151
|
Girolami F, Passantino S, Verrillo F, Palinkas ED, Limongelli G, Favilli S, Olivotto I. The Influence of Genotype on the Phenotype, Clinical Course, and Risk of Adverse Events in Children with Hypertrophic Cardiomyopathy. Heart Fail Clin 2021; 18:1-8. [PMID: 34776071 DOI: 10.1016/j.hfc.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic testing in children with hypertrophic cardiomyopathy (HCM) can modify clinical management and lifestyle counseling. However, predicting long-term outcome and response to management in individual patients remains challenging, because of the peculiar genetic heterogeneity of the disease in the pediatric age range. Children with HCM secondary to an inborn error of metabolism or malformation syndromes tend to have a worse outcome compared with those with the classic sarcomeric form. Among the latter, adverse genetic features are represented by the identification of a pathogenic variant in MYH7, often associated with severe hypertrophy, a complex genotype, or a de novo variant.
Collapse
Affiliation(s)
- Francesca Girolami
- Cardiology Unit, Meyer Children's Hospital, Viale Pieraccini 24, 50139 Florence, Italy.
| | - Silvia Passantino
- Cardiology Unit, Meyer Children's Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, Inherited & Rare Cardiovascular Diseases, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples, Italy
| | - Eszter Dalma Palinkas
- Division of Non-Invasive Cardiology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary; Cardiomyopathy Unit, University of Florence, Florence, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, Inherited & Rare Cardiovascular Diseases, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples, Italy
| | - Silvia Favilli
- Cardiology Unit, Meyer Children's Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, University of Florence, Florence, Italy
| |
Collapse
|
152
|
Dreijähriges Mädchen mit dilatativer Kardiomyopathie. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
153
|
Landstrom AP, Kim JJ, Gelb BD, Helm BM, Kannankeril PJ, Semsarian C, Sturm AC, Tristani-Firouzi M, Ware SM. Genetic Testing for Heritable Cardiovascular Diseases in Pediatric Patients: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e000086. [PMID: 34412507 PMCID: PMC8546375 DOI: 10.1161/hcg.0000000000000086] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic diseases that affect the cardiovascular system are relatively common and include cardiac channelopathies, cardiomyopathies, aortopathies, hypercholesterolemias, and structural diseases of the heart and great vessels. The rapidly expanding availability of clinical genetic testing leverages decades of research into the genetic origins of these diseases, helping inform diagnosis, clinical management, and prognosis. Although a number of guidelines and statements detail best practices for cardiovascular genetic testing, there is a paucity of pediatric-focused statements addressing the unique challenges in testing in this vulnerable population. In this scientific statement, we seek to coalesce the existing literature around the use of genetic testing for cardiovascular disease in infants, children, and adolescents.
Collapse
|
154
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
155
|
|
156
|
Halasz G, Cattaneo M, Piepoli M, Biagi A, Romano S, Biasini V, Villa M, Cassina T, Capelli B. Early Repolarization in Pediatric Athletes: A Dynamic Electrocardiographic Pattern With Benign Prognosis. J Am Heart Assoc 2021; 10:e020776. [PMID: 34387099 PMCID: PMC8475030 DOI: 10.1161/jaha.121.020776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Early repolarization pattern (ERP) is considered a common training‐related and benign ECG finding in young adult athletes. Few data exist on ERP in the pediatric athletes population. Therefore, we aimed to evaluate the ERP prevalence, characteristics, and prognosis in pediatric athletes aged ≤16 years. Methods and Results Eight‐hundred eighty‐six consecutive pediatric athletes engaged in 17 different sports (mean age, 11.7±2.5 years; 7–16 years) were enrolled and prospectively evaluated with medical history, physical examination, resting and exercise ECGs, and transthoracic echocardiography during their preparticipation screening. Known cardiovascular diseases associated with sudden cardiac death was considered exclusion criteria. Athletes were followed up yearly for 4 years. The prevalence of ERP was 117 (13.2%), equally distributed in both sexes (P=0.072), irrespectively of body mass index and classification of sports. The most common ERP localizations were inferolateral and inferior leads (53.8% and 27.3%, respectively). Notching J‐point morphology was the most prevalent (70%), and rapidly ascending ST elevation (96%) was the most common ST‐segment morphology. Athletes with ERP were older (P<0.001) had lower rest and recovery heart rates (P<0.001), increased precordial and limb R‐wave voltages (P<0.001), increased R/S Sokolow index (P<0.001), and longer PR interval (P=0.006) in comparison with the athletes without ERP. Neither major cardiovascular nor arrhythmic events, nor sudden cardiac death were recorded over a median follow‐up of 4.2 years. One hundred seventeen (80.3%) athletes with ERP exhibited a persistent ERP. ERP localization and J‐point morphology changed during follow‐up in 11 (11.7%) and 17 (18%) of athletes, respectively. Conclusions ERP is common in pediatric athletes. It was mostly located in the inferolateral leads and associated with concave ascending ST segment with other training‐related ECG changes. The lack of either sudden cardiac death or cardiomyopathies linked to sudden cardiac death over follow‐up suggests that in pediatric athletes, ERP may be considered a benign training‐related ECG phenomenon with a potential dynamic pattern.
Collapse
Affiliation(s)
- Geza Halasz
- Cardiology Department Guglielmo Da Saliceto Hospital Piacenza Italy.,Cardiology Department Cardiocentro Ticino Lugano Switzerland
| | - Mattia Cattaneo
- Cardiology Department Cardiocentro Ticino Lugano Switzerland
| | - Massimo Piepoli
- Cardiology Department Guglielmo Da Saliceto Hospital Piacenza Italy
| | - Andrea Biagi
- Cardiology Department Guglielmo Da Saliceto Hospital Piacenza Italy
| | - Silvio Romano
- Cardiology Department of Life Health & Environmental Sciences University of L'Aquila L'Aquila Italy
| | | | - Michele Villa
- Cardiovascular Intensive Care Unit Cardiocentro Ticino Lugano Switzerland
| | - Tiziano Cassina
- Cardiovascular Intensive Care Unit Cardiocentro Ticino Lugano Switzerland
| | - Bruno Capelli
- Sport and Exercise Medicine Cardiocentro Ticino Lugano Switzerland
| |
Collapse
|
157
|
Morales-Demori R, Montañes E, Erkonen G, Chance M, Anders M, Denfield S. Epidemiology of Pediatric Heart Failure in the USA-a 15-Year Multi-Institutional Study. Pediatr Cardiol 2021; 42:1297-1307. [PMID: 33871685 DOI: 10.1007/s00246-021-02611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
The epidemiology of pediatric heart failure (HF) has been characterized for congenital heart disease (CHD) and cardiomyopathies (CM), but the impact of CM associated with CHD has not been studied. This study aims to describe the characteristics and outcomes of inpatient pediatric HF patients with CHD, CM, and CHD with CM (CHD + CM) across the USA. We included all HF patients with CM diagnoses with and without CHD using ICD 9/10 codes ≤ 19 years old from January 2004 to September 2019 using the Pediatric Health Information System database. We identified 67,349 unique patients ≤ 19 years old with HF, of which 87% had CHD, 7% had CHD + CM, and 6% had CM. Pediatric HF admissions increased significantly from 2004 to 2018 with an associated increase in extracorporeal circulatory support (ECLS) use. Heart transplantation (HTX) increased only in the CHD and CHD + CM groups. CHD patients required less ECLS with and without HTX; however, they had significantly higher inpatient mortality after those procedures than the other groups (p < 0.001). CM patients were older (median 115 months) and had the lowest inpatient mortality after HTX with and without ECLS (p < 0.05). CHD + CM showed the highest overall inpatient mortality (15%), and cumulative hospital billed charges (median US$ 541,374), all p < 0.001. Pediatric HF admissions have increased from 2004 to 2018. ECLS use and HTX have expanded in this population, with an associated decrease in inpatient mortality in the CHD and CM groups. CHD + CM patients are a growing population with the highest inpatient mortality.
Collapse
Affiliation(s)
- Raysa Morales-Demori
- Department of Pediatrics, Division of Critical Care, Baylor College of Medicine, Texas Children's Hospital, 6651 Main St. MC E1420, Houston, TX, USA.
| | - Elena Montañes
- Department of Pediatrics, Division of Cardiology, Hospital 12 de Octubre, Madrid, Spain
| | - Gwen Erkonen
- Department of Pediatrics, Division of Critical Care, Baylor College of Medicine, Texas Children's Hospital, 6651 Main St. MC E1420, Houston, TX, USA
| | - Michael Chance
- Quality Outcomes & Analytics Specialist, Texas Children's Hospital, Houston, TX, USA
| | - Marc Anders
- Department of Pediatrics, Division of Critical Care, Baylor College of Medicine, Texas Children's Hospital, 6651 Main St. MC E1420, Houston, TX, USA
| | - Susan Denfield
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
158
|
Jui E, Singampalli KL, Shani K, Ning Y, Connell JP, Birla RK, Bollyky PL, Caldarone CA, Keswani SG, Grande-Allen KJ. The Immune and Inflammatory Basis of Acquired Pediatric Cardiac Disease. Front Cardiovasc Med 2021; 8:701224. [PMID: 34386532 PMCID: PMC8353076 DOI: 10.3389/fcvm.2021.701224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Children with acquired heart disease face significant health challenges, including a lifetime of strict medical management, multiple cardiac surgeries, and a high mortality risk. Though the presentation of these conditions is diverse, a unifying factor is the role of immune and inflammatory responses in their development and/or progression. For example, infectious agents have been linked to pediatric cardiovascular disease, leading to a large health burden that disproportionately affects low-income areas. Other implicated mechanisms include antibody targeting of cardiac proteins, infection of cardiac cells, and inflammation-mediated damage to cardiac structures. These changes can alter blood flow patterns, change extracellular matrix composition, and induce cardiac remodeling. Therefore, understanding the relationship between the immune system and cardiovascular disease can inform targeted diagnostic and treatment approaches. In this review, we discuss the current understanding of pediatric immune-associated cardiac diseases, challenges in the field, and areas of research with potential for clinical benefit.
