151
|
Oyarce MP, Iturriaga R. Contribution of Oxidative Stress and Inflammation to the Neurogenic Hypertension Induced by Intermittent Hypoxia. Front Physiol 2018; 9:893. [PMID: 30050461 PMCID: PMC6050421 DOI: 10.3389/fphys.2018.00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), the hallmark of obstructive sleep apnea, is the main risk factor to develop systemic hypertension. Oxidative stress, inflammation, and sympathetic overflow have been proposed as possible mechanisms underlying the CIH-induced hypertension. CIH potentiates the carotid body (CB) chemosensory discharge leading to sympathetic overflow, autonomic dysfunction, and hypertension. Oxidative stress and pro-inflammatory molecules are involved in neurogenic models of hypertension, acting on brainstem and hypothalamic nuclei related to the cardiorespiratory control, such as the nucleus of the solitary tract, which is the primary site for the afferent inputs from the CB. Oxidative stress and pro-inflammatory molecules contribute to the activation of the CB chemoreflex pathway in CIH-induced hypertension. In this brief review, we will discuss new evidence for a critical role of oxidative stress and neuro-inflammation in development of the CIH-induced hypertension through activation of the CB chemoreflex pathway.
Collapse
Affiliation(s)
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
152
|
Li T, Chen Y, Gua C, Wu B. Elevated Oxidative Stress and Inflammation in Hypothalamic Paraventricular Nucleus Are Associated With Sympathetic Excitation and Hypertension in Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2018; 9:840. [PMID: 30026701 PMCID: PMC6041405 DOI: 10.3389/fphys.2018.00840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent collapse of the upper airway during sleep leading to chronic intermittent hypoxia (CIH), is an independent risk factor for hypertension. Sympathetic excitation has been shown to play a major role in the pathogenesis of OSA-associated hypertension. Accumulating evidence indicates that oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center, mediate sympathetic excitation in many cardiovascular diseases. Here we tested the hypothesis that CIH elevates oxidative stress and inflammation in the PVN, which might be associated with sympathetic excitation and increased blood pressure in a rat model of CIH that mimics the oxygen profile in patients with OSA. Sprague-Dawley rats were pretreated with intracerebroventricular (ICV) infusion of vehicle or superoxide scavenger tempol, and then exposed to control or CIH for 7 days. Compared with control+vehicle rats, CIH+vehicle rats exhibited increased blood pressure, and increased sympathetic drive as indicated by the blood pressure response to ganglionic blockade and plasma norepinephrine levels. Pretreatment with ICV tempol prevented CIH-induced increases in blood pressure and sympathetic drive. Molecular studies revealed that expression of NAD(P)H oxidase subunits, production of reactive oxygen species, expression of proinflammatory cytokines and neuronal excitation in the PVN were elevated in CIH+vehicle rats, compared with control+vehicle rats, but were normalized or reduced in CIH rat pretreated with ICV tempol. Notably, CIH+vehicle rats also had increased systemic oxidative stress and inflammation, which were not altered by ICV tempol. The results suggest that CIH induces elevated oxidative stress and inflammation in the PVN, which lead to PVN neuronal excitation and are associated with sympathetic excitation and increased blood pressure. Central oxidative stress and inflammation may be novel targets for the prevention and treatment of hypertension in patients with OSA.
Collapse
Affiliation(s)
- Tiejun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanli Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Chaojun Gua
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baogang Wu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
153
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
154
|
Balasubbramanian D, Lopez Gelston CA, Rutkowski JM, Mitchell BM. Immune cell trafficking, lymphatics and hypertension. Br J Pharmacol 2018; 176:1978-1988. [PMID: 29797446 DOI: 10.1111/bph.14370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Activated immune cell infiltration into organs contributes to the development and maintenance of hypertension. Studies targeting specific immune cell populations or reducing their inflammatory signalling have demonstrated a reduction in BP. Lymphatic vessels play a key role in immune cell trafficking and in resolving inflammation, but little is known about their role in hypertension. Studies from our laboratory and others suggest that inflammation-associated or induction of lymphangiogenesis is organ protective and anti-hypertensive. This review provides the basis for hypertension as a disease of chronic inflammation in various tissues and highlights how renal lymphangiogenesis is a novel regulator of kidney health and BP. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | | | - Joseph M Rutkowski
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, College Station, TX, USA
| |
Collapse
|
155
|
Camargo SB, Simões LO, Medeiros CFDA, de Melo Jesus A, Fregoneze JB, Evangelista A, Villarreal CF, Araújo AADS, Quintans-Júnior LJ, Silva DF. Antihypertensive potential of linalool and linalool complexed with β-cyclodextrin: Effects of subchronic treatment on blood pressure and vascular reactivity. Biochem Pharmacol 2018; 151:38-46. [DOI: 10.1016/j.bcp.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|
156
|
Querobino SM, Ribeiro CAJ, Alberto-Silva C. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H 2O 2-induced oxidative stress in SH-SY5Y neuroblastoma cells. Peptides 2018; 103:90-97. [PMID: 29605732 DOI: 10.1016/j.peptides.2018.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, <ENWPHPQIPP; BPP-12b, <EWGRPPGPPIPP) in the SH-SY5Y cell line against H2O2-induced oxidative stress. The neuroprotective effects against H2O2-induced were analyzed by reactive oxygen species (ROS - DCFH) production; lipid peroxidation (TBARS); intracellular GSH; AsS, iNOS, and NF-kB expressions; nitrite levels (Griess); mitochondrial membrane potential (TMRM); and antioxidant activity (DPPH). Analysis of variance followed by Tukey's post hoc test were calculated for statistical comparisons. Pre-treatment with both BPPs significantly reduced cell death induced by H2O2, but BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H2O2. The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H2O2. BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Samyr Machado Querobino
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil.
| |
Collapse
|
157
|
Sharma RK, Oliveira AC, Kim S, Rigatto K, Zubcevic J, Rathinasabapathy A, Kumar A, Lebowitz JJ, Khoshbouei H, Lobaton G, Aquino V, Richards EM, Katovich MJ, Shenoy V, Raizada MK. Involvement of Neuroinflammation in the Pathogenesis of Monocrotaline-Induced Pulmonary Hypertension. Hypertension 2018; 71:1156-1163. [PMID: 29712738 DOI: 10.1161/hypertensionaha.118.10934] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/03/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
Pulmonary hypertension (PH) is a devastating disease and its successful treatment remains to be accomplished despite recent advances in pharmacotherapy. It has been proposed that PH be considered as a systemic disease, rather than primarily a disease of the pulmonary vasculature. Consequently, an investigation of the intricate interplay between multiple organs such as brain, vasculature, and lung in PH could lead to the identification of new targets for its therapy. However, little is known about this interplay. This study was undertaken to examine the concept that altered autonomic-pulmonary communication is important in PH pathophysiology. Therefore, we hypothesize that activation of microglial cells in the paraventricular nucleus of hypothalamus and neuroinflammation is associated with increased sympathetic drive and pulmonary pathophysiology contributing to PH. We utilized the monocrotaline rat model for PH and intracerebroventricular administration of minocycline for inhibition of microglial cells activation to investigate this hypothesis. Hemodynamic, echocardiographic, histological, immunohistochemical, and confocal microscopic techniques assessed cardiac and pulmonary function and microglial cells. Monocrotaline treatment caused cardiac and pulmonary pathophysiology associated with PH. There were also increased activated microglial cells and mRNA for proinflammatory cytokines (IL [interleukin]-1β, IL-6, and TNF [tumor necrosis factor]-α) in the paraventricular nucleus. Furthermore, increased sympathetic drive and plasma norepinephrine were observed in rats with PH. Intracerebroventricular infusion of minocycline inhibited all these parameters and significantly attenuated PH. These observations implicate a dysfunctional autonomic-lung communication in the development and progression of PH providing new therapeutic targets, such as neuroinflammation, for PH therapy.
