151
|
The Impact of Lipid Handling and Phase Distribution on the Acoustic Behavior of Microbubbles. Pharmaceutics 2021; 13:pharmaceutics13010119. [PMID: 33477843 PMCID: PMC7832861 DOI: 10.3390/pharmaceutics13010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipid-coated microbubbles are ultrasound contrast agents that can be employed for ultrasound molecular imaging and drug delivery. For safe and effective implementation, microbubbles must respond uniformly and predictably to ultrasound. Therefore, we investigated how lipid handling and phase distribution affected the variability in the acoustic behavior of microbubbles. Cholesterol was used to modify the lateral molecular packing of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based microbubbles. To assess the effect of lipid handling, microbubbles were produced by a direct method, i.e., lipids directly dispersed in an aqueous medium or indirect method, i.e., lipids first dissolved in an organic solvent. The lipid phase and ligand distribution in the microbubble coating were investigated using confocal microscopy, and the acoustic response was recorded with the Brandaris 128 ultra-high-speed camera. In microbubbles with 12 mol% cholesterol, the lipids were miscible and all in the same phase, which resulted in more buckle formation, lower shell elasticity and higher shell viscosity. Indirect DSPC microbubbles had a more uniform response to ultrasound than direct DSPC and indirect DSPC-cholesterol microbubbles. The difference in lipid handling between direct and indirect DSPC microbubbles significantly affected the acoustic behavior. Indirect DSPC microbubbles are the most promising candidate for ultrasound molecular imaging and drug delivery applications.
Collapse
|
152
|
Kontaxi G, Stergiou YG, Mouza AA. Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid. MICROMACHINES 2021; 12:mi12010071. [PMID: 33440872 PMCID: PMC7827566 DOI: 10.3390/mi12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/16/2022]
Abstract
Over the last few years, microbubbles have found application in biomedicine. In this study, the characteristics of bubbles formed when air is introduced from a micro-tube (internal diameter 110 μm) in non-Newtonian shear thinning fluids are studied. The dependence of the release time and the size of the bubbles on the gas phase rate and liquid phase properties is investigated. The geometrical characteristics of the bubbles are also compared with those formed in Newtonian fluids with similar physical properties. It was found that the final diameter of the bubbles increases by increasing the gas flow rate and the liquid phase viscosity. It was observed that the bubbles formed in a non-Newtonian fluid have practically the same characteristics as those formed in a Newtonian fluid, whose viscosity equals the asymptotic viscosity of the non-Newtonian fluid, leading to the assumption that the shear rate around an under-formation bubble is high, and the viscosity tends to its asymptotic value. To verify this notion, bubble formation was simulated using Computational Fluid Dynamics (CFD). The simulation results revealed that around an under-formation bubble, the shear rate attains a value high enough to lead the viscosity of the non-Newtonian fluid to its asymptotic value.
Collapse
|
153
|
Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med 2021; 6:e10183. [PMID: 33532585 PMCID: PMC7823123 DOI: 10.1002/btm2.10183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often associated with a poor prognosis due to silent onset, resistance to therapies, and rapid spreading. Most patients are ineligible for curable surgery as they present with advanced disease at the time of diagnosis. Present diagnostic methods relying on anatomical changes have various limitations including difficulty to discriminate between benign and malignant conditions, invasiveness, the ambiguity of imaging results, or the inability to detect molecular biomarkers of PDAC initiation and progression. Therefore, new imaging technologies with high sensitivity and specificity are critically needed for accurately detecting PDAC and noninvasively characterizing molecular features driving its pathogenesis. Contrast enhanced targeted ultrasound (CETUS) is an upcoming molecular imaging modality that specifically addresses these issues. Unlike anatomical imaging modalities such as CT and MRI, molecular imaging using CETUS is promising for early and accurate detection of PDAC. The use of molecularly targeted microbubbles that bind to neovascular targets can enhance the ultrasound signal specifically from malignant PDAC tissues. This review discusses the current state of diagnostic imaging modalities for pancreatic cancer and places a special focus on ultrasound targeted-microbubble technology together with its clinical translatability for PDAC detection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | - Rakesh Bam
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | | | | | - Ramasamy Paulmurugan
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
154
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
155
|
Zhu J, Wang Y, Yang P, Liu Q, Hu J, Yang W, Liu P, He F, Bai Y, Gai S, Xie R, Li C. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. Colloids Surf B Biointerfaces 2021; 197:111358. [DOI: 10.1016/j.colsurfb.2020.111358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
|
156
|
Goncin U, Ton N, Reddy A, El Kaffas A, Brinkmann M, Machtaler S. Contrast-enhanced ultrasound imaging for assessing organ perfusion in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141231. [PMID: 33182180 DOI: 10.1016/j.scitotenv.2020.141231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging has great potential as a non-lethal, inexpensive monitoring tool in aquatic toxicology. It is a well-established clinical imaging approach that combines real-time, quantitative assessment of organ blood flow, with morphological data. In humans, it has been extensively used to measure changes in blood flow that can be attributed to cancer, inflammation, and other biological abnormalities. However, it has yet to be explored as a tool for fish physiology or environmental toxicology. In this study, our goal was to determine if CEUS could be used to visualize and measure blood flow in the liver of a rainbow trout. All rainbow trout received two injections of an ultrasound contrast agent, microbubbles. A subset received a third injection after administration of propranolol, a non-specific beta1 & 2-blocker, to determine if changes in blood flow could be detected. Ultrasound contrast time-intensity curves (TIC) were obtained, fit to a lognormal model, and different perfusion parameters were calculated. Contrast enhancement was observed in all rainbow trout livers, with high percentage between repeated measurements, including blood flow (80.6 ± 27.3%), area under the curve (73.2 ± 14%), blood volume (84 ± 14.2%) and peak enhancement (86.7 ± 7.5%). After administration of propranolol, we detected a non-significant (p > 0.05) increase in area under the curve (102.6 ± 44.2%), peak enhancement (77.3 ± 106.4), blood volume (48.2 ± 74.5%), and decrease in hepatic blood flow (-17.3 ± 37.1%). These data suggest that CEUS imaging is suitable to measure organ blood flow in fish, and demonstrates tremendous potential for exploring different organs, fish species, and effects of chemical contaminants in future studies.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ngoc Ton
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ashwin Reddy
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ahmed El Kaffas
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Markus Brinkmann
- School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security (GIWS), University of Saskatchewan, Saskatoon, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
157
|
Huang YS, Fan CH, Yang WT, Yeh CK, Lin YC. Sonogenetic Modulation of Cellular Activities in Mammalian Cells. Methods Mol Biol 2021; 2312:109-124. [PMID: 34228287 DOI: 10.1007/978-1-0716-1441-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Ultrasound is acoustic waves that can penetrate deeply into tissue in a focused manner with limited adverse effects on cells. As such, ultrasound has been widely used for clinical diagnosis for several decades. Ultrasound induces bioeffects in tissues, providing potential value in therapeutic applications. However, the intrinsic millimeter scale of the ultrasound focal zone represents a challenge with respect to minimizing the illuminated regions to perturb target cells in a precise manner. To control a specific cell population or even single cells, sonogenetic tools that combine ultrasound and genetic methods have been recently developed. With these approaches, several ultrasound-responsive proteins are heterologously introduced into target cells, which enhances the cells' ability to respond to ultrasound stimulation. With optimization of the ultrasound parameters, these tools can specifically manipulate activities in genetically defined cells but not in unmodified cells present in the ultrasound-illuminated regions. These approaches provide new strategies for noninvasive modulation of target cells in various therapeutic applications.
