151
|
Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc 2014; 3:jah3630. [PMID: 25103204 PMCID: PMC4310387 DOI: 10.1161/jaha.114.000983] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology, Brown University School of Public Health, Providence, RI (Y.W., M.N.E., G.A.W.) Department of Environmental Health Sciences, Indiana University Fairbanks School of Public Health, Indianapolis, IN (Y.W.)
| | - Melissa N Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI (Y.W., M.N.E., G.A.W.)
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI (Y.W., M.N.E., G.A.W.)
| |
Collapse
|
152
|
Kelishadi R, Hashemi M, Javanmard SH, Mansourian M, Afshani M, Poursafa P, Sadeghian B, Fakhri M. Effect of particulate air pollution and passive smoking on surrogate biomarkers of endothelial dysfunction in healthy children. Paediatr Int Child Health 2014; 34:165-9. [PMID: 24199613 DOI: 10.1179/2046905513y.0000000104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND This study aimed to determine the association of ambient particulate matter (PM) on surrogate markers of endothelial function and inflammation in healthy children with or without exposure to second-hand smoke. METHODS This cross-sectional study was conducted in 2011 in Isfahan, which is the second largest and second most air-polluted city in Iran. The areas of the city with lowest and highest air pollution were determined, and in each area, 25 pre-pubescent boys with or without exposure to daily tobacco smoke at home were selected, i.e. 100 children were studied in total. Serum levels of C-reactive protein (CRP) and nitric oxide (NO) were measured. RESULTS Mean (SD) NO concentration was 7·87 (2·18) and 7·75 (2·04) μmol/L for participants not exposed and exposed to passive smoking, respectively, which is not statistically significant. The corresponding figures for CRP concentrations were 1·69 (0·89) and 2·13 (1·19) μg/ml (P = 0·04). Mean (SD) CRP concentration was significantly higher in children living in the highly polluted area than in those in the area of low pollution [2·11 (1·91) vs 1·60 (1·43) μg/ml, respectively, P = 0·02]. This difference was not significant for NO concentration. The regression analysis that examined the association between PM concentration (as independent variable) and CRP and NO levels (as dependent variables) in children not exposed to passive smoking demonstrated that increased PM was associated with a decrease in NO and an increase in CRP concentration. This finding shows that, regardless of passive smoking, PM10 concentration has a significant independent association with serum CRP and is inversely associated with NO levels. CONCLUSION The findings suggest that in healthy children PM concentration has a significant independent association with biomarkers of endothelial dysfunction and inflammation.
Collapse
|
153
|
Soppa VJ, Schins RPF, Hennig F, Hellack B, Quass U, Kaminski H, Kuhlbusch TAJ, Hoffmann B, Weinmayr G. Respiratory effects of fine and ultrafine particles from indoor sources--a randomized sham-controlled exposure study of healthy volunteers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:6871-89. [PMID: 25000149 PMCID: PMC4113851 DOI: 10.3390/ijerph110706871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022]
Abstract
Particulate air pollution is linked to impaired respiratory health. We analyzed particle emissions from common indoor sources (candles burning (CB), toasting bread (TB), frying sausages (FS)) and lung function in 55 healthy volunteers (mean age 33.0 years) in a randomized cross-over controlled exposure study. Lung-deposited particle surface area concentration (PSC), size-specific particle number concentration (PNC) up to 10 µm, and particle mass concentration (PMC) of PM1, PM2.5 and PM10 were determined during exposure (2 h). FEV1, FVC and MEF25%–75% was measured before, 4 h and 24 h after exposure. Wilcoxon-rank sum tests (comparing exposure scenarios) and mixed linear regression using particle concentrations and adjusting for personal characteristics, travel time and transportation means before exposure sessions were performed. While no effect was seen comparing the exposure scenarios and in the unadjusted model, inverse associations were found for PMC from CB and FS in relation to FEV1 and MEF25%–75%. with a change in 10 µg/m3 in PM2.5 from CB being associated with a change in FEV1 of −19 mL (95%-confidence interval:−43; 5) after 4 h. PMC from TB and PNC of UFP were not associated with lung function changes, but PSC from CB was. Elevated indoor fine particles from certain sources may be associated with small decreases in lung function in healthy adults.
Collapse
Affiliation(s)
- Vanessa J Soppa
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Frauke Hennig
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Bryan Hellack
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Ulrich Quass
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Heinz Kaminski
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Thomas A J Kuhlbusch
- Air Quality and Sustainable Nanotechnology Unit, Institut für Energie- und Umwelttechnik (IUTA) e.V., Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Barbara Hoffmann
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Gudrun Weinmayr
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
154
|
Campen MJ. To breathe or not to breathe: negative data on ozone and vascular function in an established research model. Toxicol Sci 2014; 135:263-4. [PMID: 24158039 DOI: 10.1093/toxsci/kft169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, 1 University of New Mexico MSC09 5360, Albuquerque, New Mexico 87131-0001
| |
Collapse
|
155
|
Chen SY, Chan CC, Lin YL, Hwang JS, Su TC. Fine particulate matter results in hemodynamic changes in subjects with blunted nocturnal blood pressure dipping. ENVIRONMENTAL RESEARCH 2014; 131:1-5. [PMID: 24607658 DOI: 10.1016/j.envres.2014.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 01/01/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Particulate matter with aerodynamic diameter of <2.5 μm (PM2.5) is associated with blood pressure and hemodynamic changes. Blunted nocturnal blood pressure dipping is a major risk factor for cardiovascular events; limited information is available on whether PM2.5 exposure-related hemodynamic changes vary with day-night blood pressure circadian rhythms. In this study, we enrolled 161 subjects and monitored the changes in ambulatory blood pressure and hemodynamics for 24h. The day-night blood pressure and cardiovascular metrics were calculated according to the sleep-wake cycles logged in the subject׳s diary. The effects of PM2.5 exposure on blood pressure and hemodynamic changes were analyzed using generalized linear mixed-effect model. After adjusting for potential confounders, a 10-μg/m(3) increase in PM2.5 was associated with 1.0 mmHg [95% confidence interval (CI): 0.2-1.8 mmHg] narrowing in the pulse pressure, 3.1% (95% CI: 1.4-4.8%) decrease in the maximum rate of left ventricular pressure rise, and 3.6% (95% CI: 1.6-5.7%) increase in systemic vascular resistance among 79 subjects with nocturnal blood pressure dip of <10%. In contrast, PM2.5 was not associated with any changes in cardiovascular metrics among 82 subjects with nocturnal blood pressure dip of ≥10%. Our findings demonstrate that short-term exposure to PM2.5 contributes to pulse pressure narrowing along with cardiac and vasomotor dysfunctions in subjects with nocturnal blood pressure dip of <10%.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Lun Lin
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | - Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
156
|
Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, Carraway MS. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci 2014; 140:61-72. [PMID: 24718702 DOI: 10.1093/toxsci/kfu063] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many studies have reported associations between air pollution particles with an aerodynamic diameter <2.5 μm (fine particulate matter (PM)) and adverse cardiovascular effects. However, there is an increased concern that so-called ultrafine PM which comprises the smallest fraction of fine PM (aerodynamic diameter <0.1 μm) may be disproportionately toxic relative to the 0.1-2.5 μm fraction. Ultrafine PM is not routinely measured in state monitoring networks and is not homogenously dispersed throughout an airshed but rather located in hot spots such as near combustion sources (e.g., roads), making it difficult for epidemiology studies to associate exposure to ultrafine PM with adverse health effects. Thirty four middle-aged individuals with metabolic syndrome were exposed for 2 h while at rest in a randomized crossover design to clean air and concentrated ambient ultrafine particles (UCAPS) for 2 h. To further define potential risk, study individuals carrying the null allele for GSTM1 (a prominent antioxidant gene) were identified by genotyping. Blood was obtained immediately prior to exposure, and at 1 and 20 h afterward. Continuous Holter monitoring began immediately prior to exposure and continued for 24 h. Based on changes we observed in previous CAPS studies, we hypothesized that ultrafine CAPS would cause changes in markers of blood inflammation and fibrinolysis as well as changes in heart rate variability and cardiac repolarization. GSTM1 null individuals had altered cardiac repolarization as seen by a change in QRS complexity following exposure to UCAPS and both the entire study population as well as GSTM1 null individuals had increased QT duration. Blood plasminogen and thrombomodulin were decreased in the whole population following UCAPS exposure, whereas C-reactive protein (CRP) and SAA were increased. This controlled human exposure study is the first to show that ambient ultrafine particles can cause cardiovascular changes in people with metabolic syndrome, which affects nearly a quarter of the U.S. adult population.