Collapse
Affiliation(s)
- Ravindra K Sharma
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Aline C Oliveira
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Seungbum Kim
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Katya Rigatto
- College of Medicine, University of Florida, Gainesville; Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Brazil (K.R.)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville (J.Z.)
| | - Anandharajan Rathinasabapathy
- Department of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN (A.R.)
| | - Ashok Kumar
- Department of Medicine, Brown University and VA Medical Center, Providence, RI (A.K.)
| | | | | | - Gilberto Lobaton
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Victor Aquino
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Elaine M Richards
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville (M.J.K.)
| | - Vinayak Shenoy
- and Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis (V.S.).
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (R.K.S., A.C.O., S.K., G.L., V.A., E.M.R., M.K.R.)
| |
Collapse
|
158
|
Yu Y, Wei SG, Weiss RM, Felder RB. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience 2018; 381:46-58. [PMID: 29684507 DOI: 10.1016/j.neuroscience.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Inflammation in the hypothalamic paraventricular nucleus (PVN) contributes to neurohumoral excitation and its adverse consequences in systolic heart failure (HF). The stimuli that trigger inflammation in the PVN in HF are not well understood. Angiotensin II (AngII) has pro-inflammatory effects, and circulating levels of AngII increase in HF. The subfornical organ (SFO), a circumventricular structure that lacks an effective blood-brain barrier and senses circulating AngII, contains PVN-projecting neurons. We hypothesized that activation of AngII type 1a receptors (AT1aR) in the SFO induces neuroinflammation downstream in the PVN. Male rats received SFO microinjections of an adeno-associated virus carrying shRNA for AT1aR, a scrambled shRNA, or vehicle. One week later, some rats were euthanized to confirm the transfection potential and knockdown efficiency of the shRNA. Others underwent coronary artery ligation to induce HF or a sham coronary artery ligation (Sham). Four weeks later, HF rats that received the scrambled shRNA had increased mRNA in SFO and PVN for AT1aR, inflammatory mediators and indicators of neuronal and glial activation, increased plasma levels of AngII, tumor necrosis factor-α, norepinephrine and arginine vasopressin, and impaired cardiac function, compared with Sham rats that received scrambled shRNA. The central abnormalities were ameliorated in HF rats that received AT1aR shRNA, as were plasma norepinephrine and vasopressin. Sham rats that received AT1aR shRNA had reduced SFO AT1aR mRNA but no other changes compared with Sham rats that received scrambled shRNA. The results suggest that activation of AT1aR in the SFO upregulates the neuroinflammation in the PVN that contributes to neurohumoral excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Research Service, Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA, USA.
| |
Collapse
|
159
|
Assessing the role of hypothalamic microglia and blood vessel disruption in the development of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats. Pflugers Arch 2018; 470:883-895. [PMID: 29500668 DOI: 10.1007/s00424-018-2128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Elevated plasma levels of the hormone vasopressin have been implicated in the pathogenesis of some forms of hypertension. Hypothalamic paraventricular and supraoptic nuclei neurons regulate vasopressin secretion into the circulation. Vasopressin neuron activity is elevated by day 7 in the development of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats. While microglial activation and blood-brain barrier (BBB) breakdown contribute to the maintenance of well-established hypertension, it is not known whether these mechanisms contribute to the early onset of hypertension. Hence, we aimed to determine whether microglia are activated and/or the BBB is compromised during the onset of hypertension. Here, we used the Cyp1a1-Ren2 rat model of hypertension and showed that ionised calcium-binding adapter molecule 1 staining of microglia does not change in the paraventricular and supraoptic nuclei on day 7 (early onset) and day 28 (well established) of hypertension, compared to the normotensive control. Endothelial transferrin receptor staining, which stains endothelia and reflects blood vessel density, was also unchanged at day 7, but was reduced at day 28, suggesting that breakdown of the BBB begins between day 7 and day 28 in the development of hypertension. Hence, this study does not support the idea that microglial activation or BBB disruption contribute to the onset of angiotensin II-dependent hypertension in Cyp1a1-Ren2 rats, although BBB disruption might contribute to the progression from the early onset to well-established hypertension.
Collapse
|
160
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
161
|
Iulita MF, Vallerand D, Beauvillier M, Haupert N, A Ulysse C, Gagné A, Vernoux N, Duchemin S, Boily M, Tremblay MÈ, Girouard H. Differential effect of angiotensin II and blood pressure on hippocampal inflammation in mice. J Neuroinflammation 2018; 15:62. [PMID: 29490666 PMCID: PMC6389185 DOI: 10.1186/s12974-018-1090-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background Angiotensin II (Ang II), a peptide hormone involved in the development of hypertension, causes systemic and cerebral inflammation, affecting brain regions important for blood pressure control. The cause-and-effect relationship between hypertension and inflammation is two-way, but the role of blood pressure in the induction of cerebral inflammation is less clear. The vulnerability of specific brain regions, particularly those important for memory, is also of interest. Methods We used molecular biology approaches, immunohistochemistry, and electron microscopy to examine the interdependence between the hypertensive and pro-inflammatory effects of Ang II. We examined the effect of blood pressure by administering a subpressive (200 ng/kg/min) or a pressive Ang II dose (1000 or 1900 ng/kg/min) with and without hydralazine (150 mg/L) for 1 week and used phenylephrine to increase blood pressure independently of the renin-angiotensin system. Results Ang II increased ionized calcium-binding adaptor molecule 1 (Iba-1) levels (marker of microgliosis) in the whole brain and in the hippocampus in a dose-dependent manner. Pressive Ang II induced specific changes in microglial morphology, indicating differences in functional phenotype. An increase in hippocampal glial fibrillary acidic protein (GFAP) was seen in mice receiving pressive Ang II, while no induction of cerebral gliosis was observed after 7 days of subpressive Ang II infusion. Although phenylephrine led to increased astrogliosis, it did not affect Iba-1 expression. Pressive Ang II stimulated TNF-α production in the hippocampus, and daily treatment with hydralazine prevented this increase. Hydralazine also reduced GFAP and Iba-1 levels. With longer perfusion (14 days), subpressive Ang II led to some but not all the inflammatory changes detected with the pressive doses, mainly an increase in CD68 and Iba-1 but not of GFAP or TNF-α. Conclusions Blood pressure and Ang II differentially contribute to hippocampal inflammation in mice. Control of blood pressure and Ang II levels should prevent or reduce brain inflammation and therefore brain dysfunctions associated with hypertension. Electronic supplementary material The online version of this article (10.1186/s12974-018-1090-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Neurosciences, Université de Montréal, 2960 Chemin de la Tour, Montréal, Québec, H3T 1J4, Canada.,Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, 2960 Chemin de la Tour, Montréal, Québec, H3T 1J4, Canada
| | - Diane Vallerand
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Mélissa Beauvillier
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Nathalie Haupert
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Corinne A Ulysse
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Audrey Gagné
- Axe Neurosciences, CRCHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, CRCHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| | - Sonia Duchemin
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Michaël Boily
- Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada.,Department of Molecular Medicine, Université Laval, 1050, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Hélène Girouard
- Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, 2960 Chemin de la Tour, Montréal, Québec, H3T 1J4, Canada. .,Department of Pharmacology and Physiology, Université de Montréal, Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, 545 Queen Mary Rd, Montréal, Québec, H3W 1W6, Canada.
| |
Collapse
|
162
|
Onishi M, Yamanaka K, Miyamoto Y, Waki H, Gouraud S. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats. Physiol Genomics 2018; 50:272-286. [PMID: 29373075 DOI: 10.1152/physiolgenomics.00096.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.