Collapse
Affiliation(s)
- Yao-Shen Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
158
|
Zhang Z, Chen Z, Fan L, Landry T, Brown J, Yu Z, Yin S, Wang J. Ultrasound-microbubble cavitation facilitates adeno-associated virus mediated cochlear gene transfection across the round-window membrane. Bioeng Transl Med 2021; 6:e10189. [PMID: 33532589 PMCID: PMC7823126 DOI: 10.1002/btm2.10189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
The round window of the cochlea provides an ideal route for delivering medicines and gene therapy reagents that can cross the round window membrane (RWM) into the inner ear. Recombinant adeno-associated viruses (rAAVs) have several advantages and are recommended as viral vectors for gene transfection. However, rAAVs cannot cross an intact RWM. Consequently, ultrasound-mediated microbubble (USMB) cavitation is potentially useful, because it can sonoporate the cell membranes, and increase their permeability to large molecules. The use of USMB cavitation for drug delivery across the RWM has been tested in a few animal studies but has not been used in the context of AAV-mediated gene transfection. The currently available large size of the ultrasound probe appears to be a limiting factor in the application of this method to the RWM. In this study, we used home-made ultrasound probe with a decreased diameter to 1.5 mm, which enabled the easy positioning of the probe close to the RWM. In guinea pigs, we used this probe to determine that (1) USMB cavitation caused limited damage to the outer surface layer or the RWM, (2) an eGFP-gene carrying rAAV could effectively pass the USMB-treated RWM and reliably transfect cochlear cells, and (3) the hearing function of the cochlea remained unchanged. Our results suggest that USMB cavitation of the RWM is a good method for rAAV-mediated cochlear gene transfection with clear potential for clinical translation. We additionally discuss several advantages of the small probe size.
Collapse
Affiliation(s)
- Zhen Zhang
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Zhengnong Chen
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Liqiang Fan
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Thomas Landry
- School of Biomedical EngineeringDalhousie UniversityHalifaxCanada
| | - Jeremy Brown
- School of Biomedical EngineeringDalhousie UniversityHalifaxCanada
| | - Zhiping Yu
- School of Communication Science and DisordersDalhousie UniversityHalifaxCanada
| | - Shankai Yin
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Jian Wang
- School of Communication Science and DisordersDalhousie UniversityHalifaxCanada
| |
Collapse
|
159
|
Zhu Y, Sun Y, Liu W, Guan W, Liu H, Duan Y, Chen Y. Magnetic polymeric nanobubbles with optimized core size for MRI/ultrasound bimodal molecular imaging of prostate cancer. Nanomedicine (Lond) 2020; 15:2901-2916. [PMID: 33300812 DOI: 10.2217/nnm-2020-0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To design MRI/ultrasound (US) dual modality imaging probes with optimized size for prostate cancer imaging by targeting prostate-specific membrane antigen (PSMA). Materials & methods: The PSMA-targeting polypeptide-nanobubbles (PP-NBs) with core size of 400 and 700 nm were fabricated and evaluated. Results: With excellent physical property and specificity, PP-NBs of both core size could image PSMA expression in prostate cancer xenografts. Particularly, 400 nm PP-NBs generated higher PSMA-specific MRI/US dual modality contrast enhancement than 700 nm PP-NBs in correlation with histopathologic findings. Conclusion: Benefit from the smaller core size, 400 nm PP-NBs had higher permeability and specificity than 700 nm PP-NBs, hence producing better PSMA-specific MRI/US dual modality imaging.
Collapse
Affiliation(s)
- Yunkai Zhu
- Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Weiyong Liu
- Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China
| | - Yaqing Chen
- Department of Ultrasound in Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| |
Collapse
|
160
|
Denkov N, Tcholakova S, Politova-Brinkova N. Physicochemical control of foam properties. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
161
|
Ton N, Goncin U, Panahifar A, Chapman D, Wiebe S, Machtaler S. Developing a Microbubble-Based Contrast Agent for Synchrotron In-Line Phase Contrast Imaging. IEEE Trans Biomed Eng 2020; 68:1527-1535. [PMID: 33232220 DOI: 10.1109/tbme.2020.3040079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE X-ray phase contrast imaging generates contrast from refraction of X-rays, enhancing soft tissue contrast compared to conventional absorption-based imaging. Our goal is to develop a contrast agent for X-ray in-line phase contrast imaging (PCI) based on ultrasound microbubbles (MBs), by assessing size, shell material, and concentration. METHODS Polydisperse perfluorobutane-core lipid-shelled MBs were synthesized and size separated into five groups between 1 and 10 μm. We generated two size populations of polyvinyl-alcohol (PVA)-MBs, 2-3 μm and 3-4 μm, whose shells were either coated or integrated with iron oxide nanoparticles (SPIONs). Microbubbles were then embedded in agar at three concentrations: 5 × 107, 5 × 106 and 5 × 105 MBs/ml. In-line phase contrast imaging was performed at the Canadian Light Source with filtered white beam micro-computed tomography. Phase contrast intensity was measured by both counting detectable MBs, and comparing mean pixel values (MPV) in minimum and maximum intensity projections of the overall samples. RESULTS Individual lipid-MBs 6-10 μm, lipid-MBs 4-6 μm and PVA-MBs coated with SPIONs were detectable at each concentration. At the highest concentration, lipid-MBs 6-10 μm and 4-6 μm showed an overall increase in positive contrast, whereas at a moderate concentration, only lipid-MBs 6-10 μm displayed an increase. Negative contrast was also observed from two largest lipid-MBs at high concentration. CONCLUSION These data indicate that lipid-MBs larger than 4 μm are candidates for PCI, and 5 × 106 MBs/ml may be the lowest concentration suitable for generating visible phase contrast in vivo. SIGNIFICANCE Identifying a suitable MB for PCI may facilitate future clinical translation.
Collapse
|
162
|
Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound. Pharmaceutics 2020; 12:pharmaceutics12111125. [PMID: 33233374 PMCID: PMC7700476 DOI: 10.3390/pharmaceutics12111125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents.
Collapse
|
163
|
Gao J, Nesbitt H, Logan K, Burnett K, White B, Jack IG, Taylor MA, Love M, Callan B, McHale AP, Callan JF. An ultrasound responsive microbubble-liposome conjugate for targeted irinotecan-oxaliplatin treatment of pancreatic cancer. Eur J Pharm Biopharm 2020; 157:233-240. [PMID: 33222772 DOI: 10.1016/j.ejpb.2020.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Survival rates in pancreatic cancer have remained largely unchanged over the past four decades with less than 5% of patients surviving five years following initial diagnosis. FOLFIRINOX chemotherapy, a combination of folinic acid, 5-fluoruracil, irinotecan and oxaliplatin, has shown the greatest survival benefit for patients with advanced disease but is only indicated for those with good physical performance status due to its extreme off-target toxicity. Ultrasound targeted microbubble destruction (UTMD) has emerged as an effective strategy for the targeted delivery of drug payloads to solid tumours and involves using low intensity ultrasound to disrupt (burst) MBs in the tumour vasculature, releasing encapsulated or attached drugs in a targeted manner. In this manuscript, we describe the preparation of a microbubble-liposome complex (IRMB-OxLipo) carrying two of the three cytotoxic drugs present in the FOLFIRINOX combination, namely irinotecan and oxaliplatin. Efficacy of the IRMB-OxLipo complex following UTMD was determined in Panc-01 3D spheroid and BxPC-3 human xenograft murine models of pancreatic cancer. The results revealed that tumours treated with the IRMB-OxLipo complex and ultrasound were 136% smaller than tumours treated with the same concentration of irinotecan/oxaliplatin but delivered in a conventional manner, i.e. as a non-complexed mixture. This suggests that UTMD facilitates a more effective delivery of irinotecan/oxaliplatin improving the overall effectiveness of this drug combination and to the best of our knowledge, is the first reported example of a microbubble-liposome complex used to deliver these two chemotherapies.