Collapse
Affiliation(s)
- Elysa Jui
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Kavya L. Singampalli
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Kevin Shani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Yao Ning
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher A. Caldarone
- Division of Congenital Heart Surgery, Departments of Surgery and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
159
|
Sobeih AA, El-Saiedi SA, Abdel Khalek NS, Attia SA, Hanna BM. Parameters affecting outcome of paediatric cardiomyopathies in the intensive care unit: experience of an Egyptian tertiary centre over 7 years. Libyan J Med 2021; 15:1822073. [PMID: 33048664 PMCID: PMC7594879 DOI: 10.1080/19932820.2020.1822073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Introduction: Paediatric cardiomyopathies are rare but serious and often life-threatening conditions. In the absence of cardiac transplant and ventricular assist device as treatment options in our region, it is very important to identify patients at higher risk. The aim of this study was to determine the outcome of patients diagnosed with cardiomyopathies and their prognostic indicators. Patients and methods: This study included 92 cases representing all patients diagnosed with cardiomyopathy who were admitted into the pediatric cardiac intensive care unit during the period from January 2012 to September 2018. The patients were classified into two groups according to the outcome: the first group comprised 69 patients who survived, and the second group comprised 23 patients who died. All medical records were reviewed, and data were recorded and analysed. Results: Patients with cardiomyopathies represented 8.6% (92/1071) of all patients with cardiac diseases who were admitted in the study period and in the target age group (0.5-12 years). Dilated cardiomyopathy (DCM) was the most frequent type of cardiomyopathy among the admitted patients (80 patients), while 6 patients were diagnosed with hypertrophic cardiomyopathy (HCM), 4 were diagnosed with restrictive cardiomyopathy (RCM), and only 2 were diagnosed with mixed DCM-RCM. Seventy patients required inotropic support (76.1%). Assisted mechanical ventilation was used on 15 patients (16.3%). Twenty-three patients (25.0%) died during the 7-year study period. Conclusions Conclusions The occurrence of hypotension, abnormally high liver enzymes, the need for mechanical ventilation and the need for multiple inotropic drugs were found to be statistically significant predictors of mortality, while age, sex, fractional shortening, ejection fraction, presence of mitral regurgitation, mural thrombus, electrolyte disturbance and arrhythmias did not predict or affect patients' outcomes.
Collapse
Affiliation(s)
- Alaa A Sobeih
- Pediatric Cardiology Division, Department of Paediatrics, Faculty of Medicine, Cairo University , Giza, Egypt
| | - Sonia A El-Saiedi
- Pediatric Cardiology Division, Department of Paediatrics, Faculty of Medicine, Cairo University , Giza, Egypt
| | - Noha S Abdel Khalek
- Department of Pediatrics, Faculty of Medicine, Cairo University , Giza, Egypt
| | - Shereen A Attia
- Neonatal Intensive Care Unit, Om El-Atebaa Hospital , Cairo, Egypt
| | - Baher M Hanna
- Pediatric Cardiology Division, Department of Paediatrics, Faculty of Medicine, Cairo University , Giza, Egypt
| |
Collapse
|
160
|
Hirai K, Ousaka D, Fukushima Y, Kondo M, Eitoku T, Shigemitsu Y, Hara M, Baba K, Iwasaki T, Kasahara S, Ohtsuki S, Oh H. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci Transl Med 2021; 12:12/573/eabb3336. [PMID: 33298561 DOI: 10.1126/scitranslmed.abb3336] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Although cardiosphere-derived cells (CDCs) improve cardiac function and outcomes in patients with single ventricle physiology, little is known about their safety and therapeutic benefit in children with dilated cardiomyopathy (DCM). We aimed to determine the safety and efficacy of CDCs in a porcine model of DCM and translate the preclinical results into this patient population. A swine model of DCM using intracoronary injection of microspheres created cardiac dysfunction. Forty pigs were randomized as preclinical validation of the delivery method and CDC doses, and CDC-secreted exosome (CDCex)-mediated cardiac repair was analyzed. A phase 1 safety cohort enrolled five pediatric patients with DCM and reduced ejection fraction to receive CDC infusion. The primary endpoint was to assess safety, and the secondary outcome measure was change in cardiac function. Improved cardiac function and reduced myocardial fibrosis were noted in animals treated with CDCs compared with placebo. These functional benefits were mediated via CDCex that were highly enriched with proangiogenic and cardioprotective microRNAs (miRNAs), whereas isolated CDCex did not recapitulate these reparative effects. One-year follow-up of safety lead-in stage was completed with favorable profile and preliminary efficacy outcomes. Increased CDCex-derived miR-146a-5p expression was associated with the reduction in myocardial fibrosis via suppression of proinflammatory cytokines and transcripts. Collectively, intracoronary CDC administration is safe and improves cardiac function through CDCex in a porcine model of DCM. The safety lead-in results in patients provide a translational framework for further studies of randomized trials and CDCex-derived miRNAs as potential paracrine mediators underlying this therapeutic strategy.
Collapse
Affiliation(s)
- Kenta Hirai
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Daiki Ousaka
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yosuke Fukushima
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Maiko Kondo
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takahiro Eitoku
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yusuke Shigemitsu
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mayuko Hara
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kenji Baba
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tatsuo Iwasaki
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shinichi Ohtsuki
- Department of Pediatric Cardiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
161
|
Seok H, Oh JH. Hypertrophic Cardiomyopathy in Infants from the Perspective of Cardiomyocyte Maturation. Korean Circ J 2021; 51:733-751. [PMID: 34327880 PMCID: PMC8424452 DOI: 10.4070/kcj.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) in infancy is rare and many fulminant cases are fatal. Infantile HCM shows a rapid progressive clinical course and different characteristics compared with late-onset HCM presenting during the prepubertal age. There are also spontaneously resolving phenotypes of HCM that are diagnosed in neonates being treated for bronchopulmonary dysplasia with corticosteroids or in those with other problems related to maternal endocrine diseases. The pathophysiology of infantile HCM has not been well described. Therefore, this review updates the pathophysiology of infantile HCM and includes molecular studies on maturation of cardiomyocytes from a clinician's point of view. Hypertrophic cardiomyopathy (HCM) is characterized by ventricular wall hypertrophy with diastolic dysfunction. Pediatric HCM is distinguished from the adult in many aspects. Most children with HCM do not present clinically until the adolescent period, even when they are born with genetic mutations. Some infants with early-onset HCM present with massive progressive myocardial hypertrophy in the first few months of life, which is often fatal. The mortality of pediatric HCM peaks during the infantile and adolescent periods. These periods roughly correlate with children's growth spurt. Non-sarcomeric causes of HCM are more frequent in pediatric HCM, while sarcomeric causes are more common in adults. From the perspective of cardiac development, the fetal heart has immature cardiomyocytes, which are characterized by proliferation and exit their cell cycles with a decreased regenerative property after birth. In the perinatal period, there is a dynamic change in maturation of cardiomyocytes from immature to mature cells. Infants who are treated with steroids or born to mothers with diabetes or hyperthyroidism often show phenotypes of HCM, which gradually resolve. With remarkable advancement of molecular biology, understanding on maturation of cardiomyocytes has increased. Neonates undergo abrupt environmental changes during the transitional circulation, which is affected by oxygen, metabolic and hormonal fluctuations. Derangement in physiological transition to the normal postnatal environment may influence maturation of proliferative immature cardiomyocytes during early infancy. This article reviews updates of infantile HCM and recent molecular studies related to maturation of cardiomyocytes from the clinical point of view of identifying distinct characteristics of infantile HCM.