Collapse
Affiliation(s)
- Makiko Onishi
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Sabine Gouraud
- Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
163
|
Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215:21-33. [PMID: 29247045 PMCID: PMC5748862 DOI: 10.1084/jem.20171773] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022] Open
Abstract
Although systemic hypertension affects a large proportion of the population, its etiology remains poorly defined. Emerging evidence supports the concept that immune cells become activated and enter target organs, including the vasculature and the kidney, in this disease. Mediators released by these cells, including reactive oxygen species, metalloproteinases, cytokines, and antibodies promote dysfunction of the target organs and cause damage. In vessels, these factors enhance constriction, remodeling, and rarefaction. In the kidney, these mediators increase expression and activation of sodium transporters, and cause interstitial fibrosis and glomerular injury. Factors common to hypertension, including oxidative stress, increased interstitial sodium, cytokine production, and inflammasome activation promote immune activation in hypertension. Recent data suggest that isolevuglandin-modified self-proteins in antigen-presenting cells are immunogenic, promoting cytokine production by the cells in which they are formed and T cell activation. Efforts to prevent and reverse immune activation may prove beneficial in preventing the long-term sequelae of hypertension and its related cardiovascular diseases.
Collapse
Affiliation(s)
- Allison E Norlander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Meena S Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
164
|
Abstract
PURPOSE OF REVIEW The major health issue of being overweight or obese relates to the development of hypertension, insulin resistance and diabetic complications. One of the major underlying factors influencing the elevated blood pressure in obesity is increased activity of the sympathetic nerves to particular organs such as the kidney. RECENT FINDINGS There is now convincing evidence from animal studies that major signals such as leptin and insulin have a sympathoexcitatory action in the hypothalamus to cause hypertension. Recent studies suggest that this may involve 'neural plasticity' within hypothalamic signalling driven by central actions of leptin mediated via activation of melanocortin receptor signalling and activation of brain neurotrophic factors. This review describes the evidence to support the contribution of the SNS to obesity related hypertension and the major metabolic and adipokine signals.
Collapse
|
165
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
166
|
Wei SG, Yu Y, Felder RB. Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2017; 314:R447-R458. [PMID: 29167166 DOI: 10.1152/ajpregu.00211.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported that microinjection of the proinflammatory cytokine interleukin-1β (IL-1β) into the subfornical organ (SFO) elicits a pressor response accompanied by increases in inflammation and renin-angiotensin system (RAS) activity in the SFO and hypothalamic paraventricular nucleus (PVN). The present study sought to determine whether blood-borne IL-1β induces similar neurochemical changes in the SFO and PVN and, if so, whether increased inflammation and RAS activity at the SFO level orchestrate the sympathoexcitatory response to circulating IL-1β. In urethane-anesthetized male Sprague-Dawley rats, intravenous injection of IL-1β (500 ng) increased blood pressure, heart rate, renal sympathetic nerve activity, and mRNA for angiotensin-converting enzyme, angiotensin II type 1a receptor, cyclooxygenase-2, tumor necrosis factor-α, and IL-1β, as well as the tumor necrosis factor-α p55 receptor and the IL-1 receptor, in the SFO and PVN. Pretreatment with SFO microinjections of the angiotensin II type 1a receptor blocker losartan (1 µg), the angiotensin-converting enzyme inhibitor captopril (1 µg), or the cyclooxygenase-2 inhibitor NS-398 (2 µg) attenuated expression of these excitatory mediators in the SFO and downstream in the PVN and the IL-1β-induced pressor responses. An SFO lesion minimized the IL-1β-induced expression of inflammatory and RAS components as well as c-Fos, an indicator of neuronal excitation, in the PVN. These studies demonstrate that circulating IL-1β, which increases in cardiovascular disorders such as hypertension and heart failure, acts on the SFO to increase inflammation and RAS activity in the SFO and PVN and that intervening in these neurochemical processes in the SFO can significantly reduce the sympathetic response.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa.,Veterans Affairs Medical Center , Iowa City, Iowa
| |
Collapse
|
167
|
Abstract
The link between inappropriate salt retention in the kidney and hypertension is well recognized. However, growing evidence suggests that the immune system can play surprising roles in sodium homeostasis, such that the study of inflammatory cells and their secreted effectors has provided important insights into salt sensitivity. As part of the innate immune system, myeloid cells have diverse roles in blood pressure regulation, ranging from prohypertensive actions in the kidney, vasculature, and brain, to effects in the skin that attenuate blood pressure elevation. In parallel, T lymphocyte subsets, as key constituents of the adaptive immune compartment, have variable effects on renal sodium handling and the hypertensive response, accruing from the functions of the cytokines that they produce. Conversely, salt can directly modulate the phenotypes of myeloid and T cells, illustrating bidirectional regulatory mechanisms through which sodium and the immune system coordinately impact blood pressure. This review details the complex interplay between myeloid cells, T cells, and salt in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- A Justin Rucker
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| |
Collapse
|
168
|
Lu P, Jiang SJ, Pan H, Xu AL, Wang GH, Ma CL, Shi Z. Short hairpin RNA interference targeting interleukin 1 receptor type I in the paraventricular nucleus attenuates hypertension in rats. Pflugers Arch 2017; 470:439-448. [PMID: 29143938 DOI: 10.1007/s00424-017-2081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Blood pressure is controlled by tonic sympathetic activities, excessive activation of which contributes to the pathogenesis and progression of hypertension. Interleukin (IL)-1β in the paraventricular nucleus (PVN) is involved in sympathetic overdrive and hypertension. Here, we investigated the therapeutic effects of IL-1 receptor type I (IL-1R1) gene silencing in the PVN on hypertension. Recombinant lentivirus vectors expressing a short hairpin RNA (shRNA) targeting IL-1R1 (Lv-shR-IL-1R1) or a control shRNA were microinjected into PVN of spontaneously hypertensive rats (SHRs) and normotensive WKY rats. The fluorescence of green fluorescent protein-labelled vectors appeared at 2 weeks after injection and persisted for at least 8 weeks. IL-1R1 protein expression in the PVN was reduced 4 weeks after Lv-shR-IL-1R1 injection in SHRs. IL-1R1 interference also reduced basal sympathetic activity, cardiac sympathetic afferent reflex in SHRs. Depressor effects were observed from week 2 to 10 after Lv-shR-IL-1R1 treatment in SHRs, with the most prominent effects seen at the end of week 4. Furthermore, Lv-shR-IL-1R1 treatment decreased the ratio of left ventricular weight to body weight and cross-sectional areas of myocardial cells in SHRs. Additionally, Lv-shR-IL-1R1 treatment prevented an increase in superoxide anion and pro-inflammatory cytokines (PICs, TNF-α and IL-1β) in the PVN of SHR, and upregulated anti-inflammatory cytokine (AIC, IL-10) expression. These results indicate that shRNA interference targeting IL-1R1 in the PVN decreases arterial blood pressure, attenuates excessive sympathetic activity and cardiac sympathetic afferent reflex, and improves myocardial remodelling in SHRs by restoring the balance between PICs and AICs to attenuate oxidative stress.
Collapse
Affiliation(s)
- Peng Lu
- Department of Education, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China.,Shandong Province Key Laboratory of Stroke, Yantai, 264003, China
| | - Shu-Jun Jiang
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Hong Pan
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Ai-Li Xu
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Gui-Hua Wang
- Experimental Teaching Management Center, Binzhou Medical University, Yantai, 264003, China
| | - Chun-Lei Ma
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China.,Shandong Province Key Laboratory of Stroke, Yantai, 264003, China
| | - Zhen Shi
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China.