Collapse
Affiliation(s)
- Jinhui Gao
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Heather Nesbitt
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keiran Logan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Kathryn Burnett
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Bronagh White
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Iain G Jack
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Mark A Taylor
- Department of HPB Surgery, Mater Hospital, Belfast, Northern Ireland BT14 6AB, UK
| | - Mark Love
- Imaging Centre, The Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK
| | - Bridgeen Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
164
|
Khan AH, Jiang X, Surwase S, Gultekinoglu M, Bayram C, Sathisaran I, Bhatia D, Ahmed J, Wu B, Ulubayram K, Edirisinghe M, Dalvi SV. Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11429-11441. [PMID: 32903006 DOI: 10.1021/acs.langmuir.0c01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work focuses on the synthesis of oil-layered microbubbles using two microfluidic T-junctions in series and evaluation of the effectiveness of these microbubbles loaded with doxorubicin and curcumin for cell invasion arrest from 3D spheroid models of triple negative breast cancer (TNBC), MDA-MB-231 cell line. Albumin microbubbles coated in the drug-laden oil layer were synthesized using a new method of connecting two microfluidic T-mixers in series. Double-layered microbubbles thus produced consist of an innermost core of nitrogen gas encapsulated in an aqueous layer of bovine serum albumin (BSA) which in turn, is coated with an outer layer of silicone oil. In order to identify the process conditions leading to the formation of double-layered microbubbles, a regime map was constructed based on capillary numbers for aqueous and oil phases. The microbubble formation regime transitions from double-layered to single layer microbubbles and then to formation of single oil droplets upon gradual change in flow rates of aqueous and oil phases. In vitro dissolution studies of double-layered microbubbles in an air-saturated environment indicated that a complete dissolution of such bubbles produces an oil droplet devoid of a gas bubble. Incorporation of doxorubicin and curcumin was found to produce a synergistic effect, which resulted in higher cell deaths in 2D monolayers of TNBC cells and inhibition of cell proliferation from 3D spheroid models of TNBC cells compared to the control.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Xinyue Jiang
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Swarupkumar Surwase
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara 06100, Turkey
| | - Cem Bayram
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey
| | - Indumathi Sathisaran
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Bingjie Wu
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University, Ankara 06100, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London WC1E 7JE, United Kingdom
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
165
|
Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020; 25:2182-2200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.
Collapse
|
166
|
|
167
|
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. ULTRASONICS SONOCHEMISTRY 2020; 67:105096. [PMID: 32278246 DOI: 10.1016/j.ultsonch.2020.105096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
The past several decades have witnessed great progress in "smart drug delivery", an advance technology that can deliver genes or drugs into specific locations of patients' body with enhanced delivery efficiency. Ultrasound-activated mechanical force induced by the interactions between microbubbles and cells, which can stimulate so-called "sonoporation" process, has been regarded as one of the most promising candidates to realize spatiotemporal-controllable drug delivery to selected regions. Both experimental and numerical studies were performed to get in-depth understanding on how the microbubbles interact with cells during sonoporation processes, under different impact parameters. The current work gives an overview of the general mechanism underlying microbubble-mediated sonoporation, and the possible impact factors (e.g., the properties of cavitation agents and cells, acoustical driving parameters and bubble/cell micro-environment) that could affect sonoporation outcomes. Finally, current progress and considerations of sonoporation in clinical applications are reviewed also.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qunying Li
- Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| |
Collapse
|
168
|
Paškevičiūtė M, Januškevičienė I, Sakalauskienė K, Raišutis R, Petrikaitė V. Evaluation of low-intensity pulsed ultrasound on doxorubicin delivery in 2D and 3D cancer cell cultures. Sci Rep 2020; 10:16161. [PMID: 32999381 PMCID: PMC7527335 DOI: 10.1038/s41598-020-73204-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of our study was to evaluate the influence of low-intensity pulsed US on the delivery of doxorubicin (DOX) into MDA-MB-231 triple-negative breast cancer and A549 non-small cell lung cancer cell 2D and 3D cultures. US with pulse repetition frequency of 10 Hz and 1 MHz center frequency was generated with peak negative pressure of 0.5 MPa and 50% duty cycle. SonoVue microbubbles were used. Spheroids were formed using 3D Bioprinting method. DOX delivery in 2D and 3D cultures was assessed using fluorescence microscopy. US without the addition of microbubbles did not enhance the penetration of DOX into monolayer-cultured cells and tumor spheroids. In the presence of microbubbles US improved the delivery of DOX into the edge end middle zones of A549 and MDA-MB-231 spheroids. Application of low-intensity pulsed US in combination with microbubbles may be a promising approach to enhance the delivery of DOX into tumor spheroids.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162, Kaunas, Lithuania
| | - Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162, Kaunas, Lithuania
| | - Kristina Sakalauskienė
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko g. 59, 51423, Kaunas, Lithuania
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko g. 59, 51423, Kaunas, Lithuania.,Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentu g. 50, 51368, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162, Kaunas, Lithuania. .,Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, 44307, Kaunas, Lithuania.
| |
Collapse
|
169
|
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Am J Cancer Res 2020; 10:11690-11706. [PMID: 33052241 PMCID: PMC7545999 DOI: 10.7150/thno.51316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.
Collapse
|
170
|
Salih M, Ali SM, Jena N, Ananthasubramaniam K. Review of ultrasound contrast agents in current clinical practice with special focus on DEFINITY ® in cardiac imaging. Future Cardiol 2020; 17:197-214. [PMID: 32897099 DOI: 10.2217/fca-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Echocardiography is the most widely used noninvasive modality to evaluate the structure and function of the cardiac muscle in daily practice. However, up to 15-20% of echocardiograms are considered suboptimal. To enable accurate assessment of cardiac function and wall motion abnormality, the use of ultrasound microbubble contrast has shown substantial benefits in cases of salvaging nondiagnostic studies and enhancing the diagnostic accuracy in daily practice. DEFINITY® is a perflutren based, lipid shelled microbubble contrast agent, which is US FDA approved for left ventricular opacification. The basis of ultrasound microbubbles, its development, and the clinical role of DEFINITY (characteristics, indications and case examples, side effect profile and existing evidence) is the subject of discussion in this review.
Collapse
Affiliation(s)
- Mohammed Salih
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | - Syed Musadiq Ali
- Department Of Cardiology, Beth Israel Deaconess Hospital, Boston, MA 02215, USA
| | - Nihar Jena
- Department of Medicine, St Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA
| | | |
Collapse
|
171
|
Abstract
The use of contrast agents as signal enhancers during ultrasound improves visualization and the diagnostic utility of this technology in medical imaging. Although widely used in many disciplines, contrast ultrasound is not routinely implemented in obstetrics, largely due to safety concerns of administered agents for pregnant women and the limited number of studies that address this issue. Here the microbubble characteristics that make them beneficial for enhancement of the blood pool and the quantification of real-time imaging are reviewed. Literature from pregnant animal model studies and safety assessments are detailed, and the potential for contrast-enhanced ultrasound to provide clinically relevant data and benefit our understanding of early placental development and detection of placental dysfunction is discussed.
