151
|
Paulin R, Dromparis P, Sutendra G, Gurtu V, Zervopoulos S, Bowers L, Haromy A, Webster L, Provencher S, Bonnet S, Michelakis ED. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab 2014; 20:827-839. [PMID: 25284742 DOI: 10.1016/j.cmet.2014.08.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/02/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Suppression of mitochondrial function promoting proliferation and apoptosis suppression has been described in the pulmonary arteries and extrapulmonary tissues in pulmonary arterial hypertension (PAH), but the cause of this metabolic remodeling is unknown. Mice lacking sirtuin 3 (SIRT3), a mitochondrial deacetylase, have increased acetylation and inhibition of many mitochondrial enzymes and complexes, suppressing mitochondrial function. Sirt3KO mice develop spontaneous PAH, exhibiting previously described molecular features of PAH pulmonary artery smooth muscle cells (PASMC). In human PAH PASMC and rats with PAH, SIRT3 is downregulated, and its normalization with adenovirus gene therapy reverses the disease phenotype. A loss-of-function SIRT3 polymorphism, linked to metabolic syndrome, is associated with PAH in an unbiased cohort of 162 patients and controls. If confirmed in large patient cohorts, these findings may facilitate biomarker and therapeutic discovery programs in PAH.
Collapse
Affiliation(s)
- Roxane Paulin
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Peter Dromparis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Vikram Gurtu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | | | - Lyndsay Bowers
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Linda Webster
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Steeve Provencher
- Department of Medicine, Laval University, IUCPQ Research Centre, Pulmonary Hypertension Research Group, Quebec, QC G1V 4G5, Canada
| | - Sebastien Bonnet
- Department of Medicine, Laval University, IUCPQ Research Centre, Pulmonary Hypertension Research Group, Quebec, QC G1V 4G5, Canada
| | | |
Collapse
|
152
|
Farkas D, Alhussaini AA, Kraskauskas D, Kraskauskiene V, Cool CD, Nicolls MR, Natarajan R, Farkas L. Nuclear factor κB inhibition reduces lung vascular lumen obliteration in severe pulmonary hypertension in rats. Am J Respir Cell Mol Biol 2014; 51:413-25. [PMID: 24684441 DOI: 10.1165/rcmb.2013-0355oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
NF-κB and IL-6, a NF-κB downstream mediator, play a central role in the inflammatory response of tissues. We aimed to determine the role of the classical NF-κB pathway in severe pulmonary arterial hypertension (PAH) induced by SU5416 and chronic hypoxia (SuHx) in rats. Tissue samples from patients with idiopathic PAH (iPAH) and control subjects were investigated. SuHx rats were treated from Days 1 to 3, 1 to 21, and 29 to 42 with the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and/or from Days 1 to 21 with anti-IL-6 antibody. Nuclear staining for NF-κB, an indicator of the activation of the classical NF-κB pathway, was detected in pulmonary arterial lesions of patients with iPAH and SuHx rats. NF-κB inhibition with PDTC prevented and reduced pulmonary arterial obliteration without reducing muscularization. However, the elevated lung levels of IL-6 were not reduced in PDTC-treated SuHx animals. PDTC treatment prevented or reduced apoptosis of pulmonary artery wall cells and pulmonary arterial obliteration. IL-6 inhibition had only a partial effect on apoptosis and obliteration. Pulmonary arterial media wall thickness was not affected by any of these treatments. Preventive and therapeutic PDTC treatment promoted immune regulation by increasing the number of perivascular CD4(+) T cells, in particular regulatory T cells (early treatment), and by reducing the number of perivascular CD8(+) T lymphocytes and CD45RA(+) B lymphocytes. Therapeutic PDTC treatment further preserved right ventricular function in SuHx animals. Inhibition of NF-κB may represent a therapeutic option for pulmonary arterial obliteration via reduced vessel wall cell apoptosis and improved regulation of the immune system.