| |
Collapse
|
169
|
Macey PM, Sarma MK, Prasad JP, Ogren JA, Aysola R, Harper RM, Thomas MA. Obstructive sleep apnea is associated with altered midbrain chemical concentrations. Neuroscience 2017; 363:76-86. [PMID: 28893651 PMCID: PMC5983363 DOI: 10.1016/j.neuroscience.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
Abstract
Obstructive sleep apnea (OSA) is accompanied by altered structure and function in cortical, limbic, brainstem, and cerebellar regions. The midbrain is relatively unexamined, but contains many integrative nuclei which mediate physiological functions that are disrupted in OSA. We therefore assessed the chemistry of the midbrain in OSA in this exploratory study. We used a recently developed accelerated 2D magnetic resonance spectroscopy (2D-MRS) technique, compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (4D-EP-JRESI), to measure metabolites in the midbrain of 14 OSA (mean age±SD:54.6±10.6years; AHI:35.0±19.4; SAO2 min:83±7%) and 26 healthy control (50.7±8.5years) subjects. High-resolution T1-weighted scans allowed voxel localization. MRS data were processed with custom MATLAB-based software, and metabolite ratios calculated with respect to the creatine peak using a prior knowledge fitting (ProFit) algorithm. The midbrain in OSA showed decreased N-acetylaspartate (NAA; OSA:1.24±0.43, Control:1.47±0.41; p=0.03; independent samples t-test), a marker of neuronal viability. Increased levels in OSA over control subjects appeared in glutamate (Glu; OSA:1.23±0.57, Control:0.98±0.33; p=0.03), ascorbate (Asc; OSA:0.56±0.28, Control:0.42±0.20; (50.7±8.5years; p=0.03), and myo-inositol (mI; OSA:0.96±0.48, Control:0.72±0.35; p=0.03). No differences between groups appeared in γ-aminobutyric acid (GABA) or taurine. The midbrain in OSA patients shows decreased NAA, indicating neuronal injury or dysfunction. Higher Glu levels may reflect excitotoxic processes and astrocyte activation, and higher mI is also consistent with glial activation. Higher Asc levels may result from oxidative stress induced by intermittent hypoxia in OSA. Additionally, Asc and Glu are involved with glutamatergic processes, which are likely upregulated in the midbrain nuclei of OSA patients. The altered metabolite levels help explain dysfunction and structural deficits in the midbrain of OSA patients.
Collapse
Key Words
- Asc, ascorbate
- Asp, aspartate
- Ch, choline
- GABA, gamma-aminobutyric acid
- GPC, glycerophosphorylcholine
- GSH, glutathione
- Gln, glutamine
- Glu, glutamate
- Gly, glycine
- NAA, N-acetylaspartate
- NAAG, N-acetylaspartate glutamate
- PCh, phosphocholine
- PE, phosphoethanolamine
- Scy, scyllo-inositol
- Tau, taurine
- Thr, threonine
- autonomic
- intermittent hypoxia
- mI, myo-inositol
- magnetic resonance spectroscopy
- periaqueductal gray
- respiration
- sleep-disordered breathing
Collapse
Affiliation(s)
- Paul M Macey
- School of Nursing, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Manoj K Sarma
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Janani P Prasad
- School of Nursing, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ravi Aysola
- Department of Medicine (Division of Pulmonary and Critical Care), David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ronald M Harper
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - M Albert Thomas
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
170
|
Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 2017; 113:1538-1550. [PMID: 29088374 DOI: 10.1093/cvr/cvx130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2025] Open
Abstract
Canonical innate immune signalling involves complex cascades: multiple germline-encoded pattern recognition receptors rapidly recognize pathogen-associated or damage-associated molecular patterns to induce the production of cytokines, which bind to their corresponding receptors to orchestrate subsequent host defense phases. Inflammation is a healthy response to pathogenic signals, which are typically rapid and specific, and they terminate once the threat has passed. However, excessive activation or suppression of innate immune or inflammatory responses can lead to considerable human suffering, such as cardiac remodelling. Interestingly, recent studies have revealed that innate immune molecules in the parenchymal cells of the heart influence cardiac homeostasis not only by directly regulating innate immune responses but also through reprogrammed signalling pathways, which are independent of conventional innate immune signalling. Elucidating 'innate immune signalling reprogramming' events will help us better understand the functions of innate immune molecules and, moreover, the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| | - Zan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| |
Collapse
|
171
|
Musialowska D, Zbroch E, Koc-Zorawska E, Musialowski P, Malyszko J. Endocan Concentration in Patients With Primary Hypertension. Angiology 2017; 69:483-489. [DOI: 10.1177/0003319717736158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation and endothelial dysfunction may play an important role in the multifactorial pathogenesis of hypertension. Endocan is also thought to play a role in cell adhesion and inflammatory disorders. The aim of the study was to compare endocan concentrations in patients with primary hypertension and healthy volunteers. There were 104 patients with hypertension (study group) and 21 healthy volunteers (control group). The correlation between endocan, catecholamines, and blood pressure control in patients with primary hypertension and the control group was analyzed. The median endocan concentration in the study group (2.03 ng/mL) was significantly higher than in the control group (1.09 ng/mL, P = .0001). Endocan concentration was correlated positively with renalase ( r = .2, P = .047) and norepinephrine ( r = .25, P = .02). Negative correlation was observed between endocan and body mass index ( r = −.25, P = .016) and leukocyte count ( r = −.36, P = .0004). The present study reports higher plasma endocan concentration in patients with treated, well-controlled primary hypertension compared with healthy volunteers. The higher endocan concentration in the study group may reflect endothelial dysfunction in this population.
Collapse
Affiliation(s)
- Dominika Musialowska
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Edyta Zbroch
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Koc-Zorawska
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Musialowski
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Malyszko
- Second Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
172
|
Sriramula S, Lazartigues E. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms. Hypertension 2017; 70:1122-1131. [PMID: 29038201 DOI: 10.1161/hypertensionaha.117.09744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/04/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023]
Abstract
Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.,Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC.
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.,Neurosciences Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
173
|
Leenen FHH, Blaustein MP, Hamlyn JM. Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect 2017; 6:R131-R145. [PMID: 28855243 PMCID: PMC5613704 DOI: 10.1530/ec-17-0161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research GroupUniversity of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Mordecai P Blaustein
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of MedicineUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John M Hamlyn
- Department of PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
174
|
Bhat SA, Goel R, Shukla S, Shukla R, Hanif K. Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Mol Neurobiol 2017; 55:5282-5298. [DOI: 10.1007/s12035-017-0754-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
|
175
|
MAPK activation patterns of AT1R and CB1R in SHR versus Wistar astrocytes: Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R. Cell Signal 2017; 40:81-90. [PMID: 28887229 DOI: 10.1016/j.cellsig.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin (Ang) II and cannabinoids regulate physiologically relevant astroglial functions via receptor-mediated activation of Mitogen-activated protein kinases (MAPKs). In this study, we investigated the consequences of astroglial Ang II type 1 receptor (AT1R) and Cannabinoid type 1 receptor (CB1R) activation, alone and in combination, on MAPK activation in the presence and absence of hypertensive states. In addition, we also investigated a novel unidirectional crosstalk mechanism between AT1R and CB1R, that involves PKC-mediated phosphorylation of CB1R. METHODS Astrocytes were isolated from the brainstem and cerebellum of Spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The cells were treated with either 100nM Ang II or 10nM Arachidonyl-2'-chloroethylamide (ACEA), both alone and in combination, for varying time periods, and the extent of phosphorylation of MAPKs, ERK and p38, and the phosphorylated forms of CB1R (p-CB1R), were measured using western blotting. RESULTS Ang II treatment resulted in a greater activation of MAPKs in SHR brainstem astrocytes, but not SHR cerebellar astrocytes when compared to Wistar rats. ACEA-mediated MAPK activation was significantly lower in brainstem astrocytes of SHRs when compared to Wistar rats. ACEA negatively modulates AT1R-mediated MAPK activation in both cerebellar and brainstem astrocytes of both models. The effect however was diminished in brainstem astrocytes. Ang II caused a significant increase in phosphorylation of CB1R in cerebellar astrocytes, while its effect was diminished in brainstem astrocytes of both models. CONCLUSION Both Ang II and ACEA-induced MAPK activation were significantly altered in SHR astrocytes when compared to Wistar astrocytes. A possible reduction in CB1R functionality, coupled with a hyperfunctional AT1R in the brainstem, could well be significant factors in the development of hypertensive states. AT1R-mediated phosphorylation of CB1R could be critical for impaired cerebellar development characterized by a hyperactive RAS.