Collapse
|
172
|
Melich R, Bussat P, Morici L, Vivien A, Gaud E, Bettinger T, Cherkaoui S. Microfluidic preparation of various perfluorocarbon nanodroplets: Characterization and determination of acoustic droplet vaporization (ADV) threshold. Int J Pharm 2020; 587:119651. [DOI: 10.1016/j.ijpharm.2020.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
|
173
|
A review of ultrasound-mediated microbubbles technology for cancer therapy: a vehicle for chemotherapeutic drug delivery. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractBackground:The unique behaviour of microbubbles under ultrasound acoustic pressure makes them useful agents for drug and gene delivery. Several studies have demonstrated the potential application of microbubbles as a non-invasive, safe and effective technique for targeted delivery of drugs and genes. The drugs can be incorporated into the microbubbles in several different approaches and then carried to the site of interest where it can be released by destruction of the microbubbles using ultrasound to achieve the required therapeutic effect.Methods:The objective of this article is to report on a review of the recent advances of ultrasound-mediated microbubbles as a vehicle for delivering drugs and genes and its potential application for the treatment of cancer.Conclusion:Ultrasound-mediated microbubble technology has the potential to significantly improve chemotherapy drug delivery to treatment sites with minimal side effects. Moreover, the technology can induce temporary and reversible changes in the permeability of cells and vessels, thereby allowing for drug delivery in a spatially localised region which can improve the efficiency of drugs with poor bioavailability due to their poor absorption, rapid metabolism and rapid systemic elimination.
Collapse
|
174
|
Oezdemir I, Mohr-Allen S, Peak KE, Varner V, Hoyt K. Three-dimensional super-resolution ultrasound imaging of chicken embryos - A validation framework for analysis of microvascular morphology. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2020; 2020:10.1109/ius46767.2020.9251486. [PMID: 36514782 PMCID: PMC9744579 DOI: 10.1109/ius46767.2020.9251486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this present study was to improve the quantification of microvascular networks depicted in three-dimensional (3D) super-resolution ultrasound (SR-US) images and compare results with matched brightfield microscopy and B-mode ultrasound (US) images. Standard contrast-enhanced US (CEUS) images were collected using a high-frequency US scanner (Vevo 3100, FUJIFILM VisualSonics Inc) equipped with an MX250 linear array transducer. Using a developing chicken embryo as our model system, US imaging was performed after administration of a custom microbubble (MB) contrast agent. Guided by stereo microscopy, MBs were introduced into a perfused blood vessel by microinjection with a glass capillary needle. Volume data was collected by mechanically scanning the US transducer throughout a tissue volume-of-interest (VOI) in 90 μm step increments. CEUS images were collected at each increment and stored as in-phase/quadrature (IQ) data (N = 2000 at 152 frames per sec). SR-US images were created for each cross-sectional plane using established data processing methods, and all were then used to form a final 3D volume for subsequent quantification of morphological features. Vessel diameter quantifications from 3D SR-US data exhibited an average error of 1.9% when compared with microscopy images, whereas measures from B-mode US images had an average error of 75.3%. Overall, 3D SR-US images clearly depicted the microvascular network of the developing chicken embryo and measurements of microvascular morphology achieved better accuracy compared to traditional B-mode US.
Collapse
Affiliation(s)
- Ipek Oezdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Shelby Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kara E. Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
175
|
Xiang X, Liu H, Wang L, Zhu B, Ma L, Du F, Li L, Qiu L. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model. J Cell Mol Med 2020; 24:10816-10829. [PMID: 33140920 PMCID: PMC7521263 DOI: 10.1111/jcmm.15706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate. Stromal cell‐derived factor‐1α (SDF‐1α) plays a vital role in MSC migration and involves activation, mobilization, homing and retention. So, we aim to develop SDF‐1α‐loaded microbubbles MB(SDF‐1α), and to verify the migration of BMSCs with the effect of ultrasound combined with MB(SDF‐1α) in vitro and in vivo. The characteristics of microbubbles and the content of SDF‐1α were examined in vitro. To evaluate the effect of ultrasound combined with chemotactic microbubbles on stem cell migration, BMSCs were injected locally and intravenously into the knee joint of the OA model, and the markers of BMSCs in the cartilage were detected. We successfully prepared MB(SDF‐1α) through covalent bonding with impressive SDF‐1α loading efficacy loading content. In vitro study, ultrasound combined with MB(SDF‐1α) group can promote more stem cell migration with highest migrating cell counts, good cell viability and highest CXCR4 expression. In vivo experiment, more BMSCs surface markers presented in the ultrasound combined with MB(SDF‐1α) group with or without exogenous BMSCs administration. Hence, ultrasound combined with MB(SDF‐1α) could promote the homing of BMSCs to cartilage and provide a novel promising therapeutic approach for OA.
Collapse
Affiliation(s)
- Xi Xiang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China.,Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liyun Wang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Bihui Zhu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Ma
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Fangxue Du
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Li
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| | - Li Qiu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
176
|
Chandan R, Mehta S, Banerjee R. Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomater Sci Eng 2020; 6:4731-4747. [PMID: 33455210 DOI: 10.1021/acsbiomaterials.9b01979] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound (US)-responsive carriers have emerged as promising theranostic candidates because of their ability to enhance US-contrast, promote image-guided drug delivery, cause on-demand pulsatile release of drugs in response to ultrasound stimuli, as well as to enhance the permeability of physiological barriers such as the stratum corneum, the vascular endothelium, and the blood-brain barrier (BBB). US-responsive carriers include microbubbles MBs, liposomes, droplets, hydrogels, and nanobubble-nanoparticle complexes and have been explored for cavitation-mediated US-responsive drug delivery. Recently, a transient increase in the permeability of the BBB by microbubble (MB)-assisted low-frequency US has shown promise in enhancing the delivery of therapeutic agents in the case of neurological disorders. Further, the periodic mechanical stimulus generated by US-responsive MBs have also been explored in tissue engineering and has directly influenced the differentiation of mesenchymal stem cells into cartilage. This Review discusses the various types of US-responsive carriers and explores their emerging roles in therapeutics ranging from drug delivery to tissue engineering.
Collapse
Affiliation(s)
- Rajeet Chandan
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sourabh Mehta
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,IIT Bombay-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Lab, Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
177
|
Liu M, Dasgupta A, Koczera P, Schipper S, Rommel D, Shi Y, Kiessling F, Lammers T. Drug Loading in Poly(butyl cyanoacrylate)-Based Polymeric Microbubbles. Mol Pharm 2020; 17:2840-2848. [PMID: 32589435 DOI: 10.1021/acs.molpharmaceut.0c00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbubbles (MB) are routinely used ultrasound (US) contrast agents that have recently attracted increasing attention as stimuli-responsive drug delivery systems. To better understand MB-based drug delivery, we studied the role of drug hydrophobicity and molecular weight on MB loading, shelf-life stability, US properties, and drug release. Eight model drugs, varying in hydrophobicity and molecular weight, were loaded into the shell of poly(butyl cyanoacrylate) (PBCA) MB. In the case of drugs with progesterone as a common structural backbone (i.e., for corticosteroids), loading capacity and drug release correlated well with hydrophobicity and molecular weight. Conversely, when employing drugs with no structural similarity (i.e., four different fluorescent dyes), loading capacity and release did not correlate with hydrophobicity and molecular weight. All model drug-loaded MB formulations could be equally efficiently destroyed upon exposure to US. Together, these findings provide valuable insights on how the physicochemical properties of (model) drug molecules affect their loading and retention in and US-induced release from polymeric MB, thereby facilitating the development of drug-loaded MB formulations for US-triggered drug delivery.