Collapse
Affiliation(s)
- Heeyoung Seok
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Hee Oh
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
162
|
Rakusiewicz K, Kanigowska K, Hautz W, Ziółkowska L. Choroidal thickness changes in children with chronic heart failure due to dilated cardiomyopathy. Int Ophthalmol 2021; 41:2167-2177. [PMID: 33966146 PMCID: PMC8172512 DOI: 10.1007/s10792-021-01774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/05/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate choroidal thickness (CTh) in children with chronic heart failure (CHF) secondary to dilated cardiomyopathy (DCM) using spectral domain optical coherence tomography (SD-OCT) and to compare their values to those of healthy children. METHODS Sixty eyes of thirty children (mean age 9.9 ± 3.57 years) with chronic heart failure (left ventricular ejection fraction, LVEF ≤ 55%) due to DCM lasting for over 6 months were prospectively enrolled. The control group consisted of 30 age- (mean age 10.16 ± 3.42 years) and sex-matched healthy children. All participants underwent transthoracic echocardiography with LVEF measured using the Simpson method and had the blood serum level of N-terminal-pro-brain natriuretic peptide marker (NT-proBNP) determined. All children underwent SD-OCT and had subfoveal choroidal thickness (SFCTh) and CTh measured at 1500 µm (μm) nasally, temporally, superiorly and inferiorly from the fovea in both eyes by two investigators. RESULTS CTh at all locations was statistically significantly lower in children with DCM compared to the control group. Mean CTh in the group with CHF compared to the control group were (304.03 vs. 369.72 μm, p < 0.05) at the subfoveal location, (245.87 vs. 284 μm, p < 0.05) 1500 μm nasally from the fovea, (291.5 vs. 355.95 μm, p < 0.05) 1500 μm temporally from the fovea, (303.98 vs. 357.58 μm, p < 0.05) 1500 μm superiorly from the fovea and (290.92 vs. 344.96 μm, p < 0.05) 1500 μm inferiorly from the fovea. The average difference CTh between the study groups ranged from 38.13 to 65.69 μm at individual locations. In both groups, CTh was the thickest at subfoveal location (304.03 vs. 369.72 μm, p < 0.05) and the thinnest was 1500 μm nasally from the fovea (262.37 vs. 336.87 μm, p < 0.05). There was no correlation between CTh and age, gender, biometry and refractive error. No correlation was found between CTh and LVEF and NT-proBNP. CONCLUSION Patients with CHF due to DCM had a thinner CTh at all measured locations. The results of our research indicate that CHF affects CTh and this parameter may be very helpful in monitoring the clinical course of the disease in children with DCM.
Collapse
Affiliation(s)
- Klaudia Rakusiewicz
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland.
| | - Krystyna Kanigowska
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Wojciech Hautz
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, Poland
| | - Lidia Ziółkowska
- Department of Cardiology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
163
|
Circular RNA circACSL1 aggravated myocardial inflammation and myocardial injury by sponging miR-8055 and regulating MAPK14 expression. Cell Death Dis 2021; 12:487. [PMID: 33986259 PMCID: PMC8119943 DOI: 10.1038/s41419-021-03777-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Myocarditis (MC) is a common, potentially life-threatening inflammatory disease of the myocardium. A growing body of evidence has shown that mitogen-activated protein kinase 14 (MAPK14) participates in the pathogenesis of MC. However, the upstream regulators of MAPK14 remain enigmatic. Circular RNAs (circRNAs) have been identified to play vital roles in the pathophysiology of cardiovascular diseases. Nevertheless, the clinical significance, biological function, and regulatory mechanisms of circRNAs in MC remain poorly understood. In this study, we determined a novel circRNA, circACSL1 (ID: hsa_circ_0071542), which was significantly upregulated in the acute phase of MC, and its dynamic change in expression was related to the progression of MC. We used lipopolysaccharide (LPS) to induce the inflammatory responses in the human cardiomyocytes (HCM) line for in vitro and in cellulo experiments. The pro-inflammatory factors (IL-1β, IL-6, and TNF-α), myocardial injury markers (cTnT, CKMB, and BNP), cell viability, and cell apoptosis were measured to evaluate the extent of myocardial inflammation and myocardial injury level. Functional experiments, including gain-of-function and loss-of-function, were then performed to investigate the pro-inflammatory roles of circACSL1. The results revealed that circACSL1 could aggravate inflammation, myocardial injury, and apoptosis in HCM. Mechanistically, circACSL1 acted as a sponge for miR-8055-binding sites to regulate the downstream target MAPK14 expression. Furthermore, overexpression of miR-8055 rescued the pro-inflammatory effects of circACSL1 on HCM, and the upregulation of MAPK14 induced by circACSL1 was attenuated by miR-8055 overexpression. Knockdown of circACSL1 or overexpression of miR-8055 reduced myocardial inflammation and myocardial injury level and these effects were rescued by overexpression of MAPK14. In summary, our study demonstrated that circACSL1 could aggravate myocardial inflammation and myocardial injury through competitive absorption of miR-8055, thereby upregulating MAPK14 expression. Moreover, circACSL1 may represent a potential novel biomarker for the precise diagnosis of MC and offer a promising therapeutic target for MC treatment.
Collapse
|
164
|
Monda E, Kaski JP, Limongelli G. Editorial: Paediatric Cardiomyopathies. Front Pediatr 2021; 9:696443. [PMID: 34046378 PMCID: PMC8144507 DOI: 10.3389/fped.2021.696443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/10/2023] Open
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| |
Collapse
|
165
|
Genetic variant burden and adverse outcomes in pediatric cardiomyopathy. Pediatr Res 2021; 89:1470-1476. [PMID: 32746448 PMCID: PMC8256333 DOI: 10.1038/s41390-020-1101-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous genetic research in pediatric cardiomyopathy (CM) has focused on pathogenic variants for diagnostic purposes, with limited data evaluating genotype-outcome correlations. We explored whether greater genetic variant burden (pathogenic or variants of unknown significance, VUS) correlates with worse outcomes. METHODS Children with dilated CM (DCM) and hypertrophic CM (HCM) who underwent multigene testing between 2010 and 2018 were included. Composite endpoint was freedom from major adverse cardiac event (MACE). RESULTS Three hundred and thirty-eight subjects were included [49% DCM, median age 5.7 (interquartile range (IQR) 0.2-13.4) years, 51% HCM, median age 3.0 (IQR 0.1-12.5) years]. Pathogenic variants alone were not associated with MACE in either cohort (DCM p = 0.44; HCM p = 0.46). In DCM, VUS alone [odds ratio (OR) 4.0, 95% confidence interval (CI) 1.9-8.3] and in addition to pathogenic variants (OR 5.2, 95% CI 1.7-15.9) was associated with MACE. The presence of VUS alone or in addition to pathogenic variants were not associated with MACE in HCM (p = 0.22 and p = 0.33, respectively). CONCLUSION Increased genetic variant burden (pathogenic variants and VUS) is associated with worse clinical outcomes in DCM but not HCM. Genomic variants that influence DCM onset may be distinct from those driving disease progression, highlighting the potential value of universal genetic testing to improve risk stratification. IMPACT In pediatric CM, inconsistent findings historically have been shown between genotype and phenotype severity when only pathogenic variants have been considered. Increased genetic variant burden (including both pathogenic variants and VUS) is associated with worse clinical outcomes in DCM but not HCM. Genomic variants that influence CM onset may be distinct from those variants that drive disease progression and influence outcomes in phenotype-positive individuals. Incorporation of both pathogenic variants and VUS may improve risk stratification models in pediatric CM.
Collapse
|
166
|
Fatkin D, Calkins H, Elliott P, James CA, Peters S, Kovacic JC. Contemporary and Future Approaches to Precision Medicine in Inherited Cardiomyopathies: JACC Focus Seminar 3/5. J Am Coll Cardiol 2021; 77:2551-2572. [PMID: 34016267 DOI: 10.1016/j.jacc.2020.12.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Inherited cardiomyopathies are commonly occurring myocardial disorders that are associated with substantial morbidity and mortality. Clinical management strategies have focused on treatment of heart failure and arrhythmic complications in symptomatic patients according to standardized guidelines. Clinicians are now being urged to implement precision medicine, but what does this involve? Advances in understanding of the genetic underpinnings of inherited cardiomyopathies have brought new possibilities for interventions that are tailored to genes, specific variants, or downstream mechanisms. However, the phenotypic variability that can occur with any given pathogenic variant suggests that factors other than single driver gene mutations are often involved. This is propelling a new imperative to elucidate the nuanced ways in which individual combinations of genetic variation, comorbidities, and lifestyle may influence cardiomyopathy phenotypes. Here, Part 3 of a 5-part precision medicine Focus Seminar series reviews the current status and future opportunities for precision medicine in the inherited cardiomyopathies.
Collapse
Affiliation(s)
- Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Perry Elliott
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Stacey Peters
- Departments of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
167
|
Zhang L, Lv T, Liu X, Feng C, Zheng M, Tian J, Sun H. A Case of Pediatric Heart Failure Caused by Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery: Case Report and Literature Review. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2021. [DOI: 10.15212/cvia.2019.0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A female patient aged 3 months and 10 days was admitted to the cardiology department because of symptoms of heart failure. According to the echocardiography results, the patient received a diagnosis of primary endocardial fibroelastosis and was treated with γ-globulin, prednisone,
digoxin, and diuretics. Coronary computed tomographic angiography and coronary angiography were performed as there was no improvement after 2 months of treatment. Finally, the patient received a diagnosis of anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA). ALCAPA
is a rare congenital heart defect that can cause severe heart failure during infancy, and is easily misdiagnosed clinically. In this report, we show the process of misdiagnosis of the case and consult the relevant literature, hoping to improve the understanding and early diagnosis of ALCAPA.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Xiaoyan Liu
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Chuan Feng
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Min Zheng
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Jie Tian
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| | - Huichao Sun
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Yuzhong District, Chongqing, China
| |
Collapse
|
168
|
Martinez HR, Beasley GS, Miller N, Goldberg JF, Jefferies JL. Clinical Insights Into Heritable Cardiomyopathies. Front Genet 2021; 12:663450. [PMID: 33995492 PMCID: PMC8113776 DOI: 10.3389/fgene.2021.663450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathies (CMs) encompass a heterogeneous group of structural and functional abnormalities of the myocardium. The phenotypic characteristics of these myocardial diseases range from silent to symptomatic heart failure, to sudden cardiac death due to malignant tachycardias. These diseases represent a leading cause of cardiovascular morbidity, cardiac transplantation, and death. Since the discovery of the first locus associated with hypertrophic cardiomyopathy 30 years ago, multiple loci and molecular mechanisms have been associated with these cardiomyopathy phenotypes. Conversely, the disparity between the ever-growing landscape of cardiovascular genetics and the lack of awareness in this field noticeably demonstrates the necessity to update training curricula and educational pathways. This review summarizes the current understanding of heritable CMs, including the most common pathogenic gene variants associated with the morpho-functional types of cardiomyopathies: dilated, hypertrophic, arrhythmogenic, non-compaction, and restrictive. Increased understanding of the genetic/phenotypic associations of these heritable diseases would facilitate risk stratification to leveraging appropriate surveillance and management, and it would additionally provide identification of family members at risk of avoidable cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gary S. Beasley
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Noah Miller
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jason F. Goldberg
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John L. Jefferies
- The Cardiovascular Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
169
|
Schänzer A, Schumann E, Zengeler D, Gulatz L, Maroli G, Ahting U, Sprengel A, Gräf S, Hahn A, Jux C, Acker T, Fürst DO, Rupp S, Schuld J, van der Ven PFM. The p.Ala2430Val mutation in filamin C causes a "hypertrophic myofibrillar cardiomyopathy". J Muscle Res Cell Motil 2021; 42:381-397. [PMID: 33710525 DOI: 10.1007/s10974-021-09601-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.