Collapse
Affiliation(s)
- Daniela Farkas
- 1 Victoria Johnson Center for Lung Research, Department of Internal Medicine, Division of Pulmonary Disease and Critical Care, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Voelkel NF, Gomez-Arroyo J. The Role of Vascular Endothelial Growth Factor in Pulmonary Arterial Hypertension. The Angiogenesis Paradox. Am J Respir Cell Mol Biol 2014; 51:474-84. [DOI: 10.1165/rcmb.2014-0045tr] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
154
|
Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115:176-88. [PMID: 24951766 DOI: 10.1161/circresaha.113.301129] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The right ventricle (RV) is the major determinant of functional state and prognosis in pulmonary arterial hypertension. RV hypertrophy (RVH) triggered by pressure overload is initially compensatory but often leads to RV failure. Despite similar RV afterload and mass some patients develop adaptive RVH (concentric with retained RV function), while others develop maladaptive RVH, characterized by dilatation, fibrosis, and RV failure. The differentiation of adaptive versus maladaptive RVH is imprecise, but adaptive RVH is associated with better functional capacity and survival. At the molecular level, maladaptive RVH displays greater impairment of angiogenesis, adrenergic signaling, and metabolism than adaptive RVH, and these derangements often involve the left ventricle. Clinically, maladaptive RVH is characterized by increased N-terminal pro-brain natriuretic peptide levels, troponin release, elevated catecholamine levels, RV dilatation, and late gadolinium enhancement on MRI, increased (18)fluorodeoxyglucose uptake on positron emission tomography, and QTc prolongation on the ECG. In maladaptive RVH there is reduced inotrope responsiveness because of G-protein receptor kinase-mediated downregulation, desensitization, and uncoupling of β-adrenoreceptors. RV ischemia may result from capillary rarefaction or decreased right coronary artery perfusion pressure. Maladaptive RVH shares metabolic abnormalities with cancer including aerobic glycolysis (resulting from a forkhead box protein O1-mediated transcriptional upregulation of pyruvate dehydrogenase kinase), and glutaminolysis (reflecting ischemia-induced cMyc activation). Augmentation of glucose oxidation is beneficial in experimental RVH and can be achieved by inhibition of pyruvate dehydrogenase kinase, fatty acid oxidation, or glutaminolysis. Therapeutic targets in RV failure include chamber-specific abnormalities of metabolism, angiogenesis, adrenergic signaling, and phosphodiesterase-5 expression. The ability to restore RV function in experimental models challenges the dogma that RV failure is irreversible without regression of pulmonary vascular disease.
Collapse
Affiliation(s)
- John J Ryan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.)
| | - Stephen L Archer
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.).
| |
Collapse
|
155
|
Sutendra G, Michelakis ED. Pulmonary arterial hypertension: challenges in translational research and a vision for change. Sci Transl Med 2014; 5:208sr5. [PMID: 24154604 DOI: 10.1126/scitranslmed.3005428] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a relentless course toward heart failure and early death. Existing PAH therapies, all of which were developed originally to treat systemic vascular diseases, cannot reverse the disease or markedly improve survival and are expensive. Although there has been a recent increase in the number of potential new therapies emerging from animal studies, less than 3% of the active PAH clinical trials are examining such therapies. There are many potential explanations for the translational gap in this complex multifactorial disease. We discuss these challenges and propose solutions that range from including clinical endpoints in animal studies and improving the rigor of human trials to conducting mechanistic early-phase trials and randomized trials with innovative designs based on personalized medicine principles. Global, independent patient and tissue registries and enhanced communication among academics, industry, and regulatory authorities are needed. The diversity of the mechanisms and pathology of PAH calls for broad comprehensive theories that encompass emerging evidence for contributions of metabolism and inflammation to PAH to support more effective therapeutic target identification.
Collapse
Affiliation(s)
- Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | |
Collapse
|
156
|
Affiliation(s)
- Roxane Paulin
- From the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
157
|
Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L7-26. [PMID: 24816487 DOI: 10.1152/ajplung.00337.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with marked morbidity and mortality. Even though being female represents one of the most powerful risk factors for PAH, multiple questions about the underlying mechanisms remain, and two "estrogen paradoxes" in PAH exist. First, it is puzzling why estrogens have been found to be protective in various animal models of PAH, whereas PAH registries uniformly demonstrate a female susceptibility to the disease. Second, despite the pronounced tendency for the disease to develop in women, female PAH patients exhibit better survival than men. Recent mechanistic studies in classical and in novel animal models of PAH, as well as recent studies in PAH patients, have significantly advanced the field. In particular, it is now accepted that estrogen metabolism and receptor signaling, as well as estrogen interactions with key pathways in PAH development, appear to be potent disease modifiers. A better understanding of these interactions may lead to novel PAH therapies. It is the purpose of this review to 1) review sex hormone synthesis, metabolism, and receptor physiology; 2) assess the context in which sex hormones affect PAH pathogenesis; 3) provide a potential explanation for the observed estrogen paradoxes and gender differences in PAH; and 4) identify knowledge gaps and future research opportunities. Because the majority of published studies investigated 17β-estradiol and/or its metabolites, this review will primarily focus on pulmonary vascular and right ventricular effects of estrogens. Data for other sex hormones will be discussed very briefly.