Collapse
Affiliation(s)
- Mengjiao Liu
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany.,Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Sandra Schipper
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Dirk Rommel
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen 52074, Germany
| |
Collapse
|
178
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
179
|
Bai M, Wang T, Chen S, Wang Y, Yu M. Shape‐Controlled Synthesis of Multicomponent‐Encapsulating Alginate Microparticles: Peanut‐, Spherical‐, and Disc‐Shaped Transformations. ChemistrySelect 2020. [DOI: 10.1002/slct.202001174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Meng‐Yi Bai
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National TaiwanUniversity of Science and Technology, TR-917, AAEON Building, No.43, Keelung Rd., Sec.4, Da'an Dist. Taipei City 10607 Taiwan
- Adjunct Appointment to the National Defense Medical Center Taipei 11490 Taiwan
| | - Ting‐Teng Wang
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National TaiwanUniversity of Science and Technology, TR-917, AAEON Building, No.43, Keelung Rd., Sec.4, Da'an Dist. Taipei City 10607 Taiwan
| | - Shiu‐Hsin Chen
- Graduate Institute of Biomedical Engineering and Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National TaiwanUniversity of Science and Technology, TR-917, AAEON Building, No.43, Keelung Rd., Sec.4, Da'an Dist. Taipei City 10607 Taiwan
| | - Yu‐Chi Wang
- Department of Obstetric and gynecologyTri-Service General Hospital, National Defense Medical Center Taipei 11490 Taiwan
| | - Mu‐Hsien Yu
- Department of Obstetric and gynecologyTri-Service General Hospital, National Defense Medical Center Taipei 11490 Taiwan
| |
Collapse
|
180
|
Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020; 10:8143-8161. [PMID: 32724463 PMCID: PMC7381728 DOI: 10.7150/thno.45903] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, and imposes significant morbidity and mortality in this population. The aggressive chemoradiotherapy required to treat high-risk NB results in survival of less than 50%, yet is associated with significant long-term adverse effects in survivors. Boosting efficacy and reducing morbidity are therefore key goals of treatment for affected children. We hypothesize that these may be achieved by developing strategies that both focus and limit toxic therapies to the region of the tumor. One such strategy is the use of targeted image-guided drug delivery (IGDD), which is growing in popularity in personalized therapy to simultaneously improve on-target drug deposition and assess drug pharmacodynamics in individual patients. IGDD strategies can utilize a variety of imaging modalities and methods of actively targeting pharmaceutical drugs, however in vivo imaging in combination with focused ultrasound is one of the most promising approaches already being deployed for clinical applications. Over the last two decades, IGDD using focused ultrasound with "microbubble" ultrasound contrast agents (UCAs) has been increasingly explored as a method of targeting a wide variety of diseases, including cancer. This technique, known as sonopermeation, mechanically augments vascular permeability, enabling increased penetration of drugs into target tissue. However, to date, methods of monitoring the vascular bioeffects of sonopermeation in vivo are lacking. UCAs are excellent vascular probes in contrast-enhanced ultrasound (CEUS) imaging, and are thus uniquely suited for monitoring the effects of sonopermeation in tumors. Methods: To monitor the therapeutic efficacy of sonopermeation in vivo, we developed a novel system using 2D and 3D quantitative contrast-enhanced ultrasound imaging (qCEUS). 3D tumor volume and contrast enhancement was used to evaluate changes in blood volume during sonopermeation. 2D qCEUS-derived time-intensity curves (TICs) were used to assess reperfusion rates following sonopermeation therapy. Intratumoral doxorubicin (and liposome) uptake in NB was evalauted ex vivo along with associated vascular changes. Results: In this study, we demonstrate that combining focused ultrasound therapy with UCAs can significantly enhance chemotherapeutic payload to NB in an orthotopic xenograft model, by improving delivery and tumoral uptake of long-circulating liposomal doxorubicin (L-DOX) nanoparticles. qCEUS imaging suggests that changes in flow rates are highly sensitive to sonopermeation and could be used to monitor the efficacy of treatment in vivo. Additionally, initial tumor perfusion may be a good predictor of drug uptake during sonopermeation. Following sonopermeation treatment, vascular biomarkers show increased permeability due to reduced pericyte coverage and rapid onset of doxorubicin-induced apoptosis of NB cells but without damage to blood vessels. Conclusion: Our results suggest that significant L-DOX uptake can occur by increasing tumor vascular permeability with microbubble sonopermeation without otherwise damaging the vasculature, as confirmed by in vivo qCEUS imaging and ex vivo analysis. The use of qCEUS imaging to monitor sonopermeation efficiency and predict drug uptake could potentially provide real-time feedback to clinicians for determining treatment efficacy in tumors, leading to better and more efficient personalized therapies. Finally, we demonstrate how the IGDD strategy outlined in this study could be implemented in human patients using a single case study.
Collapse
Affiliation(s)
- Aditi Bellary
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Arelly Villarreal
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rojin Eslami
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Quincy J. Undseth
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Bianca Lec
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Ann M. Defnet
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Naina Bagrodia
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Jessica J. Kandel
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Mark A. Borden
- Biomedical Engineering, Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Lauren J. Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Colette M. Shaw
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonia L. Hernandez
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Shashank R. Sirsi
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
181
|
Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD. Nested Nanobubbles for Ultrasound-Triggered Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29085-29093. [PMID: 32501014 PMCID: PMC7333229 DOI: 10.1021/acsami.0c07022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Because of their size (1-10 μm), microbubble-based drug delivery agents suffer from confinement to the vasculature, limiting tumor penetration and potentially reducing the drug efficacy. Nanobubbles (NBs) have emerged as promising candidates for ultrasound-triggered drug delivery because of their small size, allowing drug delivery complexes to take advantage of the enhanced permeability and retention effect. In this study, we describe a simple method for production of nested-nanobubbles (Nested-NBs) by encapsulation of NBs (∼100 nm) within drug-loaded liposomes. This method combines the efficient and well-established drug-loading capabilities of liposomes while utilizing NBs as an acoustic trigger for drug release. Encapsulation was characterized using transmission electron microscopy with an encapsulation efficiency of 22 ± 2%. Nested-NBs demonstrated echogenicity using diagnostic B-mode imaging, and acoustic emissions were monitored during high-intensity focused ultrasound (HIFU) in addition to monitoring of model drug release. Results showed that although the encapsulated NBs were destroyed by pulsed HIFU [peak negative pressure (PNP) 1.54-4.83 MPa], signified by loss of echogenicity and detection of inertial cavitation, no model drug release was observed. Changing modality to continuous wave (CW) HIFU produced release across a range of PNPs (2.01-3.90 MPa), likely because of a synergistic effect of mechanical and increased thermal stimuli. Because of this, we predict that our NBs contain a mixed population of both gaseous and liquid core particles, which upon CW HIFU undergo rapid phase conversion, triggering liposomal drug release. This hypothesis was investigated using previously described models to predict the existence of droplets and their phase change potential and the ability of this phase change to induce liposomal drug release.
Collapse
Affiliation(s)
| | - Radwa H. Abou-Saleh
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Department
of Physics, Mansoura University, Mansoura, Egypt
| | - P. Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - James. R. McLaughlan
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
- School
of Electronic and Electrical Engineering, University of Leeds, Leeds, U.K.
| | - Sally A. Peyman
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, U.K.
| | - Stephen D. Evans
- Department of Physics
and Astronomy, University of Leeds, Leeds, U.K.