Collapse
Affiliation(s)
- Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany.
| | - Elisabeth Schumann
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Diana Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, Tübingen, Germany
| | - Lisann Gulatz
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technical University of Munich (TUM), Munich, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Sabine Gräf
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Stefan Rupp
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
170
|
Gallo G, Mastromarino V, Limongelli G, Calcagni G, Maruotti A, Ragni L, Valente F, Musumeci MB, Adorisio R, Rubino M, Autore C, Magrì D. Insights from Cardiopulmonary Exercise Testing in Pediatric Patients with Hypertrophic Cardiomyopathy. Biomolecules 2021; 11:biom11030376. [PMID: 33801562 PMCID: PMC7999553 DOI: 10.3390/biom11030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
The usefulness of cardiopulmonary exercise test (CPET) in adult hypertrophic cardiomyopathy (HCM) patients is well-known, whereas its role in pediatric HCM patients has not yet been explored. The present study investigates possible insights from a CPET assessment in a cohort of pediatric HCM outpatients in terms of functional and prognostic assessment. Sixty consecutive pediatric HCM outpatients aged <18 years old were enrolled, each of them undergoing a full clinical assessment including a CPET; a group of 60 healthy subjects served as controls. A unique composite end-point of heart failure (HF) related and sudden cardiac death (SCD) or SCD-equivalent events was also explored. During a median follow-up of 53 months (25th–75th: 13–84 months), a total of 13 HF- and 7 SCD-related first events were collected. Compared to controls, HCM patients showed an impaired functional capacity with most of them showing peak oxygen uptake (pVO2) values of <80% of the predicted, clearly discrepant with functional New York Heart Association class assessment. The composite end-point occurred more frequently in patients with the worst CPETs’ profiles. At the univariate analysis, pVO2% was the variable with the strongest association with adverse events at follow-up (C-index = 0.72, p = 0.025) and a cut-off value equal to 60% was the most accurate in identifying those patients at the highest risk. In a pediatric HCM subset, the CPET assessment allows a true functional capacity estimation and it might be helpful in identifying early those patients at high risk of events.
Collapse
Affiliation(s)
- Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy; (G.G.); (M.B.M.); (C.A.)
| | - Vittoria Mastromarino
- Paediatric Cardiology and ACHD Unit, S. Orsola, Malpighi Hospital, 40138 Bologna, Italy; (V.M.); (L.R.)
| | - Giuseppe Limongelli
- Cardiologia SUN, Monaldi Hospital, II University of Naples, 80100 Naples, Italy; (G.L.); (F.V.); (M.R.)
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00050 Rome, Italy; (G.C.); (R.A.)
| | - Antonello Maruotti
- Department of Scienze Economiche, Politiche e delle Lingue Moderne, Libera Università SS Maria Assunta, 00193 Rome, Italy;
- Department of Mathematics, University of Bergen, 5052 Bergen, Norway
- School of Computing, University of Portsmouth, Portsmouth PO2 8QD, UK
| | - Luca Ragni
- Paediatric Cardiology and ACHD Unit, S. Orsola, Malpighi Hospital, 40138 Bologna, Italy; (V.M.); (L.R.)
| | - Fabio Valente
- Cardiologia SUN, Monaldi Hospital, II University of Naples, 80100 Naples, Italy; (G.L.); (F.V.); (M.R.)
| | - Maria Beatrice Musumeci
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy; (G.G.); (M.B.M.); (C.A.)
| | - Rachele Adorisio
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00050 Rome, Italy; (G.C.); (R.A.)
| | - Marta Rubino
- Cardiologia SUN, Monaldi Hospital, II University of Naples, 80100 Naples, Italy; (G.L.); (F.V.); (M.R.)
| | - Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy; (G.G.); (M.B.M.); (C.A.)
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy; (G.G.); (M.B.M.); (C.A.)
- Correspondence: ; Tel.: +39-(0)6-3377-5563; Fax: +39-(0)6-3377-5061
| |
Collapse
|
171
|
Alonso-Pérez J, González-Quereda L, Bello L, Guglieri M, Straub V, Gallano P, Semplicini C, Pegoraro E, Zangaro V, Nascimento A, Ortez C, Comi GP, Dam LT, De Visser M, van der Kooi AJ, Garrido C, Santos M, Schara U, Gangfuß A, Løkken N, Storgaard JH, Vissing J, Schoser B, Dekomien G, Udd B, Palmio J, D'Amico A, Politano L, Nigro V, Bruno C, Panicucci C, Sarkozy A, Abdel-Mannan O, Alonso-Jimenez A, Claeys KG, Gomez-Andrés D, Munell F, Costa-Comellas L, Haberlová J, Rohlenová M, Elke DV, De Bleecker JL, Dominguez-González C, Tasca G, Weiss C, Deconinck N, Fernández-Torrón R, López de Munain A, Camacho-Salas A, Melegh B, Hadzsiev K, Leonardis L, Koritnik B, Garibaldi M, de Leon-Hernández JC, Malfatti E, Fraga-Bau A, Richard I, Illa I, Díaz-Manera J. New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain 2021; 143:2696-2708. [PMID: 32875335 DOI: 10.1093/brain/awaa228] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. In 2016, several clinicians involved in the diagnosis, management and care of patients with LGMDR3-6 created a European Sarcoglycanopathy Consortium. The aim of the present study was to determine the clinical and genetic spectrum of a large cohort of patients with sarcoglycanopathy in Europe. This was an observational retrospective study. A total of 33 neuromuscular centres from 13 different European countries collected data of the genetically confirmed patients with sarcoglycanopathy followed-up at their centres. Demographic, genetic and clinical data were collected for this study. Data from 439 patients from 13 different countries were collected. Forty-three patients were not included in the analysis because of insufficient clinical information available. A total of 159 patients had a confirmed diagnosis of LGMDR3, 73 of LGMDR4, 157 of LGMDR5 and seven of LGMDR6. Patients with LGMDR3 had a later onset and slower progression of the disease. Cardiac involvement was most frequent in LGMDR4. Sixty per cent of LGMDR3 patients carried one of the following mutations, either in a homozygous or heterozygous state: c.229C>T, c.739G>A or c.850C>T. Similarly, the most common mutations in LMGDR5 patients were c.525delT or c.848G>A. In LGMDR4 patients the most frequent mutation was c.341C>T. We identified onset of symptoms before 10 years of age and residual protein expression lower than 30% as independent risk factors for losing ambulation before 18 years of age, in LGMDR3, LGMDR4 and LGMDR5 patients. This study reports clinical, genetic and protein data of a large European cohort of patients with sarcoglycanopathy. Improving our knowledge about these extremely rare autosomal recessive forms of LGMD was helped by a collaborative effort of neuromuscular centres across Europe. Our study provides important data on the genotype-phenotype correlation that is relevant for the design of natural history studies and upcoming interventional trials in sarcoglycanopathies.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia González-Quereda
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Pia Gallano
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | | | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Andrés Nascimento
- Neuromuscular Disorder Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Disorder Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Giacomo Pietro Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Leroy Ten Dam
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianne De Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A J van der Kooi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cristina Garrido
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Manuela Santos
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Ulrike Schara
- Neuromuscular Centre for Children and Adolescents, Department of Paediatric Neurology, University Hospital Essen, Essen, Germany
| | - Andrea Gangfuß
- Neuromuscular Centre for Children and Adolescents, Department of Paediatric Neurology, University Hospital Essen, Essen, Germany
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jesper Helbo Storgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology Klinikum München Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine - University of Campania, Naples, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Omar Abdel-Mannan
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alicia Alonso-Jimenez
- Neuromuscular Reference Center, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - David Gomez-Andrés
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Francina Munell
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Laura Costa-Comellas
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Jana Haberlová
- Department of Child Neurology, Charles University, 2nd Medical School, University Hospital Motol, Prague, Czech Republic
| | - Marie Rohlenová
- Department of Child Neurology, Charles University, 2nd Medical School, University Hospital Motol, Prague, Czech Republic
| | - De Vos Elke
- Department of Neurology, Ghent University and University Hospital Ghent, Ghent, Belgium
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and University Hospital Ghent, Ghent, Belgium
| | - Cristina Dominguez-González
- Department of Neuroscience, University of Padova, Padova, Italy.,Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Instituto de Investigación imas12, Madrid, Spain
| | - Giorgio Tasca
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Claudia Weiss
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicolas Deconinck
- Department of Neurology, Queen Fabiola Children's University Hospital (HUDERF), Free University of Brussels, Brussels, Belgium
| | | | - Adolfo López de Munain
- Neurosciences, BioDonostia Health Research Institute, Hospital Donostia, San Sebastián, Spain
| | - Ana Camacho-Salas
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pécs, School of Medicine, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pécs, School of Medicine, Pécs, Hungary
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre, Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaz Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre, Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Center, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), SAPIENZA Università di Roma, Rome, Italy
| | | | - Edoardo Malfatti
- Department of Neurology, Raymond-Poincaré teaching hospital, centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, AP-HP, Garches, France
| | | | - Isabelle Richard
- Integrare (UMR_S951), Inserm, Généthon, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience, University of Padova, Padova, Italy
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
172
|
Acute heart failure due to dilated cardiomyopathy exacerbated by systemic parechovirus A1 infection in an infant. Int J Infect Dis 2021; 104:273-275. [PMID: 33453393 DOI: 10.1016/j.ijid.2021.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
Parechovirus A1 (PeV-A1) often causes mild respiratory or gastrointestinal disease. Herein we report a case of acute heart failure due to dilated cardiomyopathy exacerbated by acute PeV-A1 infection in a 10-month-old infant. He was brought to our hospital with acute respiratory distress and compensated shock. Echocardiogram showed a dilated left ventricle and severe mitral regurgitation, consistent with dilated cardiomyopathy. PeV-A1 infection was confirmed by (1) positive PCR test results for PeV-A in multiple anatomical sites, including blood, stool, and throat, (2) the genetic sequence of viral protein, and (3) an increase in paired serum PeV-A1-specific neutralizing antibody titers. A few, scattered case reports in infants and young children also indicate the association between myocarditis and/or dilated cardiomyopathy and PeV-A1 infection. In conclusion, PeV-A1 infection could be associated with exacerbation of myocardial diseases in infants and young children; thus PeV-A1 needs to be evaluated as a viral cause of such a condition.