Collapse
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, School of Medicine, Denver, Colorado
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
158
|
Wang Y, Tabas I. Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association? J Atheroscler Thromb 2014; 21:381-90. [PMID: 24717761 DOI: 10.5551/jat.23929] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial-derived reactive oxygen species (mtROS) is one of the major sources of cellular ROS, and excessive mtROS is associated with atherosclerosis progression in both human and mouse models. This review aims to summarize the most recent studies showing the existence, the causes and pathological consequences of excessive mtROS in atherosclerosis. Despite numerous association and causation studies demonstrating the importance of mtROS in atherosclerosis progression, the failure of antioxidant therapy in human randomized clinical trials demands more definitive, cell-type specific investigations. Better mechanistic understanding of mtROS in atherosclerosis may lead to more effective therapeutic strategies.
Collapse
|
159
|
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease of the lungs resulting in heart failure and premature death. Although, until recently, it was thought that PAH pathology is restricted to pulmonary arteries, several extrapulmonary organs are also affected. The realization that these tissues share a common metabolic abnormality (i.e., suppression of mitochondrial glucose oxidation and increased glycolysis) is important for our understanding of PAH, if not a paradigm shift. Here, we discuss an emerging metabolic theory, which proposes that PAH should be viewed as a syndrome involving many organs sharing a mitochondrial abnormality and explains many PAH features and provides novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gopinath Sutendra
- Department of Medicine, University of Alberta, 2C2 Walter Mackenzie Centre, 8440 112 Street Northwest, Edmonton, AB T6G 2P4, Canada
| | - Evangelos D Michelakis
- Department of Medicine, University of Alberta, 2C2 Walter Mackenzie Centre, 8440 112 Street Northwest, Edmonton, AB T6G 2P4, Canada.
| |
Collapse
|
160
|
Tuder RM, Archer SL, Dorfmüller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 2014; 62:D4-12. [PMID: 24355640 DOI: 10.1016/j.jacc.2013.10.025] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Knowledge of the pathobiology of pulmonary hypertension (PH) continues to accelerate. However, fundamental gaps remain in our understanding of the underlying pathological changes in pulmonary arteries and veins in the different forms of this syndrome. Although PH primarily affects the arteries, venous disease is increasingly recognized as an important entity. Moreover, prognosis in PH is determined largely by the status of the right ventricle, rather than the levels of pulmonary artery pressures. It is increasingly clear that although vasospasm plays a role, PH is an obstructive lung panvasculopathy. Disordered metabolism and mitochondrial structure, inflammation, and dysregulation of growth factors lead to a proliferative, apoptosis-resistant state. These abnormalities may be acquired, genetically mediated as a result of mutations in bone morphogenetic protein receptor-2 or activin-like kinase-1, or epigenetically inherited (as a result of epigenetic silencing of genes such as superoxide dismutase-2). There is a pressing need to better understand how the pathobiology leads to severe disease in some patients versus mild PH in others. Recent recognition of a potential role of acquired abnormalities of mitochondrial metabolism in the right ventricular myocytes and pulmonary vascular cells suggests new therapeutic approaches, diagnostic modalities, and biomarkers. Finally, dissection of the role of pulmonary inflammation in the initiation and promotion of PH has revealed a complex yet fascinating interplay with pulmonary vascular remodeling, promising to lead to novel therapeutics and diagnostics. Emerging concepts are also relevant to the pathobiology of PH, including a role for bone marrow and circulating progenitor cells and microribonucleic acids. Continued interest in the interface of the genetic basis of PH and cellular and molecular pathogenetic links should further expand our understanding of the disease.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Peter Dorfmüller
- Department of Pathology, Marie Lannelongue Hospital, University Paris-Sud, Le Plessis-Robinson, France
| | - Serpil C Erzurum
- Lerner Research Institute and Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christophe Guignabert
- INSERM UMR 999, LabEx LERMIT, Marie Lannelongue Hospital and University Paris-Sud, School of Medicine, Kremlin-Bicêtre, France
| | | | - Marlene Rabinovitch
- Cardiovascular Institute and Department of Pediatrics and The Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Ralph Schermuly
- Excellence Cluster Cardio-Pulmonary System, German Lung Center, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Laboratory, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| |
Collapse
|
161
|
Sureshbabu A, Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 2013; 4:384. [PMID: 24421769 PMCID: PMC3872744 DOI: 10.3389/fphys.2013.00384] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
During mild stressful conditions, cells activate a multitude of mechanisms in an attempt to repair or re-establish homeostasis. One such mechanism is autophagic degradation of mitochondria or mitophagy to dispose damaged mitochondria. However, if stress persists beyond recovery then dysfunctional mitochondria can ignite cell death. This review article summarizes recent studies highlighting the molecular pathways that facilitate mitochondria to alter its morphological dynamics, coordinate stress responses, initiate mitophagy and activate cell death in relevance to pulmonary pathologies. Thorough understanding of how these signaling mechanisms get disrupted may aid in designing new mitochondria-based therapies to combat lung diseases.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
162
|
|