Collapse
|
176
|
Zubcevic J, Santisteban MM, Perez PD, Arocha R, Hiller H, Malphurs WL, Colon-Perez LM, Sharma RK, de Kloet A, Krause EG, Febo M, Raizada MK. A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Front Physiol 2017; 8:592. [PMID: 28912720 PMCID: PMC5583219 DOI: 10.3389/fphys.2017.00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 μg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Monica M Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Annette de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| |
Collapse
|
177
|
Bai J, Yu XJ, Liu KL, Wang FF, Li HB, Shi XL, Zhang Y, Huo CJ, Li X, Gao HL, Qi J, Liu JJ, Zhu GQ, Chen WS, Cui W, Kang YM. Tert-butylhydroquinone attenuates oxidative stress and inflammation in hypothalamic paraventricular nucleus in high salt-induced hypertension. Toxicol Lett 2017; 281:1-9. [PMID: 28844481 DOI: 10.1016/j.toxlet.2017.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 11/25/2022]
Abstract
Excessive oxidative stress and inflammation in hypothalamic paraventricular nucleus (PVN) are implicated in the pathogenesis of hypertension. It is reported that tert-butylhydroquinone (tBHQ), a nuclear factor erythroid 2-related factor 2(Nrf2)-inducer, has a variety of pharmacological activities such as anti-oxidation and anti-inflammatory effect. The objective of this study was to investigate the effects of tBHQ in high salt induced hypertension and to identify whether the beneficial effects were induced by inhibiting PVN oxidative stress and inflammation. Male Sprague-Dawley rats were fed with high salt diet (HS, 8% NaCl) or normal salt diet (NS, 0.3% NaCl). These rats were administration of tBHQ (150mg/kg/d) by oral gavage for 16 weeks. Our results showed that high salt intake resulted in higher mean arterial pressure, cardiac hypertrophy as well as increased plasma level of norepinephrine and interleukin (IL)-1β, IL-6 compared with NS rats. It increased PVN level of reactive oxygen species, gp91phox, IL-1β, IL-6, p-IKKβ and nuclear factor-kappa B (NF-κB) activity, decreased PVN level of Nrf2 and Cu/Zn-SOD. Chronic administration of tBHQ significantly attenuated these changes in HS rats. These data suggest that the protective effects of tBHQ in salt induced hypertension are partly due to inhibiting oxidative stress and inflammation in PVN.
Collapse
Affiliation(s)
- Juan Bai
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Fang-Fang Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiang Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
178
|
Abstract
Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.
Collapse
Affiliation(s)
- Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton Victoria 3800, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 23 Innovation Walk, Clayton, Victoria 3800, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Heart Centre, Alfred Hospital, Philip Block, Level 3, 55 Commercial Road, Melbourne, Victoria 3004, Australia.,Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| |
Collapse
|
179
|
Du D, Hu L, Wu J, Wu Q, Cheng W, Guo Y, Guan R, Wang Y, Chen X, Yan X, Zhu D, Wang J, Zhang S, Guo Y, Xia C. Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J Neuroinflammation 2017; 14:169. [PMID: 28835252 PMCID: PMC5569471 DOI: 10.1186/s12974-017-0942-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation plays hypertensive roles in the uninjured autonomic nuclei of the central nervous system, while its mechanisms remain unclear. The present study is to investigate the effect of neuroinflammation on autophagy in the neurons of the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside. METHODS Stress-induced hypertension (SIH) was induced by electric foot-shock stressors with noise interventions in rats. Systolic blood pressure (SBP) and the power density of the low frequency (LF) component of the SAP spectrum were measured to reflect sympathetic vasomotor activity. Microglia activation and pro-inflammatory cytokines (PICs (IL-1β, TNF-α)) expression in the RVLM were measured by immunoblotting and immunostaining. Autophagy and autophagic vacuoles (AVs) were examined by autophagic marker (LC3 and p62) expression and transmission electron microscopy (TEM) image, respectively. Autophagy flux was evaluated by RFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors transfected into the RVLM. Tissue levels of glutamate, gamma aminobutyric acid (GABA), and plasma levels of norepinephrine (NE) were measured by using high-performance liquid chromatography (HPLC) with electrochemical detection. The effects of the cisterna magna infused minocycline, a microglia activation inhibitor, on the abovementioned parameters were analyzed. RESULTS SIH rats showed increased SBP, plasma NE accompanied by an increase in LF component of the SBP spectrum. Microglia activation and PICs expression was increased in SIH rats. TEM demonstrated that stress led to the accumulation of AVs in the RVLM of SIH rats. In addition to the Tf-LC3 assay, the concurrent increased level of LC3-II and p62 suggested the impairment of autophagic flux in SIH rats. To the contrary, minocycline facilitated autophagic flux and induced a hypotensive effect with attenuated microglia activation and decreased PICs in the RVLM of SIH rats. Furthermore, SIH rats showed higher levels of glutamate and lower level of GABA in the RVLM, while minocycline attenuated the decrease in GABA and the increase in glutamate of SIH rats. CONCLUSIONS Collectively, we concluded that the neuroinflammation might impair autophagic flux and induced neural excitotoxicity in the RVLM neurons following SIH, which is involved in the development of SIH.
Collapse
Affiliation(s)
- Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Qin Wu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wenjing Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yuhong Guo
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yahui Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 People’s Republic of China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xanxia Yan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Shutian Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200011 People’s Republic of China
| | - Yanfang Guo
- Department of Pediatrics, Pudong Gongli Hospital, Shanghai, 200135 People’s Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
180
|
Stocker SD, Kinsman BJ, Sved AF. Recent Advances in Neurogenic Hypertension: Dietary Salt, Obesity, and Inflammation. Hypertension 2017; 70:HYPERTENSIONAHA.117.08936. [PMID: 28739972 PMCID: PMC5783795 DOI: 10.1161/hypertensionaha.117.08936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurally-mediated hypertension results from a dysregulation of sympathetic and/or neuroendocrine mechanisms to increase ABP. Multiple factors may exert multiple central effects to alter neural circuits and produce unique sympathetic signatures and elevate ABP. In this brief review, we have discussed novel observations regarding three contributing factors: dietary salt intake, obesity, and inflammation. However, the interaction among these and other factors is likely much more complex; recent studies suggest a prior exposure to one stimulus may sensitize the response to a subsequent hypertensive stimulus. Insight into the central mechanisms by which these factors selectively alter SNA or cooperatively interact to impact hypertension may represent a platform for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA.
| | - Brian J Kinsman
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| | - Alan F Sved
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| |
Collapse
|
181
|
Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation. Stroke 2017; 48:2557-2564. [PMID: 28698257 DOI: 10.1161/strokeaha.117.017370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. CONCLUSIONS Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.
Collapse
Affiliation(s)
- You Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Xiao Z Shen
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Liang Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Tuantuan V Zhao
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Kenneth E Bernstein
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Alan K Johnson
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Patrick Lyden
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Jianmin Fang
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Peng Shi
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.).
| |
Collapse
|
182
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
183
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
184
|
Glass MJ, Chan J, Pickel VM. Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 2017; 352:262-272. [PMID: 28385632 PMCID: PMC5522011 DOI: 10.1016/j.neuroscience.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
Abstract
The immune/inflammatory signaling molecule tumor necrosis factor α (TNFα) is an important mediator of both constitutive and plastic signaling in the brain. In particular, TNFα is implicated in physiological processes, including fever, energy balance, and autonomic function, known to involve the hypothalamic paraventricular nucleus (PVN). Many critical actions of TNFα are transduced by the TNFα type 1 receptor (TNFR1), whose activation has been shown to potently modulate classical neural signaling. There is, however, little known about the cellular sites of action for TNFR1 in the PVN. In the present study, high-resolution electron microscopic immunocytochemistry was used to demonstrate the ultrastructural distribution of TNFR1 in the PVN. Labeling for TNFR1 was found in somata and dendrites, and to a lesser extent in axon terminals and glia in the PVN. In dendritic profiles, TNFR1 was mainly present in the cytoplasm, and in association with presumably functional sites on the plasma membrane. Dendritic profiles expressing TNFR1 were contacted by axon terminals, which formed non-synaptic appositions, as well as excitatory-type and inhibitory-type synaptic specializations. A smaller population of TNFR1-labeled axon terminals making non-synaptic appositions, and to a lesser extent synaptic contacts, with unlabeled dendrites was also identified. These findings indicate that TNFR1 is structurally positioned to modulate postsynaptic signaling in the PVN, suggesting a mechanism whereby TNFR1 activation contributes to cardiovascular and other autonomic functions.