Collapse
Affiliation(s)
- Robert B Devlin
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Candice B Smith
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Michael T Schmitt
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Ana G Rappold
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Alan Hinderliter
- University of North Carolina, School of Medicine, Chapel Hill 27599, North Carolina
| | - Don Graff
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| | - Martha Sue Carraway
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina 27711
| |
Collapse
|
157
|
Janghorbani M, Momeni F, Mansourian M. Systematic review and metaanalysis of air pollution exposure and risk of diabetes. Eur J Epidemiol 2014; 29:231-242. [PMID: 24791705 DOI: 10.1007/s10654-014-9907-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/23/2014] [Indexed: 12/22/2022]
Abstract
The present systematic review and metaanalysis of published observational studies was conducted to assess the health effects of exposure to air pollution on diabetes risk. Online databases were searched through January 2013, and the reference lists of pertinent articles reporting observational studies in humans were examined. Pooled relative risks and 95 % confidence intervals were calculated with a random-effects model. Exposure to air pollution was associated with slight increase in risk of diabetes and susceptibility of people with diabetes to air pollution. These results were consistent between time-series, case-crossover and cohort studies and between studies conducted in North America and Europe. The association between exposure to air pollution and diabetes was stronger for gaseous pollutants than for particulate matter. Our metaanalysis suggests that exposure to air pollution may be a risk factor for diabetes and increase susceptibility of people with diabetes to air pollution.
Collapse
Affiliation(s)
- Mohsen Janghorbani
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran,
| | | | | |
Collapse
|
158
|
Current Status of the Toxicology of Diesel Engine Exhaust — and the ACES Project. ZENTRALBLATT FUR ARBEITSMEDIZIN ARBEITSSCHUTZ UND ERGONOMIE 2014. [DOI: 10.1007/bf03346132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Tong H, Rappold AG, Caughey M, Hinderliter AL, Graff DW, Berntsen JH, Cascio WE, Devlin RB, Samet JM. Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers. Inhal Toxicol 2014; 26:319-26. [PMID: 24655088 DOI: 10.3109/08958378.2014.889257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTEXT Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust (DE) is a major contributor to ambient PM and gaseous emissions in urban areas. OBJECTIVE This was a pilot study designed to evaluate concentration-dependent effects of short-term exposure to whole DE on the cardiovascular system in order to identify a threshold concentration that can elicit biological responses in healthy human volunteers. MATERIALS AND METHODS Six healthy middle-aged participants with glutathione-S-transferase-Mu 1 (GSTM1) null genotype underwent sequential exposures to 100 µg/m(3), 200 µg/m(3), and 300 µg/m(3) whole DE generated in real time using an idling diesel truck engine. Exposures were separated by 14 d and each was 2 h in duration. RESULTS We report concentration-dependent effects of exposure to DE, with 100 µg/m(3) concentration causing minimal cardiovascular effects, while exposure to 300 µg/m(3) DE for 2 h resulted in a borderline significant reduction of baseline brachial artery diameter (3.34 ± 0.27 mm pre- versus 3.23 ± 0.25 mm post-exposure; p = 0.08). Exposure to the highest concentration of DE also resulted in increases of 5 mmHg in diastolic blood pressure as well as a decrease in indices of the frequency domain of heart rate variability (HRV). DISCUSSION AND CONCLUSIONS These findings demonstrate that acute exposure to relatively high concentrations of DE produces cardiovascular changes in middle-aged GSTM1 null individuals. This study therefore suggests that arterial vasoconstriction and changes in HRV are responses through which traffic-related air pollution increases the risk of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park , NC , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Muala A, Sehlstedt M, Bion A, Österlund C, Bosson JA, Behndig AF, Pourazar J, Bucht A, Boman C, Mudway IS, Langrish JP, Couderc S, Blomberg A, Sandström T. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers. Environ Health 2014; 13:16. [PMID: 24621126 PMCID: PMC4007775 DOI: 10.1186/1476-069x-13-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/05/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. METHODS Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. RESULTS The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. CONCLUSIONS A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions.
Collapse
Affiliation(s)
- Ala Muala
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Maria Sehlstedt
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anne Bion
- Renault Technocentre, Guyancourt, France
| | - Camilla Österlund
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
- Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Bucht
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
- Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, Umeå, Sweden
| | - Ian S Mudway
- MRC-PHE Centre for Environment and Health, School of Biomedical Sciences, King’s College London, London, UK
| | - Jeremy P Langrish
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
161
|
Tsukiji J, Cho SJ, Echevarria GC, Kwon S, Joseph P, Schenck EJ, Naveed B, Prezant DJ, Rom WN, Schmidt AM, Weiden MD, Nolan A. Lysophosphatidic acid and apolipoprotein A1 predict increased risk of developing World Trade Center-lung injury: a nested case-control study. Biomarkers 2014; 19:159-65. [PMID: 24548082 DOI: 10.3109/1354750x.2014.891047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RATIONALE Metabolic syndrome, inflammatory and vascular injury markers measured in serum after World Trade Center (WTC) exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV₁ < LLN. METHODS Nested case-control study of WTC-exposed firefighters. Cases had FEV₁ < LLN. Controls derived from the baseline cohort. Demographics, pulmonary function, serum lipids, LPA and ApoA1 were measured. RESULTS LPA and ApoA1 levels were higher in cases than controls and predictive of case status. LPA increased the odds by 13% while ApoA1 increased the odds by 29% of an FEV₁ < LLN in a multivariable model. CONCLUSIONS Elevated LPA and ApoA1 are predictive of a significantly increased risk of developing an FEV₁ < LLN.
Collapse
Affiliation(s)
- Jun Tsukiji
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University , New York, NY , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Lippmann M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 2014; 44:299-347. [PMID: 24494826 DOI: 10.3109/10408444.2013.861796] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|
163
|
Rom WN, Boushey H, Caplan A. Experimental human exposure to air pollutants is essential to understand adverse health effects. Am J Respir Cell Mol Biol 2013; 49:691-6. [PMID: 24024529 DOI: 10.1165/rcmb.2013-0253ps] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Air pollution has been found to cause significant global mortality, with 6.8 million excess deaths attributed to air pollution each year, and similarly large numbers of exacerbations of asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. Epidemiological research has identified associations, and experimental human exposure has provided critical information on dose-response relationships of adverse effects caused by controlled human exposure to individual pollutants. Human exposures further enable examination of the relationship of adverse effects such as symptoms and pulmonary function changes to presumed mechanisms of disease revealed through analysis of bronchoalveolar lavage fluid obtained from the lower respiratory tract. In this Perspective, we analyze the ethics of human exposure, the importance of the information gained, and the risks of such exposure. We find that these studies appear to have been done with proper approval of institutional review boards, were done with informed consent from the participants, and have rarely been associated with serious adverse events.