- . Phone/Fax: (+44) (0)113 343 3852
| |
Collapse
|
182
|
Harmon JN, Celingant-Copie CA, Kabinejadian F, Bull JL. Lipid Shell Retention and Selective Binding Capability Following Repeated Transient Acoustic Microdroplet Vaporization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6626-6634. [PMID: 32420747 PMCID: PMC9704545 DOI: 10.1021/acs.langmuir.0c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeted therapy and molecular imaging using ultrasound have been widely explored using microbubble contrast agents, and more recently, activatable droplet contrast agents that vaporize when exposed to focused ultrasound have been explored. These droplets are coated with a stabilizing, functionalizable shell, typically comprised of fully saturated phospholipids. While the shedding of the lipid shell under ultrasound exposure is a well-studied phenomenon in microbubbles, it has not been fully explored in droplet-based contrast agents, particularly in those that undergo a reversible phase change and recondense following vaporization. Here, we investigate the retention of the lipid shell following repeated transient vaporization events. Two separate fluorescent markers were used to track individual lipid subpopulations: PEGylated lipids, to which targeting ligands are typically bound, and non-PEGylated lipids, which primarily contribute to droplet stability. Following confirmation of the homogeneous surface distribution of each subpopulation of shell lipids using confocal microscopy, high-speed optical imaging provided visual evidence of the ability to repeatedly induce vaporization and recondensation in micron-scale droplets using 5.208 MHz, 3.17 MPa focused ultrasound pulses transmitted from an imaging transducer. Flow cytometry analysis indicated that while PEGylated lipids were fully retained following repeated transient phase change events, 20% of the bulk lipids were shed. While this likely contributed to an observed significant reduction in the average droplet diameter, the selective binding capabilities of droplets functionalized with an RGD peptide, targeted to the integrin αvβ3, were not affected. These results indicate that repeated droplet activation may promote shifts in the droplet size distribution but will not influence the accuracy of targeting for therapy or molecular imaging.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chloe A Celingant-Copie
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Foad Kabinejadian
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joseph L Bull
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
183
|
A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures. Sci Rep 2020; 10:10088. [PMID: 32572103 PMCID: PMC7308405 DOI: 10.1038/s41598-020-66994-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/29/2020] [Indexed: 11/25/2022] Open
Abstract
Ultrasound-induced blood-brain barrier (BBB) opening using microbubbles is a promising technique for local delivery of therapeutic molecules into the brain. The real-time control of the ultrasound dose delivered through the skull is necessary as the range of pressure for efficient and safe BBB opening is very narrow. Passive cavitation detection (PCD) is a method proposed to monitor the microbubble activity during ultrasound exposure. However, there is still no consensus on a reliable safety indicator able to predict potential damage in the brain. Current approaches for the control of the beam intensity based on PCD employ a full-pulse analysis and may suffer from a lack of sensitivity and poor reaction time. To overcome these limitations, we propose an intra-pulse analysis to monitor the evolution of the frequency content during ultrasound bursts. We hypothesized that the destabilization of microbubbles exposed to a critical level of ultrasound would result in the instantaneous generation of subharmonic and ultra-harmonic components. This specific signature was exploited to define a new sensitive indicator of the safety of the ultrasound protocol. The approach was validated in vivo in rats and non-human primates using a retrospective analysis. Our results demonstrate that intra-pulse monitoring was able to exhibit a sudden appearance of ultra-harmonics during the ultrasound excitation pulse. The repeated detection of such a signature within the excitation pulse was highly correlated with the occurrence of side effects such as hemorrhage and edema. Keeping the acoustic pressure at levels where no such sign of microbubble destabilization occurred resulted in safe BBB openings, as shown by MR images and gross pathology. This new indicator should be more sensitive than conventional full-pulse analysis and can be used to distinguish between potentially harmful and safe ultrasound conditions in the brain with very short reaction time.
Collapse
|
184
|
Al-Jawadi S, Thakur SS. Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading. Int J Pharm 2020; 585:119559. [PMID: 32574685 DOI: 10.1016/j.ijpharm.2020.119559] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023]
Abstract
Lipid-shelled microbubbles have received extensive interest to enhance ultrasound-responsive drug delivery outcomes due to their high biocompatibility. While therapeutic effectiveness of microbubbles is well established, there remain limitations in sample homogeneity, stability profile and drug loading properties which restrict these formulations from seeing widespread use in the clinical setting. In this review, we evaluate and discuss the most encouraging leads in lipid microbubble design and optimisation. We examine current applications in drug delivery for the systems and subsequently detail shell compositions and preparation strategies that improve monodispersity while retaining ultrasound responsiveness. We review how excipients and storage techniques help maximise stability and introduce different characterisation and drug loading techniques and evaluate their impact on formulation performance. The review concludes with current quality control measures in place to ensure lipid microbubbles can be reproducibly used in drug delivery.
Collapse
Affiliation(s)
- Sana Al-Jawadi
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
185
|
Pellow C, O'Reilly MA, Hynynen K, Zheng G, Goertz DE. Simultaneous Intravital Optical and Acoustic Monitoring of Ultrasound-Triggered Nanobubble Generation and Extravasation. NANO LETTERS 2020; 20:4512-4519. [PMID: 32374617 DOI: 10.1021/acs.nanolett.0c01310] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultrasound-activated nanobubbles are being widely investigated as contrast agents and therapeutic vehicles. Nanobubbles hold potential for accessing the tumor extravascular compartment, though this relies on clinically debated passive accumulation for which evidence to date is indirect. We recently reported ultrasound-triggered conversion of high payload porphyrin-encapsulated microbubbles to nanobubbles, with actively enhanced permeability for local delivery. This platform holds implications for optical/ultrasound-based imaging and therapeutics. While promising, it remains to be established how nanobubbles are generated and whether they extravasate intact. Here, insights into the conversion process are reported, complemented by novel simultaneous intravital and acoustic monitoring in tumor-affected functional circulation. The first direct acoustic evidence of extravascular intact nanobubbles are presented. These insights collectively advance this delivery platform and multimodal micro- and nanobubbles, extending their utility for imaging and therapeutics within and beyond the vasculature.