Collapse
Affiliation(s)
- Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States.
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
185
|
Xu J, Sriramula S, Xia H, Moreno-Walton L, Culicchia F, Domenig O, Poglitsch M, Lazartigues E. Clinical Relevance and Role of Neuronal AT 1 Receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circ Res 2017; 121:43-55. [PMID: 28512108 DOI: 10.1161/circresaha.116.310509] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Neurogenic hypertension is characterized by an increase in sympathetic activity and often resistance to drug treatments. We previously reported that it is also associated with a reduction of angiotensin-converting enzyme type 2 (ACE2) and an increase in a disintegrin and metalloprotease 17 (ADAM17) activity in experimental hypertension. In addition, while multiple cells within the central nervous system have been involved in the development of neurogenic hypertension, the contribution of ADAM17 has not been investigated. OBJECTIVE To assess the clinical relevance of this ADAM17-mediated ACE2 shedding in hypertensive patients and further identify the cell types and signaling pathways involved in this process. METHODS AND RESULTS Using a mass spectrometry-based assay, we identified ACE2 as the main enzyme converting angiotensin II into angiotensin-(1-7) in human cerebrospinal fluid. We also observed an increase in ACE2 activity in the cerebrospinal fluid of hypertensive patients, which was correlated with systolic blood pressure. Moreover, the increased level of tumor necrosis factor-α in those cerebrospinal fluid samples confirmed that ADAM17 was upregulated in the brain of hypertensive patients. To further assess the interaction between brain renin-angiotensin system and ADAM17, we generated mice lacking angiotensin II type 1 receptors specifically on neurons. Our data reveal that despite expression on astrocytes and other cells types in the brain, ADAM17 upregulation during deoxycorticosterone acetate-salt hypertension occurs selectively on neurons, and neuronal angiotensin II type 1 receptors are indispensable to this process. Mechanistically, reactive oxygen species and extracellular signal-regulated kinase were found to mediate ADAM17 activation. CONCLUSIONS Our data demonstrate that angiotensin II type 1 receptors promote ADAM17-mediated ACE2 shedding in the brain of hypertensive patients, leading to a loss in compensatory activity during neurogenic hypertension.
Collapse
Affiliation(s)
- Jiaxi Xu
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Srinivas Sriramula
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Huijing Xia
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Lisa Moreno-Walton
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Frank Culicchia
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Oliver Domenig
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Marko Poglitsch
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Eric Lazartigues
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.S., H.X., E.L.), Cardiovascular Center of Excellence (J.X., S.S., H.X., E.L.), Neurosciences Center of Excellence (E.L.), Department of Emergency Medicine (L.M.-W.), and Department of Neurological Surgery (F.C.), Louisiana State University Health Sciences Center, New Orleans, LA; and Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.).
| |
Collapse
|
186
|
Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res 2017; 120:88-96. [PMID: 28330785 DOI: 10.1016/j.phrs.2017.03.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/13/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
Abstract
Hypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms. During hypertension, dysregulation of the Renin-Angiotensin System is associated with increased expression of pro-inflammatory cytokines and reactive oxygen species causing kidney damage, endothelial dysfunction, and increase in sympathetic activity, among other damages, eventually leading to decline in organ function. Recent studies have shown that these effects involve both the innate and the adaptive immune response. The contribution of adaptive immune responses involving different lymphocyte populations in various models of hypertension has been extensively studied. However, the involvement of the innate immunity mediating inflammation in hypertension is still not well understood. The innate and adaptive immune systems intimately interact with one another and are essential to an effectively functioning of the immune response; hence, the importance of a better understanding of the underlying mechanisms mediating innate immune system during hypertension. In this review, we aim to discuss mechanisms linking Angiotensin II and the innate immune system, in the pathogenesis of hypertension. The newest research investigating Angiotensin II triggering toll like receptor 4 activation in the kidney, vasculature and central nervous system contributing to hypertension will be discussed. Understanding the role of the innate immune system in the development of hypertension may bring to light new insights necessary to improve hypertension management.
Collapse
Affiliation(s)
- Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | | | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | - Sarah Al-Gassimi
- Department of Biological Sciences, Florida Institute of Technology, FL, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, Florida Institute of Technology, FL, United States.
| |
Collapse
|
187
|
Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett 2017; 270:62-71. [DOI: 10.1016/j.toxlet.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/22/2017] [Accepted: 02/05/2017] [Indexed: 11/21/2022]
|
188
|
Marins FR, Iddings JA, Fontes MAP, Filosa JA. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation. Physiol Rep 2017; 5:e13156. [PMID: 28270592 PMCID: PMC5350170 DOI: 10.14814/phy2.13156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
The intermediate region of the posterior insular cortex (intermediate IC) mediates sympathoexcitatory responses to the heart and kidneys. Previous studies support hypertension-evoked changes to the structure and function of neurons, blood vessels, astrocytes and microglia, disrupting the organization of the neurovascular unit (NVU). In this study, we evaluated the functional and anatomical integrity of the NVU at the intermediate IC in the spontaneously hypertensive rat (SHR) and its control the Wistar-Kyoto (WKY). Under urethane anesthesia, NMDA microinjection (0.2 mmol/L/100 nL) was performed at the intermediate IC with simultaneous recording of renal sympathetic nerve activity (RSNA), heart rate (HR) and mean arterial pressure (MAP). Alterations in NVU structure were investigated by immunofluorescence for NMDA receptors (NR1), blood vessels (70 kDa FITC-dextran), astrocytes (GFAP), and microglia (Iba1). Injections of NMDA into intermediate IC of SHR evoked higher amplitude responses of RSNA, MAP, and HR On the other hand, NMDA receptor blockade decreased baseline RSNA, MAP and HR in SHR, with no changes in WKY Immunofluorescence data from SHR intermediate IC showed increased NMDA receptor density, contributing to the SHR enhanced sympathetic responses, and increased in vascular density (increased number of branches and endpoints, reduced average branch length), suggesting angiogenesis. Additionally, IC from SHR presented increased GFAP immunoreactivity and contact between astrocyte processes and blood vessels. In SHR, IC microglia skeleton analysis supports their activation (reduced number of branches, junctions, endpoints and process length), suggesting an inflammatory process in this region. These findings indicate that neurogenic hypertension in SHR is accompanied by marked alterations to the NVU within the IC and enhanced NMDA-mediated sympathoexcitatory responses likely contributors of the maintenance of hypertension.