Collapse
Affiliation(s)
- William N Rom
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | | |
Collapse
|
164
|
Miller MR, McLean SG, Duffin R, Lawal AO, Araujo JA, Shaw CA, Mills NL, Donaldson K, Newby DE, Hadoke PWF. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 2013; 10:61. [PMID: 24330719 PMCID: PMC3907045 DOI: 10.1186/1743-8977-10-61] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022] Open
Abstract
Objective Diesel exhaust particulate (DEP), a major component of urban air pollution, has been linked to atherogenesis and precipitation of myocardial infarction. We hypothesized that DEP exposure would increase and destabilise atherosclerotic lesions in apolipoprotein E deficient (ApoE−/−) mice. Methods ApoE−/− mice were fed a ‘Western diet’ (8 weeks) to induce ‘complex’ atherosclerotic plaques, with parallel experiments in normal chow fed wild-type mice. During the last 4 weeks of feeding, mice received twice weekly instillation (oropharyngeal aspiration) of 35 μL DEP (1 mg/mL, SRM-2975) or vehicle (saline). Atherosclerotic burden was assessed by en-face staining of the thoracic aorta and histological examination of the brachiocephalic artery. Results Brachiocephalic atherosclerotic plaques were larger in ApoE−/− mice treated with DEP (59±10%) than in controls (32±7%; P = 0.017). In addition, DEP-treated mice had more plaques per section of artery (2.4±0.2 vs 1.8±0.2; P = 0.048) and buried fibrous layers (1.2±0.2 vs 0.4±0.1; P = 0.028). These changes were associated with lung inflammation and increased antioxidant gene expression in the liver, but not with changes in endothelial function, plasma lipids or systemic inflammation. Conclusions Increased atherosclerosis is caused by the particulate component of diesel exhaust producing advanced plaques with a potentially more vulnerable phenotype. These results are consistent with the suggestion that removal of the particulate component would reduce the adverse cardiovascular effects of diesel exhaust.
Collapse
Affiliation(s)
- Mark R Miller
- Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, EH16 4TJ Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study. Part Fibre Toxicol 2013; 10:60. [PMID: 24321138 PMCID: PMC4029460 DOI: 10.1186/1743-8977-10-60] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
Background Exposure to diesel exhaust causes inflammatory responses. Previous controlled exposure studies at a concentration of 300 μg/m3 of diesel exhaust particles mainly lasted for 1 h. We prolonged the exposure period and investigated how quickly diesel exhaust can induce respiratory and systemic effects. Methods Eighteen healthy volunteers were exposed twice to diluted diesel exhaust (PM1 ~300 μg/m3) and twice to filtered air (PM1 ~2 μg/m3) for 3 h, seated, in a chamber with a double-blind set-up. Immediately before and after exposure, we performed a medical examination, spirometry, rhinometry, nasal lavage and blood sampling. Nasal lavage and blood samples were collected again 20 h post-exposure. Symptom scores and peak expiratory flow (PEF) were assessed before exposure, and at 15, 75, and 135 min of exposure. Results Self-rated throat irritation was higher during diesel exhaust than filtered air exposure. Clinical signs of irritation in the upper airways were also significantly more common after diesel exhaust exposure (odds ratio=3.2, p<0.01). PEF increased during filtered air, but decreased during diesel exhaust exposure, with a statistically significant difference at 75 min (+4 L/min vs. -10 L/min, p=0.005). Monocyte and total leukocyte counts in peripheral blood were higher after exposure to diesel exhaust than filtered air 20 h post-exposure, and a trend (p=0.07) towards increased serum IL-6 concentrations was also observed 20 h post-exposure. Conclusions Diesel exhaust induced acute adverse effects such as symptoms and signs of irritation, decreased PEF, inflammatory markers in healthy volunteers. The effects were first seen at 75 min of exposure.
Collapse
|
166
|
Wellenius GA, Boyle LD, Wilker EH, Sorond FA, Coull BA, Koutrakis P, Mittleman MA, Lipsitz LA. Ambient fine particulate matter alters cerebral hemodynamics in the elderly. Stroke 2013; 44:1532-6. [PMID: 23709640 DOI: 10.1161/strokeaha.111.000395] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE Short-term elevations in fine particulate matter air pollution (PM2.5) are associated with increased risk of acute cerebrovascular events. Evidence from the peripheral circulation suggests that vascular dysfunction may be a central mechanism. However, the effects of PM2.5 on cerebrovascular function and hemodynamics are unknown. METHODS We used transcranial Doppler ultrasound to measure beat-to-beat blood flow velocity in the middle cerebral artery at rest and in response to changes in end-tidal CO2 (cerebral vasoreactivity) and arterial blood pressure (cerebral autoregulation) in 482 participants from the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) of Boston study. We used linear mixed effects models with random subject intercepts to evaluate the association between cerebrovascular hemodynamic parameters and mean PM2.5 levels 1 to 28 days earlier adjusting for age, race, medical history, meteorologic covariates, day of week, temporal trends, and season. RESULTS An interquartile range increase (3.0 µg/m(3)) in mean PM2.5 levels during the previous 28 days was associated with an 8.6% (95% confidence interval, 3.7%-13.8%; P<0.001) higher cerebral vascular resistance and a 7.5% (95% confidence interval, 4.2%-10.6%; P<0.001) lower blood flow velocity at rest. Measures of cerebral vasoreactivity and autoregulation were not associated with PM2.5 levels. CONCLUSIONS In this cohort of community-dwelling seniors, exposure to PM2.5 was associated with higher resting cerebrovascular resistance and lower cerebral blood flow velocity. If replicated, these findings suggest that alterations in cerebrovascular hemodynamics may underlie the increased risk of particle-related acute cerebrovascular events.
Collapse
|
167
|
Louwies T, Panis LI, Kicinski M, De Boever P, Nawrot TS. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1011-6. [PMID: 23777785 PMCID: PMC3764070 DOI: 10.1289/ehp.1205721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 06/17/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microcirculation plays an important role in the physiology of cardiovascular health. Air pollution is an independent risk factor for the development and progression of cardiovascular diseases, but the number of studies on the relation between air pollution and the microcirculation is limited. OBJECTIVES We examined the relationship between short-term changes in air pollution and microvascular changes. METHODS We measured retinal microvasculature using fundus image analysis in a panel of 84 healthy adults (52% female), 22-63 years of age, during January-May 2012. Blood vessels were measured as central retinal arteriolar/venular equivalent (CRAE/CRVE), with a median of 2 measurements (range, 1-3). We used monitoring data on particulate air pollution (PM10) and black carbon (BC). Mixed-effect models were used to estimate associations between CRAE/CRVE and exposure to PM10 and BC using various exposure windows. RESULTS CRAE and CRVE were associated with PM10 and BC concentrations, averaged over the 24 hr before the retinal examinations. Each 10-µg/m3 increase in PM10 was associated with a 0.93-µm decrease (95% CI: -1.42, -0.45; p = 0.0003) in CRAE and a 0.86-µm decrease (95% CI: -1.42, -0.30; p = 0.004) in CRVE after adjusting for individual characteristics and time varying conditions such as ambient temperature. Each 1-µg/m3 increase in BC was associated with a 1.84-µm decrease (95% CI: -3.18, -0.51; p < 0.001) in CRAE. CONCLUSIONS Our findings suggest that the retinal microvasculature responds to short-term changes in air pollution levels. These results support a mechanistic pathway through which air pollution can act as a trigger of cardiovascular events at least in part through effects on the microvasculature.
Collapse
Affiliation(s)
- Tijs Louwies
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | | | |
Collapse
|
168
|
Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung. Toxicol Appl Pharmacol 2013; 272:373-83. [PMID: 23886933 DOI: 10.1016/j.taap.2013.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/12/2013] [Accepted: 07/13/2013] [Indexed: 01/02/2023]
Abstract
The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D.