Collapse
Affiliation(s)
- Carly Pellow
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2C1, Canada
| | - Meaghan A O'Reilly
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| | - Kullervo Hynynen
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| | - Gang Zheng
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2C1, Canada
| | - David E Goertz
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, M4N 3M5, Canada
| |
Collapse
|
186
|
Esmaeili J, Rezaei FS, Beram FM, Barati A. Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon 2020; 6:e04189. [PMID: 32577567 PMCID: PMC7303999 DOI: 10.1016/j.heliyon.2020.e04189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering with the aid of biomaterials is a novel and promising knowledge aiming at improving human life expectancy. Besides, microbubbles are increasingly employed in biomedical applications due to their capability as a reservoir of therapeutic agents and oxygen molecules. In the present study, Microbubbles as the backbone of the research are produced as one of the potent devices in tissue engineering approaches, including drug delivery, wound healing, 3D printing, and scaffolding. It was shown that microbubbles are capable of promoting oxygen penetration and boosting the wound healing process by supplying adequate oxygen. Microbubbles also demonstrated their strength and potency in advancing drug delivery systems by reinforcing mass transfer phenomena. Furthermore, microbubbles developed the mechanical and biological characteristics of engineered scaffolds by manipulating the pores. Increasing cell survival, the biological activity of cells, angiogenesis, cell migration, and also nutrient diffusion into the inner layers of the scaffold were other achievements by microbubbles. In conclusion, the interest of biomedical communities in simultaneous usage of microbubbles and biomaterials under tissue engineering approaches experiences remarkable growth in Pharmaceutical studies.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
- Histogenotech Co., R&D Department, Tehran, Iran
| | - Farnoush Sadat Rezaei
- Department of Chemical Engineering, Faculty of Engineering, Amir Kabir University, Tehran, Iran
| | | | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| |
Collapse
|
187
|
Affiliation(s)
- Aung Than
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Ping Zan
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Innovative Centre for Flexible DevicesNanyang Technological University Singapore
| |
Collapse
|
188
|
LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020; 13:613-628. [PMID: 32237219 PMCID: PMC7111087 DOI: 10.1111/1751-7915.13471] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are an ever-growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound-responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | - Peter Glynne-Jones
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
189
|
Pouliopoulos AN, Jimenez DA, Frank A, Robertson A, Zhang L, Kline-Schoder AR, Bhaskar V, Harpale M, Caso E, Papapanou N, Anderson R, Li R, Konofagou EE. Temporal stability of lipid-shelled microbubbles during acoustically-mediated blood-brain barrier opening. FRONTIERS IN PHYSICS 2020; 8:137. [PMID: 32457896 PMCID: PMC7250395 DOI: 10.3389/fphy.2020.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Non-invasive blood-brain barrier (BBB) opening using focused ultrasound (FUS) is being tested as a means to locally deliver drugs into the brain. Such FUS therapies require injection of preformed microbubbles, currently used as contrast agents in ultrasound imaging. Although their behavior during exposure to imaging sequences has been well described, our understanding of microbubble stability within a therapeutic field is still not complete. Here, we study the temporal stability of lipid-shelled microbubbles during therapeutic FUS exposure in two timescales: the short time scale (i.e., μs of low-frequency ultrasound exposure) and the long time scale (i.e., days post-activation). We first simulated the microbubble response to low-frequency sonication, and found a strong correlation between viscosity and fragmentation pressure. Activated microbubbles had a concentration decay constant of 0.02 d-1 but maintained a quasi-stable size distribution for up to 3 weeks (< 10% variation). Microbubbles flowing through a 4-mm vessel within a tissue-mimicking phantom (5% gelatin) were exposed to therapeutic pulses (fc: 0.5 MHz, peak-negative pressure: 300 kPa, pulse length: 1 ms, pulse repetition frequency: 1 Hz, n=10). We recorded and analyzed their acoustic emissions, focusing on emitted energy and its temporal evolution, alongside the frequency content. Measurements were repeated with concentration-matched samples (107 microbubbles/ml) on day 0, 7, 14, and 21 after activation. Temporal stability decreased while inertial cavitation response increased with storage time both in vitro and in vivo, possibly due to changes in the shell lipid content. Using the same parameters and timepoints, we performed BBB opening in a mouse model (n=3). BBB opening volume measured through T1-weighted contrast-enhanced MRI was equal to 19.1 ± 7.1 mm3, 21.8 ± 14 mm3, 29.3 ± 2.5 mm3, and 38 ± 20.1 mm3 on day 0, 7, 14, and 21, respectively, showing no significant difference over time (p-value: 0.49). Contrast enhancement was 24.9 ± 1.7 %, 23.7 ± 11.7 %, 28.9 ± 5.3 %, and 35 ± 13.4 %, respectively (p-value: 0.63). In conclusion, the in-house made microbubbles studied here maintain their capacity to produce similar therapeutic effects over a period of 3 weeks after activation, as long as the natural concentration decay is accounted for. Future work should focus on stability of commercially available microbubbles and tailoring microbubble shell properties towards therapeutic applications.
Collapse
Affiliation(s)
| | - Daniella A. Jimenez
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alexander Frank
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alexander Robertson
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Lin Zhang
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Alina R. Kline-Schoder
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Vividha Bhaskar
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Mitra Harpale
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Elizabeth Caso
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Nicholas Papapanou
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Rachel Anderson
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Rachel Li
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York City, New York 10032, USA
- Department of Radiology, Columbia University, New York City, New York 10032, USA
- Correspondence: Elisa E. Konofagou 351 Engineering Terrace, 1210 Amsterdam Avenue Mail Code: 8904, New York, NY, USA 10027 Phone: 212-342-0863, 212-854-9661
| |
Collapse
|
190
|
Oezdemir I, Peng J, Ghosh D, Sirsi S, Mineo C, Shaul PW, Hoyt K. Multiscale and morphological analysis of microvascular patterns depicted in contrast-enhanced ultrasound images. J Med Imaging (Bellingham) 2020; 7:034001. [PMID: 32509915 PMCID: PMC7265038 DOI: 10.1117/1.jmi.7.3.034001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: Impaired insulin-induced microvascular recruitment in skeletal muscle contributes to insulin resistance in type 2 diabetic disease. Previously, quantification of microvascular recruitment at the capillary level has been performed with either the full image or manually selected region-of-interests. These subjective approaches are imprecise, time-consuming, and unsuitable for automated processes. Here, an automated multiscale image processing approach was performed by defining a vessel diameter threshold for an objective and reproducible analysis at the microvascular level. Approach: A population of C57BL/6J male mice fed standard chow and studied at age 13 to 16 weeks comprised the lean group and 24- to 31-week-old mice who received a high-fat diet were designated the obese group. A clinical ultrasound scanner (Acuson Sequoia 512) equipped with an 15L8-S linear array transducer was used in a nonlinear imaging mode for sensitive detection of an intravascular microbubble contrast agent. Results: By eliminating large vessels from the dynamic contrast-enhanced ultrasound (DCE-US) images (above 300 μ m in diameter), obesity-related changes in perfusion and morphology parameters were readily detected in the smaller vessels, which are known to have a greater impact on skeletal muscle glucose disposal. The results from the DCE-US images including all of the vessels were compared for three different-sized vessel groups, namely, vessels smaller than 300, 200, and 150 μ m in diameter. Conclusions: Our automated image processing provides objective and reproducible results by focusing on a particular size of vessel, thereby allowing for a selective evaluation of longitudinal changes in microvascular recruitment for a specific-sized vessel group between diseased and healthy microvascular networks.
Collapse
Affiliation(s)
- Ipek Oezdemir
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Jun Peng
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| | - Debabrata Ghosh
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- Thapar Institute of Engineering and Technology, Department of Electronics and Communication Engineering, Patiala, Punjab, India
| | - Shashank Sirsi
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Chieko Mineo
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| | - Philip W. Shaul
- University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, Texas, United States
| | - Kenneth Hoyt
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| |
Collapse
|
191
|
Chattaraj R, Hwang M, Zemerov SD, Dmochowski IJ, Hammer DA, Lee D, Sehgal CM. Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery. Adv Healthc Mater 2020; 9:e1901721. [PMID: 32207250 PMCID: PMC7457952 DOI: 10.1002/adhm.201901721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Noble gases, especially xenon (Xe), have been shown to have antiapoptotic effects in treating hypoxia ischemia related injuries. Currently, in vivo gas delivery is systemic and performed through inhalation, leading to reduced efficacy at the injury site. This report provides a first demonstration of the encapsulation of pure Xe, Ar, or He in phospholipid-coated sub-10 µm microbubbles, without the necessity of stabilizing perfluorocarbon additives. Optimization of shell compositions and preparation techniques show that distearoylphosphatidylcholine (DSPC) with DSPE-PEG5000 can produce stable microbubbles upon shaking, while dibehenoylphosphatidylcholine (DBPC) blended with either DSPE-PEG2000 or DSPE-PEG5000 produces a high yield of microbubbles via a sonication/centrifugation method. Xe and Ar concentrations released into the microbubble suspension headspace are measured using GC-MS, while Xe released directly in solution is detected by the fluorescence quenching of a Xe-sensitive cryptophane molecule. Bubble production is found to be amenable to scale-up while maintaining their size distribution and stability. Excellent ultrasound contrast is observed in a phantom for several minutes under physiological conditions, while an intravenous administration of a bolus of pure Xe microbubbles provides significant contrast in a mouse in pre- and post-lung settings (heart and kidney, respectively), paving the way for image-guided, localized gas delivery for theranostic applications.