Collapse
Affiliation(s)
- Fernanda R Marins
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marco A P Fontes
- Departamento de Fisiologia e Biofísica, INCT, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
189
|
The role of macrophages in hypertension and its complications. Pflugers Arch 2017; 469:419-430. [PMID: 28251313 DOI: 10.1007/s00424-017-1950-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Circulating monocytes and tissue macrophages play complex roles in the pathogenesis of hypertension, a highly prevalent disease associated with catastrophic cardiovascular morbidity. In the vasculature and kidney, macrophage-derived reactive oxygen species (ROS) and inflammatory cytokines induce endothelial and epithelial dysfunction, respectively, resulting in vascular oxidative stress and impairment of sodium excretion. By contrast, VEGF-C-expressing macrophages in the skin can facilitate the removal of excess interstitial stores of sodium by stimulating lymphangiogenesis. Inappropriate activation of the renin-angiotensin system (RAS) contributes to essential hypertension in a majority of patients, and macrophages express the type 1 (AT1) receptor for angiotensin II (Ang II). While proinflammatory macrophages clearly contribute to RAS-dependent hypertension, activation of the AT1 receptor directly on macrophages suppresses their M1 polarization and limits tubular and interstitial damage to the kidney during hypertension. Thus, stimulating the macrophage AT1 receptor ameliorates the target organ damage and immune stimulation provoked by AT1 receptor activation in intrinsic renal and vascular cells. The proinflammatory cytokines TNF-α and IL-1β produced by M1 macrophages drive blood pressure elevation and consequent target organ damage. However, additional studies are needed to identify the tissues in which these cytokines act and the signaling pathways they stimulate during hypertension. Moreover, identifying the precise myeloid cell subsets that contribute to hypertension should guide the development of more precise immunomodulatory therapies for patients with persistent blood pressure elevation and progressive end-organ injury.
Collapse
|
190
|
Qi J, Zhao XF, Yu XJ, Yi QY, Shi XL, Tan H, Fan XY, Gao HL, Yue LY, Feng ZP, Kang YM. Targeting Interleukin-1 beta to Suppress Sympathoexcitation in Hypothalamic Paraventricular Nucleus in Dahl Salt-Sensitive Hypertensive Rats. Cardiovasc Toxicol 2017; 16:298-306. [PMID: 26304161 DOI: 10.1007/s12012-015-9338-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Findings from our laboratory indicate that expressions of some proinflammatory cytokines such as tumor necrosis factor, interleukin-6 and oxidative stress responses are increased in the hypothalamic paraventricular nucleus (PVN) and contribute to the progression of salt-sensitive hypertension. In this study, we determined whether interleukin-1 beta (IL-1β) activation within the PVN contributes to sympathoexcitation during development of salt-dependent hypertension. Eight-week-old male Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8 % NaCl) or a normal-salt diet (NS, 0.3 % NaCl) for 6 weeks, and all rats were treated with bilateral PVN injection of gevokizumab (IL-1β inhibitor, 1 μL of 10 μg) or vehicle once a week. The mean arterial pressure (MAP), heart rate (HR) and plasma norepinephrine (NE) were significantly increased in high-salt-fed rats. In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 [subunits of NAD (P) H oxidase], IL-1β, NLRP3 (NOD-like receptor family pyrin domain containing 3), Fra-LI (an indicator of chronic neuronal activation) and lower levels of IL-10 in the PVN than normal-diet rats. Bilateral PVN injection of gevokizumab decreased MAP, HR and NE, attenuated the levels of oxidative stress and restored the balance of cytokines. These findings suggest that IL-1β activation in the PVN plays a role in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiu-Fang Zhao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hong Tan
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Yan Fan
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Li-Ying Yue
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.
| |
Collapse
|
191
|
Bhat SA, Goel R, Shukla R, Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension. Brain Behav Immun 2017; 59:173-189. [PMID: 27658543 DOI: 10.1016/j.bbi.2016.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022] Open
Abstract
Studies have demonstrated separately that hypertension is associated with platelet activation in the periphery (resulting in accumulation and localized inflammatory response) and glial activation in the brain. We investigated the contribution of platelets in brain inflammation, particularly glial activation in vitro and in a rat model of hypertension. We found that HTN increased the expression of adhesion molecules like JAM-1, ICAM-1, and VCAM-1 on brain endothelium and resulted in the deposition of platelets in the brain. Platelet deposition in hypertensive rats was associated with augmented CD40 and CD40L and activation of astrocytes (GFAP expression) and microglia (Iba-1 expression) in the brain. Platelets isolated from hypertensive rats had significantly higher sCD40L levels and induced more prominent glial activation than platelets from normotensive rats. Activation of platelets with ADP induced sCD40L release and activation of astrocytes and microglia. Moreover, CD40L induced glial (astrocytes and microglia) activation, NFкB and MAPK inflammatory signaling, culminating in neuroinflammation and neuronal injury (increased apoptotic cells). Importantly, injection of ADP-activated platelets into normotensive rats strongly induced activation of astrocytes and microglia and increased plasma sCD40L levels compared with control platelets. On the contrary, inhibition of platelet activation by Clopidogrel or disruption of CD40 signaling prevented astrocyte and microglial activation and provided neuroprotection in both in vivo and in vitro conditions. Thus, we have identified platelet CD40L as a key inflammatory molecule for the induction of astrocyte and microglia activation, the major contributors to inflammation-mediated injury in the brain.
Collapse
Affiliation(s)
- Shahnawaz Ali Bhat
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Ruby Goel
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Rakesh Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; National Institute of Pharmaceutical Education and Research, Rae Bareli, India.
| |
Collapse
|
192
|
Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:287-306. [DOI: 10.1007/978-981-10-4307-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
193
|
Ruchaya PJ, Speretta GF, Blanch GT, Li H, Sumners C, Menani JV, Colombari E, Colombari DSA. Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides 2016; 60:29-36. [PMID: 27469059 DOI: 10.1016/j.npep.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the physiological effects of increased angiotensin II type 2 receptor (AT2R) expression in the solitary-vagal complex (nucleus of the solitary tract/dorsal motor nucleus of the vagus; NTS/DVM) on baroreflex function in non-anaesthetised normotensive (NT) and spontaneously hypertensive rats (SHR). Ten week old NT Holtzman and SHR were microinjected with either an adeno-associated virus expressing AT2R (AAV2-CBA-AT2R) or enhanced green fluorescent protein (control; AAV2-CBA-eGFP) into the NTS/DVM. Baroreflex and telemetry recordings were performed on four experimental groups: 1) NTeGFP, 2) NTAT2R, 3) SHReGFP and 4) SHRAT2R (n=4-7/group). Following in-vivo experimental procedures, brains were harvested for gene expression analysis. Impaired bradycardia in SHReGFP was restored in SHR rats overexpressing AT2R in the NTS/DMV. mRNA levels of angiotensin converting enzyme decreased and angiotensin converting enzyme 2 increased in the NTS/DMV of SHRAT2R compared to SHReGFP. Increased levels of pro-inflammatory cytokine mRNA levels in the SHReGFP group also decreased in the SHRAT2R group. AT2R overexpression did not elicit any significant change in mean arterial pressure (MAP) in all groups from baseline to 4weeks post viral transfection. Both SHReGFP and SHRAT2R showed a significant elevation in MAP compared to the NTeGFP and NTAT2R groups. Increased AT2R expression within the NTS/DMV of SHR was effective at improving baroreflex function but not MAP. We propose possible mediators involved in improving baroreflex are in the ANG II/ACE2 axis, suggesting a potential beneficial modulatory effect of AT2R overexpression in the NTS/DMV of neurogenic hypertensive rats.
Collapse
Affiliation(s)
- Prashant J Ruchaya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Graziela Torres Blanch
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Colin Sumners
- Department of Physiology and Functional Genomics and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
194
|
Pavlyushchik OO, Afonin VY, Sarokina VN, Chak TA, Khapaliuk AV, Anisovich MV. Association of the ACE I/D gene polymorphism with DNA damage in hypertensive men. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
195
|
Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patel KP. Astrocytes Contribute to Angiotensin II Stimulation of Hypothalamic Neuronal Activity and Sympathetic Outflow. Hypertension 2016; 68:1483-1493. [PMID: 27698069 DOI: 10.1161/hypertensionaha.116.07747] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/17/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin II (AngII) is a key neuropeptide that acting within the brain hypothalamic paraventricular nucleus regulates neurohumoral outflow to the circulation. Moreover, an exacerbated AngII action within the paraventricular nucleus contributes to neurohumoral activation in hypertension. Although AngII effects involve changes in paraventricular nucleus neuronal activity, the precise underlying mechanisms, cellular targets, and distribution of AngII receptors within the paraventricular nucleus remain largely unknown. Thus, whether AngII effects involve direct actions on paraventricular neurons, or whether it acts via intermediary cells, such as astrocytes, is still controversial. To address this important gap in our knowledge, we used a multidisciplinary approach combining patch-clamp electrophysiology in presympathetic paraventricular neurons and astrocytes, along with in vivo sympathetic nerve recordings and astrocyte-targeted gene manipulations. We present evidence for a novel mechanism underlying central AngII actions, which involves astrocytes as major intermediary cellular targets. We found that AngII type 1 receptor mRNA is expressed in paraventricular astrocytes. Moreover, we report that AngII inhibited glutamate transporter function, increasing in turn extracellular glutamate levels. This resulted in the activation of neuronal extrasynaptic NMDA (N-methyl-d-aspartate) receptors, increased presympathetic neuronal activity, enhanced sympathoexcitatory outflow, and increased blood pressure. Together, our studies support astrocytes as critical intermediary cell types mediating brain AngII regulation of the circulation and indicate that AngII-mediated neuronal and sympathoexcitatory effects are dependent on a unique neuroglial signaling modality involving nonsynaptic glutamate transmission.