Collapse
|
169
|
Barath S, Langrish JP, Lundbäck M, Bosson JA, Goudie C, Newby DE, Sandström T, Mills NL, Blomberg A. Short-term exposure to ozone does not impair vascular function or affect heart rate variability in healthy young men. Toxicol Sci 2013; 135:292-9. [PMID: 23872581 PMCID: PMC3807622 DOI: 10.1093/toxsci/kft157] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Air pollution exposure is associated with cardiovascular morbidity and mortality, yet the role of individual pollutants remains unclear. In particular, there is uncertainty regarding the acute effect of ozone exposure on cardiovascular disease. In these studies, we aimed to determine the effect of ozone exposure on vascular function, fibrinolysis, and the autonomic regulation of the heart. Thirty-six healthy men were exposed to ozone (300 ppb) and filtered air for 75min on two occasions in randomized double-blind crossover studies. Bilateral forearm blood flow (FBF) was measured using forearm venous occlusion plethysmography before and during intra-arterial infusions of vasodilators 2–4 and 6–8h after each exposure. Heart rhythm and heart rate variability (HRV) were monitored during and 24h after exposure. Compared with filtered air, ozone exposure did not alter heart rate, blood pressure, or resting FBF at either 2 or 6h. There was a dose-dependent increase in FBF with all vasodilators that was similar after both exposures at 2–4h. Ozone exposure did not impair vasomotor or fibrinolytic function at 6–8h but rather increased vasodilatation to acetylcholine (p = .015) and sodium nitroprusside (p = .005). Ozone did not affect measures of HRV during or after the exposure. Our findings do not support a direct rapid effect of ozone on vascular function or cardiac autonomic control although we cannot exclude an effect of chronic exposure or an interaction between ozone and alternative air pollutants that may be responsible for the adverse cardiovascular health effects attributed to ozone.
Collapse
Affiliation(s)
- Stefan Barath
- * Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Unosson J, Blomberg A, Sandström T, Muala A, Boman C, Nyström R, Westerholm R, Mills NL, Newby DE, Langrish JP, Bosson JA. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol 2013; 10:20. [PMID: 23742058 PMCID: PMC3685524 DOI: 10.1186/1743-8977-10-20] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. METHODS Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. RESULTS Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. CONCLUSIONS Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease. TRIAL REGISTRATION ClinicalTrials.gov, NCT01488500.
Collapse
|
171
|
Martinelli N, Olivieri O, Girelli D. Air particulate matter and cardiovascular disease: a narrative review. Eur J Intern Med 2013; 24:295-302. [PMID: 23647842 DOI: 10.1016/j.ejim.2013.04.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022]
Abstract
Consistent evidences from both epidemiological and experimental studies have demonstrated that short- and long-term exposure to particulate matter (PM), in particular to the finest particles (i.e. airborne PM with aerodynamic diameter less than 2.5 μm, PM2.5), is associated with cardiovascular morbidity and mortality. PM concentration has been linked with several clinical manifestations of cardiovascular diseases (CVD), including myocardial infarction, stroke, heart failure, arrhythmias, and venous thromboembolism. Noteworthy, some groups of subjects, like elderly, diabetics, or those with known coronary artery disease, appear specifically susceptible to the harmful effects triggered by PM exposure. Although the PM-related risk for a single individual appears relatively low, the PM-related population attributable risk is impressive. Recent studies indicate that the PM-CVD relationship is likely more complex than a mere quantitative association between overall PM concentration and disease risk. Indeed, the biological effects of PM may vary in function of both the aerodynamic diameter and the chemical composition. Moreover, it has been shown that the influence of air pollution on health is not limited to PM. Indeed, other gaseous pollutants may play an independent role in CVD, suggesting the need to develop multi-pollutant preventive approaches. Causality has been recently strongly supported by observations showing reduced CVD mortality after coordinated community policies resulting in lowering PM exposure at population level. An in-depth knowledge on the heterogeneous sources, chemical compounds, and biological effects of PM may help to propose more accurate and clinically effective recommendations for this important and modifiable factor contributing to CVD burden.
Collapse
Affiliation(s)
- Nicola Martinelli
- Department of Medicine, Section of Internal Medicine B, University of Verona, Italy.
| | | | | |
Collapse
|
172
|
Inflammatory response to acute exposure to welding fumes during the working day. Int J Occup Med Environ Health 2013; 26:220-9. [PMID: 23690265 DOI: 10.2478/s13382-013-0097-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 11/11/2012] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES To investigate cardiorespiratory and inflammatory responses in male workers following exposure to welding fumes and airborne particles in actual workplace conditions. MATERIALS AND METHODS We measured blood leukocytes and their differential counts, platelet count, hemoglobin, sensitive C-reactive protein, fibrinogen, E-selectin, IL-(interleukin)1β, IL-6, IL-8, tumor necrosis factor alpha (TNF-α) and endothelin-1 in blood samples of twenty workers before and after their working day. We also studied peak expiratory flow (PEF), forced expiratory volume in one second (FEV1), and exhaled nitric oxide (NO). We assessed heart rate variability (HRV) by obtaining 24-hour ambulatory electrocardiograms. RESULTS The total blood leukocytes and neutrophils increased after the work shift, whereas IL-1β and E-selectin decreased significantly. There were no statistically significant changes in exhaled NO, FEV1, PEF or HRV. CONCLUSION Occupational exposure to welding fumes and particles caused a slight, acute inflammatory effect estimated based on the increased values of leukocytes and neutrophils in blood and a decrease in the interleukin 1β and E-selectin values, but no changes in the pulmonary function (exhaled NO, FEV1, PEF) or HRV during the working day were observed.
Collapse
|
173
|
Sun Z, Mukherjee B, Brook RD, Gatts GA, Yang F, Sun Q, Brook JR, Fan Z, Rajagopalan S. Air-Pollution and Cardiometabolic Diseases (AIRCMD): a prospective study investigating the impact of air pollution exposure and propensity for type II diabetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 448:72-78. [PMID: 23182147 PMCID: PMC4548977 DOI: 10.1016/j.scitotenv.2012.10.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 05/23/2023]
Abstract
There is a paucity of prospective cohort studies investigating the impact of environmental factors on the development of cardiometabolic (CM) disorders like type II diabetes (T2DM). The objective of the Air-Pollution and Cardiometabolic Diseases (AIRCMD) study is to investigate the impact of personal level air pollution measures [personal black carbon (BC)/sulfate measures] and ambient fine particulate matter [(PM2.5)/NO2] levels on propensity to type II diabetes in Beijing, China. Subjects with metabolic syndrome will undergo four repeated study visits within each season over a one year period following an initial screening visit. At each study visit, subjects will be monitored for sub-acute exposure to personal and ambient measures of air-pollution exposure and will undergo a series of functional CM outcomes. The primary endpoints include independent associations between integrated 5-day mean exposure to PM2.5 and BC and homeostasis model assessment of insulin resistance (HOMA-IR) measures, 24-hour mean diastolic and mean arterial pressure and endothelial-dependent vasodilatation. The secondary endpoints will explore the mechanistic explanation for a causal relationship between exposures and propensity for type II diabetes and will include additional functional outcomes such as arterial compliance, heart rate variability and plasma adipokines. The novel aspects of the study include the launch of infrastructure for future translational investigations in highly polluted urbanized environments and the creation of novel methodologies for linking personalized exposure measurements with functional CM outcomes. We believe that AIRCMD will allow for unprecedented new investigations into the association between environmental risk factors and CM disorders.
