199
|
Erali RA, Forsythe SD, Gironda DJ, Schaaf CR, Wajih N, Soker S, Votanopoulos KI. Utilizing Patient-Derived Organoids in the Management of Colorectal Cancer with Peritoneal Metastases: A Review of Current Literature. J Gastrointest Cancer 2023; 54:712-719. [PMID: 36447085 DOI: 10.1007/s12029-022-00891-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Treatment of colorectal cancer-derived peritoneal carcinomatosis (CRC-PC) is challenging due to cellular heterogeneity that exhibits variable degrees of resistance to systemic as well as intraperitoneal chemotherapy. Therefore, it is not a surprise that the majority of patients undergoing cytoreductive surgery with HIPEC will experience recurrence. Patient-derived tumor organoids (PTOs) may be potentially capable of informing clinical treatment decisions at the level of the individual patient. In this study, we review the current landscape of CRC-PC PTO literature. METHODS PubMed was queried for peer-reviewed publications studying CRC-PC organoids. Original articles which harnessed organoids as a research platform to study CRC-PC were included for review. Xenograft organoid studies were excluded. RESULTS A total of 5 articles met inclusion criteria published between 2017 and 2022 and underwent complete analysis. Study topics included optimization of current therapies, identification of novel drug applications, and identification of disease mechanisms. Current therapies studied included systemic chemotherapy, targeted inhibitors, and HIPEC regimens. CONCLUSIONS Patient-derived tumor organoids are a valuable personalized research tool that can complement real-time clinical settings. Additional research is needed to optimize methodologies of organoid incorporation in patients with colorectal cancer with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Richard A Erali
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Division of Surgical Oncology, Department of Surgery, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Steven D Forsythe
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel J Gironda
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cecilia R Schaaf
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nadeem Wajih
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Konstantinos I Votanopoulos
- Wake Forest Organoid Research Center (WFORCE), Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Division of Surgical Oncology, Department of Surgery, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
200
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|