Collapse
|
173
|
Wang PY, Tseng WC, Fu CM, Wu MH, Wang JK, Chen YS, Chou NK, Wang SS, Chiu SN, Lin MT, Lu CW, Chen CA. Long-Term Outcomes and Prognosticators of Pediatric Primary Dilated Cardiomyopathy in an Asian Cohort. Front Pediatr 2021; 9:771283. [PMID: 34796157 PMCID: PMC8593174 DOI: 10.3389/fped.2021.771283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is the most common childhood cardiomyopathy. The epidemiological profiles and prognosticators of clinical outcomes in Asian populations are not well elucidated. Methods: Data of 104 children aged <18 years with a diagnosis of primary DCM from January 1990 to December 2019 in our institutional database were retrospectively investigated. Relevant demographic, echocardiographic, and clinical variables were recorded for analysis. A P <0.05 was considered statistically significant. Results: The median age at diagnosis was 1.4 years (interquartile range = 0.3-9.1 years), and 52.9% were males. During a median follow-up duration of 4.8 years, 48 patients (46.2%) were placed on the transplantation waitlist, and 52.1% of them eventually received heart transplants. An exceptionally high overall waitlist mortality rate was noted (27.1%), which was even higher (43.5%) if the diagnostic age was <3 years. The 1-, 5-, and 10-year transplant-free were 61.1, 48.0, and 42.8%. Age at diagnosis >3 years and severe mitral regurgitation at initial diagnosis were independent risk factors for death or transplantation (hazard ratios = 2.93 and 3.31, respectively; for both, P <0.001). In total, 11 patients (10.6%) experienced ventricular function recovery after a median follow-up of 2.5 (interquartile range = 1.65-5) years. Younger age at diagnosis was associated a higher probability of ventricular function recovery. Conclusions: Despite donor shortage for heart transplantation and subsequently high waitlist mortality, our data from an Asian cohort indicated that transplant-free long-term survival was comparable with that noted in reports from Western populations. Although younger patients had exceptionally higher waitlist mortality, lower diagnostic age was associated with better long-term survival and higher likelihood of ventricular function recovery.
Collapse
Affiliation(s)
- Po-Yuan Wang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan.,Department of Pediatrics, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Wei-Chieh Tseng
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chun-Min Fu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan
| | - Mei-Hwan Wu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Jou-Kou Wang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yih-Sharng Chen
- Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Nai-Kuan Chou
- Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shoei-Shen Wang
- Department of Cardiovascular Surgery, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Shuenn-Nan Chiu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Ming-Tai Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chun-Wei Lu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chun-An Chen
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| |
Collapse
|
174
|
Ditaranto R, Caponetti AG, Ferrara V, Parisi V, Minnucci M, Chiti C, Baldassarre R, Di Nicola F, Bonetti S, Hasan T, Potena L, Galiè N, Ragni L, Biagini E. Pediatric Restrictive Cardiomyopathies. Front Pediatr 2021; 9:745365. [PMID: 35145940 PMCID: PMC8822222 DOI: 10.3389/fped.2021.745365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is the least frequent phenotype among pediatric heart muscle diseases, representing only 2.5-3% of all cardiomyopathies diagnosed during childhood. Pediatric RCM has a poor prognosis, high incidence of pulmonary hypertension (PH), thromboembolic events, and sudden death, is less amenable to medical or surgical treatment with high mortality rates. In this scenario, heart transplantation remains the only successful therapeutic option. Despite a shared hemodynamic profile, characterized by severe diastolic dysfunction and restrictive ventricular filling, with normal ventricle ejection fraction and wall thickness, RCM recognizes a broad etiological spectrum, consisting of genetic/familial and acquired causes, each of which has a distinct pathophysiology and natural course. Hence, the aim of this review is to cover the causes, clinical presentation, diagnostic evaluation, treatment, and prognosis of pediatric RCM.
Collapse
Affiliation(s)
- Raffaello Ditaranto
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Angelo Giuseppe Caponetti
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Valentina Ferrara
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Vanda Parisi
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Matteo Minnucci
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Chiti
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Riccardo Baldassarre
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Federico Di Nicola
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Simone Bonetti
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Tammam Hasan
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Nazzareno Galiè
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luca Ragni
- Pediatric Cardiac Surgery and GUCH Unit, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Elena Biagini
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
175
|
Cai D, Han B, Sun W, Zhang L, Wang J, Jiang D, Jia H. Differential Expression Profiles and Functional Analysis of Long Non-coding RNAs in Children With Dilated Cardiomyopathy. Front Pediatr 2021; 9:617298. [PMID: 33614553 PMCID: PMC7891041 DOI: 10.3389/fped.2021.617298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: To evaluate the expression profile of long non-coding RNAs (lncRNAs) in different left ventricular function of dilated cardiomyopathy (DCM) in children and explore their possible functions. Methods: The lncRNA microarray experiment was used to determine the differential expression profile of lncRNA in three children with DCM and three healthy volunteers. The functional analysis and the construction of the lncRNA-mRNA interaction network were carried out to study the biological functions. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to verify the microarray data. Results: There were 369 up-regulated lncRNAs identified in the DCM patients (fold change >2, P < 0.05), and 505 down-regulated lncRNAs. Based on target gene prediction and co-expression network construction, 9 differentially expressed lncRNAs were selected for the PCR to verify the accuracy of the microarray data, of which 5 were up-regulated and 4 were down-regulated, and finally proved that 7 of them were consistent with the trend of microarray data results. Four of these lncRNAs had significant differences between the patients with poor cardiac function and patients with improved left ventricle function. Conclusion: LncRNAs may play an important role in pediatric DCM and may provide a new perspective for the pathogenesis, diagnosis, and treatment of this disease.