Collapse
Affiliation(s)
- Zhichao Sun
- Department of Biostatistics, The University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Prohypertensive effect of gestational personal exposure to fine particulate matter. Prospective cohort study in non-smoking and non-obese pregnant women. Cardiovasc Toxicol 2013; 12:216-25. [PMID: 22328329 PMCID: PMC3404286 DOI: 10.1007/s12012-012-9157-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to fine particulate matter (PM) is a recognized risk factor for elevated blood pressure (BP) and cardiovascular disease in adults, and this prospective cohort study was undertaken to evaluate whether gestational exposure to PM2.5 has a prohypertensive effect. We measured personal exposure to fine particulate matter (PM2.5) by personal air monitoring in the second trimester of pregnancy among 431 women, and BP values in the third trimester were obtained from medical records of prenatal care clinics. In the general estimating equation model, the effect of PM2.5 on BP was adjusted for relevant covariates such as maternal age, education, parity, gestational weight gain (GWG), prepregnancy BMI, environmental tobacco smoke (ETS), and blood lead level. Systolic blood pressure (SBP) increased in a linear fashion across a dosage of PM2.5 and on average augmented by 6.1 mm Hg (95% CI, 0.6–11.6) with log unit of PM2.5 concentration. Effects of age, maternal education, prepregnancy BMI, blood lead level, and ETS were insignificant. Women with excessive gestational weight gain (>18 kg) had higher mean SBP parameters by 5.5 mmHg (95% CI, 2.7–8.3). In contrast, multiparous women had significantly lower SBP values (coeff. = −4.2 mm Hg; 95% CI, −6.8 to −1.6). Similar analysis performed for diastolic blood pressure (DBP) has demonstrated that PM2.5 also affected DBP parameters (coeff. = 4.1; 95% CI, −0.02 to 8.2), but at the border significance level. DBP values were positively associated with the excessive GWG (coeff. = 2.3; 95% CI, 0.3–4.4) but were inversely related to parity (coeff. = −2.7; 95% CI, −4.6 to −0.73). In the observed cohort, the exposure to fine particulate matter during pregnancy was associated with increased maternal blood pressure.
Collapse
|
175
|
Wang H, Wang JJ, Sanderson BJS. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:874-882. [PMID: 24053364 DOI: 10.1080/15287394.2013.826566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- He Wang
- a Department of Environmental Health Science, School of Public Health and Tropical Medicine , Tulane University , New Orleans , Louisiana , USA
| | | | | |
Collapse
|
176
|
Elvidge T, Matthews IP, Gregory C, Hoogendoorn B. Feasibility of using biomarkers in blood serum as markers of effect following exposure of the lungs to particulate matter air pollution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:1-44. [PMID: 23534393 DOI: 10.1080/10590501.2013.763575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Particulate matter (PM) air pollution has significant cardiopulmonary health effects. Serum biomarkers may elucidate the disease mechanisms involved and provide a means for biomonitoring exposed populations, thereby enabling accurate policy decisions on air quality standards to be made. For this review, research investigating association of blood serum biomarkers and exposure to PM was identified, finding 26 different biomarkers that were significantly associated with exposure. Recent evidence links different effects to different components of PM. Future research on biomarkers of effect will need to address exposure by all PM size fractions.
Collapse
Affiliation(s)
- Timothy Elvidge
- Cochrane Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
177
|
Shvedova AA, Yanamala N, Murray AR, Kisin ER, Khaliullin T, Hatfield MK, Tkach AV, Krantz QT, Nash D, King C, Gilmour MI, Gavett SH. Oxidative stress, inflammatory biomarkers, and toxicity in mouse lung and liver after inhalation exposure to 100% biodiesel or petroleum diesel emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:907-21. [PMID: 24156694 PMCID: PMC4671493 DOI: 10.1080/15287394.2013.825217] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over the past decade, soy biodiesel (BD) has become a first alternative energy source that is economically viable and meets requirements of the Clean Air Act. Due to lower mass emissions and reduced hazardous compounds compared to diesel combustion emissions (CE), BD exposure is proposed to produce fewer adverse health effects. However, considering the broad use of BD and its blends in different industries, this assertion needs to be supported and validated by mechanistic and toxicological data. Here, adverse effects were compared in lungs and liver of BALB/cJ mice after inhalation exposure (0, 50, 150, or 500 μg/m3; 4 h/d, 5 d/wk, for 4 wk) to CE from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 CE produced a significant accumulation of oxidatively modified proteins (carbonyls), an increase in 4-hydroxynonenal (4-HNE), a reduction of protein thiols, a depletion of antioxidant gluthatione (GSH), a dose-related rise in the levels of biomarkers of tissue damage (lactate dehydrogenase, LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. Significant differences in the levels of inflammatory cytokines interleukin (IL)-6, IL-10, IL-12p70, monocyte chemoattractant protein (MCP)-1, interferon (IFN) γ, and tumor necrosis factor (TNF)-α were detected in lungs and liver upon B100 and D100 CE exposures. Overall, the tissue damage, oxidative stress, inflammation, and cytokine response were more pronounced in mice exposed to BD CE. Further studies are required to understand what combustion products in BD CE accelerate oxidative and inflammatory responses.
Collapse
Affiliation(s)
- Anna A. Shvedova
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Naveena Yanamala
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
| | - Ashley R. Murray
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Elena R. Kisin
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
| | - Timur Khaliullin
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
| | - Meghan K. Hatfield
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
| | - Alexey V. Tkach
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute of Occupational and Safety Health, Morgantown, West Virginia, USA
| | - Q. T. Krantz
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| | - David Nash
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Charly King
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| | - M. Ian Gilmour
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| | - Stephen H. Gavett
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| |
Collapse
|
178
|
Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 2012; 8:577-602. [PMID: 22871197 DOI: 10.2217/fca.12.43] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Air pollution, especially airborne particulate matter (PM), is associated with an increase in both morbidity and mortality from cardiovascular disease, although the underlying mechanisms remain incompletely established. The one consistent observation that links the pulmonary and cardiovascular effects of inhaled PM is oxidative stress. This article examines the evidence for the role of oxidative stress in the cardiovascular effects of air pollution, beginning with observations from epidemiological and controlled exposure studies and then exploring potential mechanistic pathways involving free radical generation from PM itself, to effects of PM on cell cultures, isolated organs, healthy animals and animal models of disease. Particular emphasis is placed on the vascular and atherosclerotic effects of urban air pollution and diesel exhaust emissions as rich sources of environmental ultrafine particles.
Collapse
Affiliation(s)
- Mark R Miller
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
179
|
Labranche N, El Khattabi C, Dewachter L, Dreyfuss C, Fontaine J, van de Borne P, Berkenboom G, Pochet S. Vascular Oxidative Stress Induced by Diesel Exhaust Microparticles. J Cardiovasc Pharmacol 2012; 60:530-7. [DOI: 10.1097/fjc.0b013e318270f1a8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
180
|
Franchini M, Guida A, Tufano A, Coppola A. Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms. J Thromb Haemost 2012; 10:2438-51. [PMID: 23006215 DOI: 10.1111/jth.12006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The public health burden of air pollution has been increasingly recognized over the last decades. Following the first assessed adverse effects on respiratory diseases and lung cancer, a large body of epidemiologic and clinical studies definitely documented an even stronger association of air pollution exposure with cardiovascular mortality and morbidity, particularly related to atherothrombotic (coronary and cerebrovascular) disease. Particulate matter (PM), mainly that with lower aerodynamic diameter (fine and ultrafine PM), is responsible for the most severe effects, due to its capacity to transport toxic substances deep into the lower airways. These effects have been shown to occur not only after short-term exposure to elevated concentrations of pollutants, but even after long-term relatively low levels of exposure. Vulnerable subjects (elderly persons and those with preexisting cardiopulmonary diseases) show the highest impact. Fewer and conflicting data also suggest an association with venous thromboembolism. Although not completely elucidated, a series of mechanisms have been hypothesized and tested in experimental settings. These phenomena, including vasomotor and cardiac autonomic dysfunction, hemostatic unbalance, oxidative stress and inflammatory response, have been shown to change over time and differently contribute to the short-term and long-term adverse effects of pollution exposure. Beyond environmental health policies, crucial for improving air quality and reducing the impact of such an elusive threat to public health, the recognition and assessment of the individual risk, together with specific advice, should be routinely implemented in the strategies of primary and secondary cardiovascular prevention.