Collapse
Affiliation(s)
- Javier E Stern
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.).
| | - Sookjin Son
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.)
| | - Vinicia C Biancardi
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.)
| | - Hong Zheng
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.)
| | - Neeru Sharma
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.)
| | - Kaushik P Patel
- From the Department of Physiology, Augusta University, GA (J.E.S., S.S., V.C.B.); and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (H.Z., N.S., K.P.P.)
| |
Collapse
|
196
|
Abstract
Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.
Collapse
Affiliation(s)
- Eunhee Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Sunghee Cho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
197
|
Yi QY, Li HB, Qi J, Yu XJ, Huo CJ, Li X, Bai J, Gao HL, Kou B, Liu KL, Zhang DD, Chen WS, Cui W, Zhu GQ, Shi XL, Kang YM. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicol Lett 2016; 262:105-113. [PMID: 27659729 DOI: 10.1016/j.toxlet.2016.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 12/09/2022]
Abstract
Reactive oxygen species (ROS) in the brain are involved in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG), one of the active compounds in green tea, has anti-oxidant, anti-inflammatory and vascular protective properties. This study was designed to determine whether chronic infusion of EGCG into the hypothalamic paraventricular nucleus (PVN) attenuates ROS and sympathetic activity and delays the progression of hypertension by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and decreasing nuclear factor-kappa B (NF-κB) activity, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) rats and SHR received bilateral PVN infusion of EGCG (20μg/h) or vehicle via osmotic minipumps for 4 weeks. SHR showed higher mean arterial pressure, plasma proinflammatory cytokines and circulating norepinephrine (NE) levels compared with WKY rats. SHR also had higher PVN levels of the subunit of NAD(P)H oxidase (gp91phox), ROS, tyrosine hydroxylase, and PICs; increased NF-κB activity; and lower PVN levels of interleukin-10 (IL-10) and 67kDa isoform of glutamate decarboxylase (GAD67) than WKY rats. PVN infusion of EGCG attenuated all these changes in SHR. These findings suggest that SHR have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN. Chronic inhibition of ROS in the PVN restores the balance of neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive response and sympathetic activity.
Collapse
Affiliation(s)
- Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China; Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Xiang Li
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Juan Bai
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Bo Kou
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Dong-Dong Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Wen-Sheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China.
| |
Collapse
|
198
|
Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. Circ Res 2016; 118:1327-36. [PMID: 27081113 DOI: 10.1161/circresaha.116.307709] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
Abstract
Hypertension is the most prevalent modifiable risk factor for cardiovascular disease and disorders directly influencing cardiovascular disease morbidity and mortality, such as diabetes mellitus, chronic kidney disease, obstructive sleep apnea, etc. Despite aggressive attempts to influence lifestyle modifications and advances in pharmacotherapeutics, a large percentage of patients still do not achieve recommended blood pressure control worldwide. Thus, we think that mechanism-based novel strategies should be considered to significantly improve control and management of hypertension. The overall objective of this review is to summarize implications of peripheral- and neuroinflammation as well as the autonomic nervous system-bone marrow communication in hematopoietic cell homeostasis and their impact on hypertension pathophysiology. In addition, we discuss the novel and emerging field of intestinal microbiota and roles of gut permeability and dysbiosis in cardiovascular disease and hypertension. Finally, we propose a brain-gut-bone marrow triangular interaction hypothesis and discuss its potential in the development of novel therapies for hypertension.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Seungbum Kim
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Carl J Pepine
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Department of Physiology and Functional Genomics (M.M.S., S.K., M.K.R.) and Division of Cardiovascular Medicine, Department of Medicine (C.J.P.), College of Medicine, University of Florida, Gainesville.
| |
Collapse
|
199
|
Crowley SD, Jeffs AD. Targeting cytokine signaling in salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 311:F1153-F1158. [PMID: 27558557 DOI: 10.1152/ajprenal.00273.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
Activated immune cell populations contribute to hypertension in part through inciting damage to the kidney and by provoking inappropriate sodium reabsorption in the nephron. Inflammatory mediators called cytokines produced by T lymphocytes and macrophages act on specific sodium transporters in the kidney, augmenting their activity or expression, with consequent expansion of intravascular fluid volume and cardiac output. The overlapping functions of these cytokines, each of which may activate multiple receptors, present challenges in precisely targeting inflammatory signaling cascades in hypertension. Moreover, broad immune suppression could expose the hypertensive patient to disproportional risks of infection or malignancy. Nevertheless, the possibility that incisive immunomodulatory therapies could provide cardiovascular and renal protection through both blood pressure-dependent and -independent mechanisms justifies comprehensive investigation into the relevant signaling pathways and tissue sites in which inflammatory cytokines function to exaggerate blood pressure elevation and target organ damage in hypertension.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Alexander D Jeffs
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| |
Collapse
|
200
|
Pitra S, Feng Y, Stern JE. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 2016; 5:858-868. [PMID: 27688999 PMCID: PMC5034613 DOI: 10.1016/j.molmet.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hypertension and obesity are highly interrelated diseases, being critical components of the metabolic syndrome. Despite the growing prevalence of this syndrome in the world population, efficient therapies are still missing. Thus, identification of novel targets and therapies are warranted. An enhanced activity of the hypothalamic renin-angiotensin system (RAS), including the recently discovered prorenin (PR) and its receptor (PRR), has been implicated as a common mechanism underlying aberrant sympatho-humoral activation that contributes to both metabolic and cardiovascular dysregulation in the metabolic syndrome. Still, the identification of precise neuronal targets, cellular mechanisms and signaling pathways underlying PR/PRR actions in cardiovascular- and metabolic related hypothalamic nuclei remain unknown. Methods and results Using a multidisciplinary approach including patch-clamp electrophysiology, live calcium imaging and immunohistochemistry, we aimed to elucidate cellular mechanisms underlying PR/PRR actions within the hypothalamic supraoptic (SON) and paraventricular nucleus (PVN), key brain areas previously involved in cardiometabolic regulation. We show for the first time that PRR is expressed in magnocellular neurosecretory cells (MNCs), and to a lesser extent, in presympathetic PVN neurons (PVNPS). Moreover, we show that while PRR activation efficiently stimulates the firing activity of both MNCs and PVNPS neurons, these effects involved AngII-independent and AngII-dependent mechanisms, respectively. In both cases however, PR excitatory effects involved an increase in intracellular Ca2+ levels and a Ca2+-dependent inhibition of a voltage-gated K+ current. Conclusions We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension. PRR is expressed in SON and PVN neurosecretory and presympathetic neurons. PRR activation stimulates firing activity of SON and PVN neurons. PR/PRR effects on neurosecretory neurons are AngII-independent. PR/PRR effects on presympathetic neurons are AngII-dependent. PR inhibits a voltage-gated K+ current in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, United States
| | - Yumei Feng
- Departments of Pharmacology, Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, United States
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, United States.
| |
Collapse
|