Collapse
Affiliation(s)
- Dongxiao Cai
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Sun
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Diandong Jiang
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hailin Jia
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
176
|
Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, Calabrò P, Russo MG, Limongelli G. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr 2021; 9:632293. [PMID: 33718303 PMCID: PMC7947260 DOI: 10.3389/fped.2021.632293] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Esposito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
177
|
Wen H, You H, Li Y, Ma K, Jiao M, Wu S, You S, Huang J, Su J, Gu Y, Wang Z, Zheng P, Shui G, Wang Y, Jin M, Du J. Higher Serum Lysophosphatidic Acids Predict Left Ventricular Reverse Remodeling in Pediatric Dilated Cardiomyopathy. Front Pediatr 2021; 9:710720. [PMID: 34485199 PMCID: PMC8415784 DOI: 10.3389/fped.2021.710720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The prognosis of pediatric dilated cardiomyopathy (PDCM) is highly variable, ranging from death to cardiac function recovery. Left ventricular reverse remodeling (LVRR) represents a favorable prognosis in PDCM. Disturbance of lipid metabolism is associated with the change of cardiac function, but no studies have examined lipidomics data and LVRR. Methods: Discovery analyses were based on 540 targeted lipids in an observational, prospective China-AOCC (An Integrative-Omics Study of Cardiomyopathy Patients for Diagnosis and Prognosis in China) study. The OPLS-DA and random forest (RF) analysis were used to screen the candidate lipids. Associations of the candidate lipids were examined in Cox proportional hazards regression models. Furthermore, we developed a risk score comprising the significant lipids, with each attributed a score of 1 when the concentration was above the median. All significant findings were replicated in a validation set of the China-AOCC study. Results: There were 59 patients in the discovery set and 24 patients in the validation set. LVRR was observed in 27 patients (32.5%). After adjusting for age, left ventricular ejection fraction (LVEF), and left ventricular end-diastolic dimension (LVEDD) z-score, lysophosphatidic acids (LysoPA) 16:0, LysoPA 18:2, LysoPA 18:1, and LysoPA 18:0 were significantly associated with LVRR in the discovery set, and hazard ratios (HRs) were 2.793 (95% CI, 1.545-5.048), 2.812 (95% CI, 1.542-5.128), 2.831 (95% CI, 1.555-5.154), and 2.782 (95% CI, 1.548-5.002), respectively. We developed a LysoPA score comprising the four LysoPA. When the LysoPA score reached 4, LVRR was more likely to be observed in both sets. The AUC increased with the addition of the LysoPA score to the LVEDD z-score (from 0.693 to 0.875 in the discovery set, from 0.708 to 0.854 in the validation set) for prediction of LVRR. Conclusions: Serum LysoPA can predict LVRR in PDCM patients. When the LysoPA score was combined with the LVEDD z-score, it may help in ascertaining the prognosis and monitoring effects of anti-heart failure pharmacotherapy.
Collapse
Affiliation(s)
- Haichu Wen
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongzhao You
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ke Ma
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng Jiao
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shijie You
- State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Huang
- State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwu Su
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Yan Gu
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Zhiyuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Ping Zheng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mei Jin
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
178
|
Abstract
Paediatric cardiomyopathies are a heterogenous group of rare disorders, characterised by mechanical and electrical abnormalities of the heart muscle. The overall annual incidence of childhood cardiomyopathies is estimated at about 1 per 100,000 children and is significantly higher during the first 2 years of life. Dilated cardiomyopathies account for approximately half of the cases. Hypertrophic cardiomyopathies form the second largest group, followed by the less common left ventricular non-compaction and restrictive phenotypes. Infectious, metabolic, genetic, and syndromic conditions account for the majority of cases. Congestive heart failure is the typical manifestation in children with dilated cardiomyopathy, whereas presenting symptoms are more variable in other phenotypes. The natural history is largely influenced by the type of cardiomyopathy and its underlying aetiology. Results from a national population-based study revealed 10-year transplant-free survival rates of 80, 62, and 48% for hypertrophic, dilated and left ventricular non-compaction cardiomyopathies, respectively. Long-term survival rates of children with a restrictive phenotype have largely been obscured by early listing for heart transplantation. In general, the majority of adverse events, including death and heart transplantation, occur during the first 2 years after the initial presentation. This review provides an overview of childhood cardiomyopathies with a focus on epidemiology, natural history, and outcomes.
Collapse
Affiliation(s)
- Anika Rath
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Robert Weintraub
- Department of Cardiology, Royal Children's Hospital, Melbourne, VIC, Australia.,Heart Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
| |
Collapse
|
179
|
Liao Y, Jin H, Huang X, Gong F, Fu L. Editorial: Acquired Heart Disease in Children: Pathogenesis, Diagnosis and Management. Front Pediatr 2021; 9:725670. [PMID: 34336747 PMCID: PMC8319598 DOI: 10.3389/fped.2021.725670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ying Liao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Fangqi Gong
- Department of Cardiology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
180
|
Park KC, Krywawych S, Richard E, Desviat LR, Swietach P. Cardiac Complications of Propionic and Other Inherited Organic Acidemias. Front Cardiovasc Med 2020; 7:617451. [PMID: 33415129 PMCID: PMC7782273 DOI: 10.3389/fcvm.2020.617451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital, London, United Kingdom
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma de Madrid-Consejo Superior de Investigaciones Cientificas (UAM-CSIC), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pawel Swietach
- Department of Anatomy, Physiology and Genetics, Burdon Sanderson Cardiac Science Centre, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
181
|
Sosnowska-Sienkiewicz P, Gowin E, Jończyk-Potoczna K, Mańkowski P, Godziński J, Januszkiewicz-Lewandowska D. Bilateral Nephroblastoma with Dilated Cardiomyopathy as an Indication for Off-Protocol Treatment: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249483. [PMID: 33352828 PMCID: PMC7766981 DOI: 10.3390/ijerph17249483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Patients with a Wilms tumor are often admitted to the hospital accidentally, with an abdominal mass causing asymmetry of the abdominal wall. Hypertension accompanying a Wilms tumor occurs in about 10–27% of children, but cardiomyopathy associated with a Wilms tumor is very rarely described. This publication presents a case of a 9-month-old girl with a bilateral Wilms tumor accompanied by dilated cardiomyopathy since her initial cancer diagnosis, as well as her off-protocol treatment. The severe condition of the child forced the application of off-protocol treatment, i.e., accelerated resection of a larger tumor, which enabled the improvement of heart performance and made subsequent therapy possible. In the course of the presented treatment, a gradual normalization of cardiac ventricular function and contractility was observed. In conclusion, a massive abdominal tumor associated with abdominal compartment syndrome compromised the functioning of the cardiovascular system in the young child. Therefore, earlier removal of Wilms tumors in patients with heart failure should be considered. This may result in the improvement of cardiovascular function and the possibility of further therapy.
Collapse
Affiliation(s)
- Patrycja Sosnowska-Sienkiewicz
- Department of Pediatric Surgery, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-8491-578; Fax: +48-61-8491-228
| | - Ewelina Gowin
- Department of Health Promotion, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | | | - Przemysław Mańkowski
- Department of Pediatric Surgery, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Jan Godziński
- Department of Pediatric Traumatology and Emergency Medicine, Wroclaw Medical University, 50-041 Wroclaw, Poland;
| | | |
Collapse
|
182
|
Roper S, Cao J. Laying the Foundation for Utilizing Cardiac Markers in Children and Infants. J Appl Lab Med 2020; 6:337-340. [PMID: 33313797 DOI: 10.1093/jalm/jfaa215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Stephen Roper
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
183
|
Abstract
Paediatric cardiomyopathy is a progressive and often lethal disorder and the most common cause of heart failure in children. Despite their severe outcomes, their genetic etiology is still poorly characterised. The current study aimed at uncovering the genetic background of idiopathic primary hypertrophic cardiomyopathy in a cohort of Egyptian children using targeted next-generation sequencing. The study included 24 patients (15 males and 9 females) presented to the cardiomyopathy clinic of Cairo University Children's Hospital with a median age of 2.75 (0.5-14) years. Consanguinity was positive in 62.5% of patients. A family history of hypertrophic cardiomyopathy was present in 20.8% of patients. Ten rare variants were detected in eight patients; two pathogenic variants (8.3%) in MBPC3 and MYH7, and eight variants of uncertain significance in MYBPC3, TTN, VCL, MYL2, CSRP3, and RBM20.Here, we report on the first national study in Egypt that analysed sarcomeric and non-sarcomeric variants in a cohort of idiopathic paediatric hypertrophic cardiomyopathy patients using next-generation sequencing. The current pilot study suggests that paediatric hypertrophic cardiomyopathy in Egypt might have a particular genetic background, especially with the high burden of consanguinity. Including the genetic testing in the routine diagnostic service is important for a better understanding of the pathophysiology of the disease, proper patient management, and at-risk detection. Genome-wide tests (whole exome/genome sequencing) might be better than the targeted sequencing approach to test primary hypertrophic cardiomyopathy patients in addition to its ability for the identification of novel genetic causes.
Collapse
|
184
|
Gangnus T, Burckhardt BB. Low-volume LC-MS/MS method for the pharmacokinetic investigation of carvedilol, enalapril and their metabolites in whole blood and plasma: Application to a paediatric clinical trial. Drug Test Anal 2020; 13:694-708. [PMID: 33126289 DOI: 10.1002/dta.2949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Evidence-based pharmacotherapy with carvedilol and enalapril in children suffering from heart failure is insufficient owing to limited pharmacokinetic data. Although a few data sets regarding enalapril, its metabolite enalaprilat and carvedilol in children have been published, pharmacokinetic data on carvedilol metabolites are missing. However, for both drug substances, their active metabolites contribute substantially to drug efficacy. As data can hardly be derived from adults owing to the unknown impacts of enzymatic maturation and ontogeny during childhood, customised assays are important to facilitate paediatric evidence-based pharmacotherapy. Considering ethical paediatric constraints, a low-volume liquid chromatography coupled to mass spectrometry (LC-MS/MS) assay was developed using whole blood or plasma for the quantification of enalapril, enalaprilat, carvedilol, O-desmethyl carvedilol, 4- and 5-hydroxyphenyl carvedilol as well as 3- and 8-hydroxy carvedilol. To facilitate broader applications in adults, the elderly and children, a wide calibration range-between 0.024/0.049 and 50.000 ng/ml-was achieved with good linearity (r ≥ 0.995 for all analytes). In compliance with international bioanalytical guidelines, accuracy, precision, sensitivity and internal standard normalised matrix effects were further successfully validated with the exception of those for 3-hydroxy carvedilol, which was therefore assessed semi-quantitatively. Distinct haematocrits did not impact matrix effects or recoveries when analysing whole blood. Blood-to-plasma ratios were determined for all analytes to form the basis for pharmacokinetic modelling. Finally, incurred sample reanalysis of paediatric samples confirmed the reproducibility of the developed low-volume LC-MS/MS method during study sample analysis. The assay facilitates the reliable generation of important data and contributes towards a safe drug therapy in children.