Collapse
Affiliation(s)
- M Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | | | | | | |
Collapse
|
181
|
Non-specific abdominal pain and air pollution: a novel association. PLoS One 2012; 7:e47669. [PMID: 23118887 PMCID: PMC3485276 DOI: 10.1371/journal.pone.0047669] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022] Open
Abstract
Background We studied whether short-term exposure to air pollution was associated with non-specific abdominal pain in epidemiologic and animal studies. Methods Patients visiting the emergency department with non-specific abdominal pain were identified in Edmonton (1992 to 2002, n = 95,173) and Montreal (1997 to 2002, n = 25,852). We calculated the daily concentrations for ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and particles <10 (PM10) or <2.5 (PM2.5) µm. A case crossover study design was used to estimate the odds ratio (OR) and 95% confidence interval (CI) associated with an increase in the interquartile range of the air pollutants. We investigated differential effects by age and sex. Mice were gavaged with urban particle extracts. In animal models, colonic motility was tested, and visceral abdominal pain was measured using a writhing test, and behavioral response to oil of mustard and neostigmine. Motility and pain was measured acutely (1.5 hours after gavage) and chronically (7-days and 21-days after gavage). Results Emergency department visits for non-specific abdominal pain were primarily by women between the ages of 15–24 years. Individuals aged 15 to 24 years were at increased risk of non-specific abdominal pain in Edmonton (same day CO: OR = 1.04, 95% CI = 1.02–1.06; and NO2: OR = 1.06, 95% CI = 1.03–1.09). The risk of air pollution among 15–24 year olds in Montreal was significantly positive (same day CO: OR = 1.11, 95% CI = 1.05–1.17; NO2: OR = 1.09, 95% CI = 1.01–1.16; SO2: OR = 1.17, 95% CI = 1.10–1.25; PM2.5: OR = 1.09, 95% CI = 1.04–1.15). Abdominal pain was increased by an acute gavage of pollution extract but not to chronic exposure to pollutants. Colonic transit was delayed following chronic but not acute exposure with the pollutants. Conclusions Epidemiological and animal data suggest that short-term exposure to air pollution may trigger non-specific abdominal pain in young individuals.
Collapse
|
182
|
Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 2012; 41:361-73. [PMID: 23104765 DOI: 10.1177/0192623312464531] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is increasing evidence suggesting links between exposure to environmental toxins and susceptibility to type 2 diabetes mellitus (DM). In this review, we summarize the experimental evidence to support this association that has been noted in many epidemiologic studies. Inflammation in response to particulate matter (PM(2.5)) exposure in air pollution represents a common mechanism that may interact with other pro-inflammatory influences in diet and life style to modulate susceptibility to cardiometabolic diseases. The role of innate immune cytokines released from macrophages in the lung is well known. In addition, chemokine triggers in response to air-pollution exposure may mediate a cellular response from the bone marrow/spleen through toll-like receptors (TLRs) and Nucleotide Oligomerization Domain receptors (NLRs) pathways to mediate inflammatory response in organs. Emerging data also seem to support a role for PM(2.5) exposure in endoplasmic reticulum stress-induced apoptosis and in brown adipose tissue dysfunction. Decreased expression of UCP1 in brown adipose tissue may account for reduced thermogenesis providing another link between PM(2.5) and insulin resistance. The implications of an experimental link between air-pollution exposure and type 2 DM are profound as air pollution is a pervasive risk factor throughout the world and even modest alleviation in exposure may provide substantial public health benefits.
Collapse
Affiliation(s)
- Cuiqing Liu
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
183
|
Langrish JP, Bosson J, Unosson J, Muala A, Newby DE, Mills NL, Blomberg A, Sandström T. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J Intern Med 2012; 272:224-39. [PMID: 22724512 DOI: 10.1111/j.1365-2796.2012.02566.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Air pollution is now recognized as an important independent risk factor for cardiovascular morbidity and mortality and may be responsible for up to 3 million premature deaths each year worldwide. The mechanisms underlying the observed effects are poorly understood but are likely to be multifactorial. Here, we review the acute and chronic effects of air pollution exposure on the cardiovascular system and discuss how these effects may explain the observed increases in cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- J P Langrish
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Hunter AL, Mills NL, Newby DE. Combustion-derived air pollution and cardiovascular disease. Br J Hosp Med (Lond) 2012; 73:492-7. [DOI: 10.12968/hmed.2012.73.9.492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amanda L Hunter
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4SU
| | - Nicholas L Mills
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4SU
| | - David E Newby
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4SU
| |
Collapse
|
185
|
Weiden MD, Naveed B, Kwon S, Cho SJ, Comfort AL, Prezant DJ, Rom WN, Nolan A. Cardiovascular biomarkers predict susceptibility to lung injury in World Trade Center dust-exposed firefighters. Eur Respir J 2012; 41:1023-30. [PMID: 22903969 DOI: 10.1183/09031936.00077012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulmonary vascular loss is an early feature of chronic obstructive pulmonary disease. Biomarkers of inflammation and of metabolic syndrome predict loss of lung function in World Trade Center (WTC) lung injury (LI). We investigated if other cardiovascular disease (CVD) biomarkers also predicted WTC-LI. This nested case-cohort study used 801 never-smoker, WTC-exposed firefighters with normal pre-9/11 lung function presenting for subspecialty pulmonary evaluation (SPE) before March 2008. A representative subcohort of 124 out of 801 subjects with serum drawn within 6 months of 9/11 defined CVD biomarker distribution. Post-9/11 forced expiratory volume in 1 s (FEV1) at defined cases were as follows: susceptible WTC-LI cases with FEV1 ≤77% predicted (66 out of 801) and resistant WTC-LI cases with FEV1 ≥107% predicted (68 out of 801). All models were adjusted for WTC exposure intensity, body mass index at SPE, age on 9/11 and pre-9/11 FEV1. Susceptible WTC-LI cases had higher levels of apolipoprotein-AII, C-reactive protein and macrophage inflammatory protein-4 with significant relative risks (RRs) of 3.85, 3.93 and 0.26, respectively, with an area under the curve (AUC) of 0.858. Resistant WTC-LI cases had significantly higher soluble vascular cell adhesion molecule and lower myeloperoxidase, with RRs of 2.24 and 2.89, respectively (AUC 0.830). Biomarkers of CVD in serum 6 months post-9/11 predicted either susceptibility or resistance to WTC-LI. These biomarkers may define pathways either producing or protecting subjects from pulmonary vascular disease and associated loss of lung function after an irritant exposure.