Collapse
Affiliation(s)
- Tanja Gangnus
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Düesseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Düesseldorf, Germany
| | -
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Düesseldorf, Germany
| |
Collapse
|
185
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
186
|
Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol 2020; 150:101-108. [PMID: 33049255 DOI: 10.1016/j.yjmcc.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.
Collapse
Affiliation(s)
- Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Kiel, Lübeck, Germany.
| |
Collapse
|
187
|
Schreiber N, Baron Toaldo M, Romero-Palomo F, Sydler T, Glaus T. Endocardial fibroelastosis in a dog with congestive heart failure. J Vet Cardiol 2020; 32:33-39. [PMID: 33091799 DOI: 10.1016/j.jvc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
In a 6-month-old, intact female, Japanese spitz presenting with severe dyspnea, lung ultrasonography revealed confluent B lines associated with severe echocardiographic left sided volume overload and systolic dysfunction. A congenital shunt or valvular dysplasia was not demonstrable. On electrocardiogram, there was a constant sinus rhythm, respectively sinus tachycardia. Cardiac troponin I was normal. Within 2 days of admission, the dog died of heart failure. On macroscopic postmortem examination, the left ventricle and atrium were markedly dilated, and the left ventricular endocardium had a mild diffuse whitish appearance. Histopathology revealed moderate to severe thickening of the left ventricular endocardium, composed mostly of abundant elastic fibers and fewer collagen fibers, diagnostic for endocardial fibroelastosis. In addition, there were mild degenerative changes of the atrioventricular valves. Endocardial fibroelastosis is a rare congenital disease and should be considered in a young dog if more common causes of echocardiographic dilated cardiomyopathy phenotype are ruled out.
Collapse
Affiliation(s)
- N Schreiber
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - M Baron Toaldo
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - F Romero-Palomo
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057, Zurich, Switzerland
| | - T Sydler
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057, Zurich, Switzerland
| | - T Glaus
- Division of Cardiology, Clinic for Small Animal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
188
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to provide an overview of contemporary knowledge specific to the causes, management, and outcome of heart failure in children. RECENT FINDINGS While recently there have been subtle improvements in heart failure outcomes in children, these improvements lag significantly behind that of adults. There is a growing body of literature suggesting that pediatric heart failure is a unique disease process with age- and disease-specific myocardial adaptations. In addition, the heterogenous etiologies of heart failure in children contribute to differential response to therapies and challenge the ability to obtain meaningful results from prospective clinical trials. Consideration of novel clinical trial designs with achievable but clinically relevant endpoints and focused study of the mechanisms underlying pediatric heart failure secondary to cardiomyopathies and structural heart disease are essential if we hope to advance care and identify targeted and effective therapies.
Collapse
Affiliation(s)
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA
| | - Roni M Jacobsen
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
189
|
Bendahmash A, Almanie S, Alwadai A. Intracardiac thrombus formation and thromboembolic events in children with cardiomyopathies: A single-center case series. Clin Case Rep 2020; 8:1693-1697. [PMID: 32983479 PMCID: PMC7495816 DOI: 10.1002/ccr3.2972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 11/12/2022] Open
Abstract
Intracardiac thrombosis and distant thromboembolic events are rare complications of patients diagnosed with any type of cardiomyopathies. The low prevalence of this entity makes it challenging and unfortunate for the patients and their families. This review aims to add to the current limited available data describing similar clinical entities.
Collapse
Affiliation(s)
- Abdulrahman Bendahmash
- Department of pediatric cardiology, Heart CenterKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Saeed Almanie
- Department of pediatric cardiology, Heart CenterKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Abdullah Alwadai
- Department of pediatric cardiology, Heart CenterKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| |
Collapse
|
190
|
Braun JL, Hamstra SI, Messner HN, Fajardo VA. SERCA2a tyrosine nitration coincides with impairments in maximal SERCA activity in left ventricles from tafazzin-deficient mice. Physiol Rep 2020; 7:e14215. [PMID: 31444868 PMCID: PMC6708055 DOI: 10.14814/phy2.14215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) is imperative for normal cardiac function regulating both muscle relaxation and contractility. SERCA2a is the predominant isoform in cardiac muscles and is inhibited by phospholamban (PLN). Under conditions of oxidative stress, SERCA2a may also be impaired by tyrosine nitration. Tafazzin (Taz) is a mitochondrial‐specific transacylase that regulates mature cardiolipin (CL) formation, and its absence leads to mitochondrial dysfunction and excessive production of reactive oxygen/nitrogen species (ROS/RNS). In the present study, we examined SERCA function, SERCA2a tyrosine nitration, and PLN expression/phosphorylation in left ventricles (LV) obtained from young (3‐5 months) and old (10‐12 months) wild‐type (WT) and Taz knockdown (TazKD) male mice. These mice are a mouse model for Barth syndrome, which is characterized by mitochondrial dysfunction, excessive ROS/RNS production, and dilated cardiomyopathy (DCM). Here, we show that maximal SERCA activity was impaired in both young and old TazKD LV, a result that correlated with elevated SERCA2a tyrosine nitration. In addition PLN protein was decreased, and its phosphorylation was increased in TazKD LV compared with control, which suggests that PLN may not contribute to the impairments in SERCA function. These changes in expression and phosphorylation of PLN may be an adaptive response aimed to improve SERCA function in TazKD mice. Nonetheless, we demonstrate for the first time that SERCA function is impaired in LVs obtained from young and old TazKD mice likely due to elevated ROS/RNS production. Future studies should determine whether improving SERCA function can improve cardiac contractility and pathology in TazKD mice.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
191
|
Popa-Fotea NM, Cojocaru C, Scafa-Udriste A, Micheu MM, Dorobantu M. The Multifaced Perspectives of Genetic Testing in Pediatric Cardiomyopathies and Channelopathies. J Clin Med 2020; 9:2111. [PMID: 32635562 PMCID: PMC7408669 DOI: 10.3390/jcm9072111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Pediatric inherited cardiomyopathies (CMPs) and channelopathies (CNPs) remain important causes of death in this population, therefore, there is a need for prompt diagnosis and tailored treatment. Conventional evaluation fails to establish the diagnosis of pediatric CMPs and CNPs in a significant proportion, prompting further, more complex testing to make a diagnosis that could influence the implementation of lifesaving strategies. Genetic testing in CMPs and CNPs may help unveil the underlying cause, but needs to be carried out with caution given the lack of uniform recommendations in guidelines about the precise time to start the genetic evaluation or the type of targeted testing or whole-genome sequencing. A very diverse etiology and the scarce number of randomized studies of pediatric CMPs and CNPs make genetic testing of these maladies far more particular than their adult counterpart. The genetic diagnosis is even more puzzling if the psychological impact point of view is taken into account. This review aims to put together different perspectives, state-of-the art recommendations-synthetizing the major indications from European and American guidelines-and psychosocial outlooks to construct a comprehensive genetic assessment of pediatric CMPs and CNPs.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Cosmin Cojocaru
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania; (N.-M.P.-F.); (C.C.); (A.S.-U.); (M.D.)
- Department 4—Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania
| |
Collapse
|
192
|
Abstract
AIMS We aim to assess the diagnostic role of QRS fragmentation in children with suspected acute myocarditis. BACKGROUND Diagnosis of myocarditis in the paediatric population is challenging. Clinical suspicion, electrocardiogram, and laboratory tests are the main diagnostic features at presentation. However, electrocardiogram in patients with myocarditis is usually considered aspecific. We have previously described QRS fragmentation in adult patients with acute myocarditis. METHODS Patients aged less than 18 years, admitted between 2003 and 2019, and discharged with a diagnosis of acute myocarditis were included. Standard electrocardiogram, laboratory, and echocardiographic findings at admission and follow-up were reviewed. QRS fragmentation was defined by the presence of multiphasic R' spikes. Cardiac magnetic resonance and biopsy were performed in selected patients. RESULTS Twenty-one patients were analysed, 16 males (76%), median age 9.5 (2.5-16) years. At presentation, 12 patients (57%) displayed QRS fragmentation. Median ejection fraction was 40% (27-60). Nine patients (43%) underwent cardiac magnetic resonance and displayed late gadolinium enhancement. One patient underwent biopsy that showed borderline findings. Electrocardiogram leads showing QRS fragmentation correlated with distribution of late gadolinium enhancement. Median follow-up was 600 (190-2343) days. All patients were alive at last follow-up. Six patients (33%) patients displayed persistence of QRS fragmentation. Median ejection fraction was 60% (60-65%). In three patients (14%), ejection fraction remained depressed, two of which showed persistence of QRS fragmentation. CONCLUSION In this cohort of children with suspected myocarditis, QRS fragmentation was confirmed as a new additional diagnostic finding to look for at admission and during follow-up.
Collapse
|
193
|
Zhang X, Wang J, Cao Y, Zheng L, Li P, Duan X, Wang F. Diagnosis of double‐chambered left ventricle using echocardiography. Echocardiography 2020; 37:1095-1100. [PMID: 32511806 DOI: 10.1111/echo.14699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xin Zhang
- Heart Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology School of Basic Medical Sciences Capital Medical University Beijng China
| | - Yongli Cao
- Imaging Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| | - Lin Zheng
- Heart Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| | - Pei Li
- Heart Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| | - Xiaomin Duan
- Imaging Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| | - Fangyun Wang
- Heart Center Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijng China
| |
Collapse
|
194
|
Quiat D, Witkowski L, Zouk H, Daly KP, Roberts AE. Retrospective Analysis of Clinical Genetic Testing in Pediatric Primary Dilated Cardiomyopathy: Testing Outcomes and the Effects of Variant Reclassification. J Am Heart Assoc 2020; 9:e016195. [PMID: 32458740 PMCID: PMC7428992 DOI: 10.1161/jaha.120.016195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Background Genetic testing in pediatric primary dilated cardiomyopathy (DCM) patients has identified numerous disease-causing variants, but few studies have evaluated genetic testing outcomes in this population in the context of patient and familial clinical data or assessed the clinical implications of temporal changes in genetic testing results. Methods and Results We performed a retrospective analysis of all patients with primary DCM who presented to our institution between 2008 and 2018. Variants identified by genetic testing were reevaluated for pathogenicity on the basis of current guidelines for variant classification. A total of 73 patients with primary DCM presented to our institution and 63 (86%) were probands that underwent cardiomyopathy-specific gene testing. A disease-causing variant was identified in 19 of 63 (30%) of cases, with at least 9/19 (47%) variants occurring de novo. Positive family history was not associated with identification of a causal variant. Reclassification of variants resulted in the downgrading of a large proportion of variants of uncertain significance and did not identify any new disease-causing variants. Conclusions Clinical genetic testing identifies a causal variant in one third of pediatric patients with primary DCM. Variant reevaluation significantly decreased the number of variants of uncertain significance, but a large burden of variants of uncertain significance remain. These results highlight the need for periodic reanalysis of genetic testing results, additional investigation of genotype-phenotype correlations in DCM through large, multicenter genetic studies, and development of improved tools for functional characterization of variants of uncertain significance.
Collapse
Affiliation(s)
- Daniel Quiat
- Department of CardiologyBoston Children’s HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Leora Witkowski
- Laboratory for Molecular MedicinePartner’s HealthcareCambridgeMA
- Harvard Medical SchoolBostonMA
| | - Hana Zouk
- Laboratory for Molecular MedicinePartner’s HealthcareCambridgeMA
- Harvard Medical SchoolBostonMA
| | | | - Amy E. Roberts
- Department of CardiologyBoston Children’s HospitalBostonMA
- Department of PediatricsDivision of GeneticsBoston Children’s HospitalBostonMA
- Harvard Medical SchoolBostonMA
| |
Collapse
|
195
|
Barach P, Lipshultz SE. Rethinking COVID-19 in children: Lessons learned from pediatric viral and inflammatory cardiovascular diseases. PROGRESS IN PEDIATRIC CARDIOLOGY 2020; 57:101233. [PMID: 32837143 PMCID: PMC7243773 DOI: 10.1016/j.ppedcard.2020.101233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul Barach
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States of America
- Jefferson College of Population Health, Philadelphia, PA, United States of America
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
- Oishei Children's Hospital, Buffalo, NY, United States of America
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America
| |
Collapse
|
196
|
Chen MH. Childhood Cancer Survivors: Screening Little Hearts for Big Problems. JACC CardioOncol 2020; 2:38-40. [PMID: 34396207 PMCID: PMC8352172 DOI: 10.1016/j.jaccao.2020.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ming Hui Chen
- Departments of Cardiology and Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
197
|
Di Candia A, Castaldi B, Bordin G, Cerutti A, Reffo E, Biffanti R, Di Salvo G, Vida VL, Padalino MA. Pulmonary Artery Banding for Ventricular Rehabilitation in Infants With Dilated Cardiomyopathy: Early Results in a Single-Center Experience. Front Pediatr 2020; 8:347. [PMID: 32766180 PMCID: PMC7381108 DOI: 10.3389/fped.2020.00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Pulmonary artery banding (PAB) is reported as an innovative strategy for children with end-stage heart failure (ESHF) to bridge to transplantation or recovery. We report our early experience with PAB to evaluate outcomes, indications, and limitations. Materials and Methods: This is a single-center prospective clinical study, including infants and children admitted for ESHF owing to dilated cardiomyopathy (DCM) with preserved right ventricular function after failure of maximal conventional therapy. All patients underwent perioperative anticongestive medical therapy with ACE inhibitor, beta blocker, and spironolactone. Post-operatively, all patients underwent echocardiographic follow-up to assess myocardial recovery. Results: We selected five patients (four males) who underwent PAB at a median age of 8.6 months (range 3.9-42.2 months), with preoperative ejection fraction (EF) <30%. Sternal closure was delayed in all. One patient did not improve after PAB and underwent Berlin Heart implantation after 33 days, followed by heart transplant after 13 months. Four patients were discharged home on full anticongestive therapy. However, 2 months after discharge, one patient experienced severe acute heart failure secondary to pneumonia, which required mechanical circulatory support, and the patient underwent a successful heart transplant after 21 days. The remaining three patients are doing well at home, 22.4, 16.9, and 15.4 months after PAB. They all underwent elective percutaneous de-banding, 18.5, 4.8, and 10.7 months after PAB. EF increased from 17.7 ± 8.5% to 63.3 ± 7.6% (p = 0.03), and they have all been delisted. Conclusion: Use of PAB may be an effective alternative to mechanical support in selected infants for bridging to transplant or recovery. Better results seem to occur in patients aged <12 months. Further experience and research are required to identify responders and non-responders to this approach.
Collapse
Affiliation(s)
- Angela Di Candia
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Biagio Castaldi
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Giulia Bordin
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Alessia Cerutti
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Elena Reffo
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Roberta Biffanti
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Giovanni Di Salvo
- Pediatric Cardiology Unit, Department of Woman and Child's Health, University of Padua, Padua, Italy
| | - Vladimiro L Vida
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Massimo A Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
198
|
Johnston JR, Landim-Vieira M, Marques MA, de Oliveira GAP, Gonzalez-Martinez D, Moraes AH, He H, Iqbal A, Wilnai Y, Birk E, Zucker N, Silva JL, Chase PB, Pinto JR. The intrinsically disordered C terminus of troponin T binds to troponin C to modulate myocardial force generation. J Biol Chem 2019; 294:20054-20069. [PMID: 31748410 PMCID: PMC6937556 DOI: 10.1074/jbc.ra119.011177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Mayra A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yael Wilnai
- Department of Pediatrics, Dana-Dwek ChildrenγÇÖs Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 6423906
| | - Einat Birk
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Nili Zucker
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
199
|
Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, Amdani S, Lipshultz ER, Lipshultz SE. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2019; 5:18. [PMID: 32154024 PMCID: PMC7048046 DOI: 10.1186/s40959-019-0054-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Cancer diagnostics and therapies have improved steadily over the last few decades, markedly increasing life expectancy for patients at all ages. However, conventional and newer anti-neoplastic therapies can cause short- and long-term cardiotoxicity. The clinical implications of this cardiotoxicity become more important with the increasing use of cardiotoxic drugs. The implications are especially serious among patients predisposed to adverse cardiac effects, such as youth, the elderly, those with cardiovascular comorbidities, and those receiving additional chemotherapies or thoracic radiation. However, the optimal strategy for preventing and managing chemotherapy-induced cardiotoxicity remains unknown. The routine use of neurohormonal antagonists for cardioprotection is not currently justified, given the marginal benefits and associated adverse events, particularly with long-term use. The only United States Food and Drug Administration and European Medicines Agency approved treatment for preventing anthracycline-related cardiomyopathy is dexrazoxane. We advocate administering dexrazoxane during cancer treatment to limit the cardiotoxic effects of anthracycline chemotherapy.
Collapse
Affiliation(s)
- Neha Bansal
- Division of Pediatric Cardiology, Children’s Hospital at Montefiore, Bronx, NY USA
| | - M. Jacob Adams
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA USA
- Cardio-Oncology Program, Dana-Farber Cancer Institute / Brigham and Women’s Hospital, Boston, MA USA
| | - Steven D. Colan
- Department of Pediatric Cardiology, Boston Children’s Hospital, Boston, MA USA
| | - Sanjeev Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI USA
| | | | - Shahnawaz Amdani
- Division of Pediatric Cardiology, Cleveland Clinic Children’s Hospital, Cleveland, OH USA
| | - Emma R. Lipshultz
- Dana-Farber Cancer Institute, Boston, MA USA
- University of Miami Miller School of Medicine, Miami, FL USA
| | - Steven E. Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Oishei Children’s Hospital, 1001 Main Street, Buffalo, NY 14203 USA
- Oishei Children’s Hospital, Buffalo, NY USA
- Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| |
Collapse
|
200
|
Nikolaidou C, Karamitsos T. The shape of our hearts: The impact of early stages in life on cardiac development. Eur J Prev Cardiol 2019; 27:60-62. [PMID: 31408369 DOI: 10.1177/2047487319869579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Theodoros Karamitsos
- 1st Department of Cardiology, AHEPA Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|