Collapse
Affiliation(s)
- Michael D Weiden
- Critical Care and Sleep, New York University, School of Medicine New York, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
O’Neill MS, Breton CV, Devlin RB, Utell MJ. Air pollution and health: emerging information on susceptible populations. AIR QUALITY, ATMOSPHERE, & HEALTH 2012; 5:189-201. [PMID: 25741389 PMCID: PMC4345419 DOI: 10.1007/s11869-011-0150-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Outdoor air pollution poses risks to human health in communities around the world, and research on populations who are most susceptible continues to reveal new insights. Human susceptibility to adverse health effects from exposure to air pollution can be related to underlying disease; demographic or anthropometric characteristics; genetic profile; race and ethnicity; lifestyle, behaviors, and socioeconomic position; and location of residence or daily activities. In health research, an individual or group may have an enhanced responsiveness to a given, identical level of pollution exposure compared to those who are less susceptible. Or, people in these different groups may experience varying levels of exposure (for example, a theoretically homogeneous population whose members differ only by proximity to a road). Often the information available for health research may relate to both exposure and enhanced response to a given dose of pollution. This paper discusses the general direction of research on susceptibility to air pollution, with a general though not an exclusive focus on particulate matter, with specific examples of research on susceptibility related to cardiovascular disease, diabetes, asthma, and genetic and epigenetic features. We conclude by commenting how emerging knowledge of susceptibility can inform policy for controlling pollution sources and exposures to yield maximal health benefit and discuss two areas of emerging interest: studying air pollution and its connection to perinatal health, as well as land use and urban infrastructure design.
Collapse
Affiliation(s)
- Marie S. O’Neill
- School of Public Health, University of Michigan, 6631 SPH Tower, 109 South Observatory, Ann Arbor, MI 48109-2029, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1540 Alcazar St. CHP 236, Los Angeles, CA 90033, USA
| | - Robert B. Devlin
- Clinical Research Branch, Environmental Public Health Division, U.S. Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC 27599-7315, USA
| | - Mark J. Utell
- Department of Medicine, University of Rochester Medical Center, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA. Department of Environmental Medicine, University of Rochester Medical Center, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
187
|
Abstract
BACKGROUND Previous studies on the effects of acute air pollution have focused primarily on blood pressure (BP). METHODS Our study enrolled 9238 nonsmoking adults over 30 years of age from 6 townships in Taiwan: 1 seaport, 1 urban, 1 industrial, and 3 rural. Using generalized additive models, we evaluated the associations between brachial BP and short-term exposure to 5 air pollutants: particulate matter with diameter <10 μm (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)), carbon monoxide (CO), and ozone (O(3)). RESULTS After adjusting for individual and meteorologic factors, the systolic BP was decreased by all 5 pollutants, whereas the diastolic BP was increased by SO(2), NO(2), and O(3). The pulse pressure was consistently decreased by all 5 pollutants, with changes of -1.5 (95% confidence interval = -2.0 to -1.1), -0.6 (-0.9 to -0.4), -2.4 (-3.0 to -1.8), -1.2 (-1.6 to -0.9), and -1.4 (-1.8 to -0.9) mm Hg for interquartile range increases in 3-day lagged PM(10), SO(2), NO(2), carbon monoxide, and O(3), respectively. PM(10) exposure was more strongly associated with reduction of pulse pressure among men, persons >60 years of age, those with hypertension, and those living in the industrial township. CONCLUSIONS Short-term exposure to air pollution reduces pulse pressure. PM(10) in industrial emissions may contribute to pulse pressure changes. Age, sex, and hypertensive status may modify the effects of PM(10) on pulse pressure.
Collapse
|
188
|
Donaldson K, Seaton A. A short history of the toxicology of inhaled particles. Part Fibre Toxicol 2012; 9:13. [PMID: 22559156 PMCID: PMC3436721 DOI: 10.1186/1743-8977-9-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/16/2012] [Indexed: 11/10/2022] Open
Abstract
Particle toxicology arose in order to understand the mechanisms of adverse effects of 3 major particle types that had historically exerted the greatest toll of ill-health--quartz, coal and asbestos. By the middle of the last century rat inhalation studies had been carried out and the pathology documented, but true mechanistic particle toxicology did not really take off until the 1970s when cell culture techniques became available. By the 1980s glass fibres were a major focus of interest and attempts to develop a structure-toxicity paradigm centred on biopersistence. In the 1990s environmental particles dominated the particle toxicology agenda and the cardiovascular system emerged as a target for inhaled particles, raising new challenges for particle toxicologists. We are currently in the era of nanotoxicology where a large and diverse range of new nanoparticles types are under scrutiny.
Collapse
Affiliation(s)
- Ken Donaldson
- MRC/University of Edinburgh Centre for Inflammation Research, ELEGI Colt Laboratory, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | |
Collapse
|
189
|
Davel AP, Lemos M, Pastro LM, Pedro SC, de André PA, Hebeda C, Farsky SH, Saldiva PH, Rossoni LV. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 2012; 295:39-46. [DOI: 10.1016/j.tox.2012.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/21/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
190
|
Chao MW, Po IP, Laumbach RJ, Koslosky J, Cooper K, Gordon MK. DEP induction of ROS in capillary-like endothelial tubes leads to VEGF-A expression. Toxicology 2012; 297:34-46. [PMID: 22507881 DOI: 10.1016/j.tox.2012.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/13/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Inhalation of diesel exhaust particles (DEPs) is associated with pulmonary and cardiovascular disease. One contributor to pathogenesis is inhaled particles reaching and injuring the lung capillary endothelial cells, and possibly gaining access to the blood stream. Using in vitro capillary tubes as a simplified vascular model system for this process, it was previously shown that DEPs induce the redistribution of vascular endothelial cell-cadherin (VE-Cad) away from the plasma membrane to intracellular locations. This allowed DEPs into the cell cytoplasm and tube lumen, suggesting the tubes may have become permeable (Chao et al., 2011). Here some of the mechanisms responsible for endothelial tube changes after DEP exposure were examined. The results demonstrate that endothelial tube cells mounted an oxidative stress response to DEP exposure. Hydrogen peroxide and oxidized proteins were detected after 24h of exposure to DEPs. Particles induced relocalization of Nrf2 from the cytoplasm to the nucleus, upregulating the expression of the enzyme heme oxygenase-1 (HO-1). Surprisingly, vascular endothelial cell growth factor-A (VEGF-A), initially termed "vascular permeability factor" (VPF), was found to be up-regulated in response to the HO-1 expression induced by DEPs. Similar to DEPs, applied VEGF-A induced relocalization of VE-Cadherin from the cell membrane surface to an intracellular location, and relocalization of VE-cadherin was associated with permeability. These data suggest that the DEPs may induce or contribute to the permeability of capillary-like endothelial tube cells via induction of HO-1 and VEGF-A.
Collapse
Affiliation(s)
- Ming Wei Chao
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
191
|
Robertson S, Gray GA, Duffin R, McLean SG, Shaw CA, Hadoke PWF, Newby DE, Miller MR. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Part Fibre Toxicol 2012; 9:9. [PMID: 22480168 PMCID: PMC3361483 DOI: 10.1186/1743-8977-9-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/05/2012] [Indexed: 01/09/2023] Open
Abstract
Background Inhalation of diesel exhaust impairs vascular function in man, by a mechanism that has yet to be fully established. We hypothesised that pulmonary exposure to diesel exhaust particles (DEP) would cause endothelial dysfunction in rats as a consequence of pulmonary and systemic inflammation. Methods Wistar rats were exposed to DEP (0.5 mg) or saline vehicle by intratracheal instillation and hind-limb blood flow, blood pressure and heart rate were monitored in situ 6 or 24 h after exposure. Vascular function was tested by administration of the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) in vivo and ex vivo in isolated rings of thoracic aorta, femoral and mesenteric artery from DEP exposed rats. Bronchoalveolar lavage fluid (BALF) and blood plasma were collected to assess pulmonary (cell differentials, protein levels & interleukin-6 (IL-6)) and systemic (IL-6), tumour necrosis factor alpha (TNFα) and C-reactive protein (CRP)) inflammation, respectively. Results DEP instillation increased cell counts, total protein and IL-6 in BALF 6 h after exposure, while levels of IL-6 and TNFα were only raised in blood 24 h after DEP exposure. DEP had no effect on the increased hind-limb blood flow induced by ACh in vivo at 6 or 24 h. However, responses to SNP were impaired at both time points. In contrast, ex vivo responses to ACh and SNP were unaltered in arteries isolated from rats exposed to DEP. Conclusions Exposure of rats to DEP induces both pulmonary and systemic inflammation, but does not modify endothelium-dependent vasodilatation. Other mechanisms in vivo limit dilator responses to SNP and these require further investigation.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
PURPOSE OF REVIEW Recent discoveries in the field of air pollution toxicology highlight the potential impact of specific sources of air pollution, especially related to roadway emissions, on acute and chronic cardiovascular disease. This review covers potential mechanisms, both in terms of biological pathways and chemical drivers, to explain these observations. RECENT FINDINGS Air pollution is associated with chronic progression of cardiovascular disease. Roadway exposures appear to have a strong correlation to these adverse outcomes. Controlled toxicological studies highlight potential interactions between vehicle-source emissions and adverse vascular outcomes. Mechanistically, a role for both innate and adaptive immune responses is emerging, with important recent findings demonstrating that immunomodulatory pattern-recognition receptors such as Toll-like receptor-4 and lectin-like oxidized LDL receptor-1 may play a role in communicating airway exposures to cardiovascular outcomes. SUMMARY An improved understanding of the sources and mechanisms underlying adverse cardiovascular health outcomes of air pollution would enhance our ability to manage vulnerable populations and establish precise, effective regulatory policies.
Collapse
|
193
|
Channell MM, Paffett ML, Devlin RB, Madden MC, Campen MJ. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational in vitro model. Toxicol Sci 2012; 127:179-86. [PMID: 22331494 DOI: 10.1093/toxsci/kfs084] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen dioxide (NO(2)). Plasma samples were obtained from human volunteers exposed to 100 μg/m(3) DE or filtered air for 2 h. A second cohort was exposed to 500 ppb NO(2) or filtered air in an identical protocol. Primary human coronary artery endothelial cells (hCAECs) were grown to confluence and treated for 24 h with a 10 or 30% (in media) mixture of plasma obtained before, immediately post or 24 h postexposure to pollutant exposures. Messenger RNA (mRNA) was isolated from hCAECs following the incubation and probed for intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) expression. ICAM-1 mRNA expression was increased by plasma obtained at both timepoints following the NO(2) exposures. VCAM-1 was significantly elevated in cells treated with plasma obtained 24 h following diesel exposure and at both timepoints following NO(2) exposure. Interleukin-8 protein was elevated in the hCAEC supernatant when cells were incubated with plasma from NO(2) exposures. These data indicate that proinflammatory circulating factors are elevated acutely following exposure to both DE and a primary component thereof, NO(2). These functional translational assays offer novel approaches to assessing the cardiovascular risk associated with air pollution exposure.
Collapse
Affiliation(s)
- Meghan M Channell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
194
|
Weldy CS, White CC, Wilkerson HW, Larson TV, Stewart JA, Gill SE, Parks WC, Kavanagh TJ. Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice. Inhal Toxicol 2012; 23:724-35. [PMID: 21967497 DOI: 10.3109/08958378.2011.608095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Inhalation of ambient fine particulate matter (PM₂.₅) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM₂.₅ in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM₂.₅-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases. OBJECTIVE This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice. MATERIALS AND METHODS We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels. RESULTS The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice. DISCUSSION AND CONCLUSION This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM₂.₅.
Collapse
Affiliation(s)
- Chad S Weldy
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Beckerman BS, Jerrett M, Finkelstein M, Kanaroglou P, Brook JR, Arain MA, Sears MR, Stieb D, Balmes J, Chapman K. The association between chronic exposure to traffic-related air pollution and ischemic heart disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:402-11. [PMID: 22524595 DOI: 10.1080/15287394.2012.670899] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Increasing evidence links air pollution to the risk of cardiovascular disease. This study investigated the association between ischemic heart disease (IHD) prevalence and exposure to traffic-related air pollution (nitrogen dioxide [NO₂], fine particulate matter [PM₂.₅], and ozone [O₃]) in a population of susceptible subjects in Toronto. Local (NO₂) exposures were modeled using land use regression based on extensive field monitoring. Regional exposures (PM₂.₅, O₃) were modeled as confounders using inverse distance weighted interpolation based on government monitoring data. The study sample consisted of 2360 patients referred during 1992 to 1999 to a pulmonary clinic at the Toronto Western Hospital in Toronto, Ontario, Canada, to diagnose or manage a respiratory complaint. IHD status was determined by clinical database linkages (ICD-9-CM 412-414). The association between IHD and air pollutants was assessed with a modified Poisson regression resulting in relative risk estimates. Confounding was controlled with individual and neighborhood-level covariates. After adjusting for multiple covariates, NO₂ was significantly associated with increased IHD risk, relative risk (RR) = 1.33 (95% confidence interval [CI]: 1.2, 1.47). Subjects living near major roads and highways had a trend toward an elevated risk of IHD, RR = 1.08 (95% CI: 0.99, 1.18). Regional PM₂.₅ and O₃ were not associated with risk of IHD.
Collapse
Affiliation(s)
- Bernardo S Beckerman
- School of Public Health, University of California Berkeley, Berkeley, California 94720-7360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Emmerechts J, Hoylaerts MF. The effect of air pollution on haemostasis. Hamostaseologie 2011; 32:5-13. [PMID: 22009166 DOI: 10.5482/ha-1179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 11/05/2022] Open
Abstract
Ambient environmental air pollutants include gaseous and particulate components. In polluted air, especially particulate matter seems responsible for cardiovascular complications: It consists of a heterogeneous mixture of solid and liquid particles with different diameters ranging from large thoracic to ultrafine particles, with a diameter <100 nm. Ultrafines can penetrate deeply into the lung to deposit in the alveoli. Cardiovascular manifestations result both from short-term and long-term exposure and have been linked to interference with the autonomic nervous system, direct translocation into the systemic circulation, pulmonary inflammation and oxidative stress. Thrombotic complications associated with air pollution comprise arterial and probably venous thrombogenicity. This review describes the existing epidemiological and experimental evidence to explain the rapid induction of myocardial infarction within 1-2 hours after exposure to polluted air and advances several explanations as to why more chronic exposure will lead to enhanced venous thrombogenicity. Mechanisms such as platelet activation, endothelial dysfunction, coagulation factor changes and microvesicle production are discussed.
Collapse
Affiliation(s)
- J Emmerechts
- Marc Hoylaerts, Center for Molecular and Vascular Biology, Leuven, Belgium
| | | |
Collapse
|
197
|
Weldy CS, Wilkerson HW, Larson TV, Stewart JA, Kavanagh TJ. DIESEL particulate exposed macrophages alter endothelial cell expression of eNOS, iNOS, MCP1, and glutathione synthesis genes. Toxicol In Vitro 2011; 25:2064-73. [PMID: 21920430 DOI: 10.1016/j.tiv.2011.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS, and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity.
Collapse
Affiliation(s)
- Chad S Weldy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States.
| | | | | | | | | |
Collapse
|
198
|
Hesterberg TW, Long CM, Sax SN, Lapin CA, McClellan RO, Bunn WB, Valberg PA. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE). JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:894-913. [PMID: 22010375 DOI: 10.1080/10473289.2011.599277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.
Collapse
|
199
|
Cutrufello PT, Rundell KW, Smoliga JM, Stylianides GA. Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal Toxicol 2011; 23:658-67. [DOI: 10.3109/08958378.2011.604106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
200
|
Knuckles TL, Yi J, Frazer DG, Leonard HD, Chen BT, Castranova V, Nurkiewicz TR. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 2011; 6:724-35. [PMID: 21830860 DOI: 10.3109/17435390.2011.606926] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 μg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness.
Collapse
Affiliation(s)
- Travis L Knuckles
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|