Collapse
Affiliation(s)
- Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States; Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A. Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chandra M. Sehgal
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
192
|
Ilhan-Ayisigi E, Saglam-Metiner P, Manzi G, Giannasi K, van Hoeve W, Yesil-Celiktas O. One-Step Microfluidic Coating of Phospholipid Microbubbles with Natural Alginate Polymer as a Delivery System for Human Epithelial Lung Adenocarcinoma. Macromol Biosci 2020; 20:e2000084. [PMID: 32346989 DOI: 10.1002/mabi.202000084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/24/2020] [Indexed: 12/14/2022]
Abstract
In this study, the neoplastic drug frequently used in the treatment of lung cancer, carboplatin is loaded to microbubbles via a microfluidic platform. In order to increase the drug loading capacity of microbubbles, carboplatin is encapsulated into alginate polymer layer. The phospholipid microbubbles (MBs) are synthesized by MicroSphere Creator, which is connected with T-junction and micromixer for the treatment with CaCl2 solution to provide gelation of the alginate coated phospholipid microbubbles (AMBs). The carboplatin loaded alginate coated phospholipid microbubbles (CAMBs) result in 12.2 ± 0.21 µm mean size, obtained by mixing with 0.05% CaCl2 using T-junction. The cytotoxic activities of the synthesized MBs, AMBs, and CAMBs are also investigated with the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) and live/dead fluorescent dying assays in the A549 and BEAS-2B cell lines. The one-step microfluidic coating of lipid microbubbles with natural alginate polymer appears to be a promising strategy for enhanced drug reservoir properties.
Collapse
Affiliation(s)
- Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey.,Genetic and Bioengineering Department, Faculty of Engineering and Architecture, Ahi Evran University, Kirsehir, 40100, Turkey.,Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey
| | - Giuliana Manzi
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Katharine Giannasi
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Wim van Hoeve
- Tide Microfluidics B.V., Capitool 41, Enschede, 7521 PL, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, 35100, Turkey
| |
Collapse
|
193
|
Langeveld SAG, Schwieger C, Beekers I, Blaffert J, van Rooij T, Blume A, Kooiman K. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3221-3233. [PMID: 32109064 PMCID: PMC7279639 DOI: 10.1021/acs.langmuir.9b03912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 μm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
- E-mail: . Phone: +31107044041
| | - Christian Schwieger
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Institute
for Biochemistry and Biotechnology, Interdisciplinary Research Center
HALOmem, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| | - Inés Beekers
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Jacob Blaffert
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Tom van Rooij
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Alfred Blume
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Klazina Kooiman
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
194
|
Brambila CJ, Lux J, Mattrey RF, Boyd D, Borden MA, de Gracia Lux C. Bubble Inflation Using Phase-Change Perfluorocarbon Nanodroplets as a Strategy for Enhanced Ultrasound Imaging and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2954-2965. [PMID: 32090572 DOI: 10.1021/acs.langmuir.9b03647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained. Here, we report that the coexistence of perfluorocarbon droplets and microbubbles in blood, which is inevitable when droplets spontaneously or intentionally vaporize to form microbubbles, is a major contributor to the observed side effects. We develop the theory to explain why the coexistence of droplets and microbubbles results in microbubble inflation induced by perfluorocarbon transfer from droplets to adjacent microbubbles. We also present the experimental data showing up to 6 orders of magnitude microbubble volume expansion, which occludes a 200 μm tubing in the presence of perfluorocarbon nanodroplets. More importantly, we demonstrate that the rate of microbubble inflation and ultimate size can be controlled by manipulating formulation parameters to tailor the agent's design for the potential theranostic application while minimizing the risk to benefit ratio.
Collapse
Affiliation(s)
- Carlos J Brambila
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacques Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Organic Chemistry Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Robert F Mattrey
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dustin Boyd
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Caroline de Gracia Lux
- Translational Research in Ultrasound Theranostics (TRUST) Program, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
195
|
Khan AH, Dalvi SV. Kinetics of albumin microbubble dissolution in aqueous media. SOFT MATTER 2020; 16:2149-2163. [PMID: 32016261 DOI: 10.1039/c9sm01516g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effectiveness of microbubbles as ultrasound contrast agents and targeted drug delivery vehicles depends on their persistence in blood. It is therefore necessary to understand the dissolution behavior of microbubbles in an aqueous medium. While there are several reports available in the literature on the dissolution of lipid microbubbles, there are no reports available on the dissolution kinetics of protein microbubbles. Moreover, shell parameters such as interfacial tension, shell resistance and shell elasticity/stiffness which characterize microbubble shells, have been reported for lipid shells but no such data are available for protein shells. Accordingly, this work was focused on capturing the dissolution behavior of protein microbubbles and estimation of shell parameters such as surface tension, shell resistance and shell elasticity. Bovine serum albumin (BSA) was used as a model protein and microbubbles were synthesized using sonication. During dissolution, a large portion of the protein shell was found to disengage from the gas-liquid interface after a stagnant dissolution phase, leading to a sudden disappearance of the microbubbles due to complete dissolution. In order to estimate shell parameters, microbubble dissolution kinetic data (radius vs. time) was fit numerically to a mass transfer model describing a microbubble dissolution process. Analysis of the results shows that the interfacial tension increases drastically and the shell resistance reduces significantly, as protein molecules leave the gas-liquid interface. Furthermore, the effect of processing conditions such as preheating temperature, microbubble size, and core gas and shell composition on the protein shell parameters was also evaluated.
Collapse
Affiliation(s)
- Aaqib H Khan
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Sameer V Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
196
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
197
|
Browning RJ, Aron M, Booth A, Rademeyer P, Wing S, Brans V, Shrivastava S, Carugo D, Stride E. Spectral Imaging for Microbubble Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:609-617. [PMID: 31855435 DOI: 10.1021/acs.langmuir.9b03828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbubbles stabilized by an outer lipid shell have been studied extensively for both diagnostic and therapeutic applications. The shell composition can significantly influence microbubble behavior, but performing quantitative measurements of shell properties is challenging. The aim of this study is to investigate the use of spectral imaging to characterize the surface properties of a range of microbubble formulations representing both commercial and research agents. A lipophilic dye, C-laurdan, whose fluorescence emission varies according to the properties of the local environment, was used to compare the degree and uniformity of the lipid order in the microbubble shell, and these measurements were compared with the acoustic response and stability of the different formulations. Spectral imaging was found to be suitable for performing rapid and hence relatively high throughput measurements of microbubble surface properties. Interestingly, despite significant differences in lipid molecule size and charge, all of the different formulations exhibited highly ordered lipid shells. Measurements of liposomes with the same composition and the debris generated by destroying lipid microbubbles with ultrasound (US) showed that these exhibited a lower and more varied lipid order than intact microbubbles. This suggests that the high lipid order of microbubbles is due primarily to compression of the shell as a result of surface tension and is only minimally affected by composition. This also explains the similarity in acoustic response observed between the formulations, because microbubble dynamics are determined by the diameter and shell viscoelastic properties that are themselves a function of the lipid order. Within each population, there was considerable variability in the lipid order and response between individual microbubbles, suggesting the need for improved manufacturing techniques. In addition, the difference in the lipid order between the shell and lipid debris may be important for therapeutic applications in which shedding of the shell material is exploited, for example, drug delivery.
Collapse
Affiliation(s)
- Richard J Browning
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Miles Aron
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Anna Booth
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Department of Chemistry , University of Oxford , Oxford OX1 3QR , U.K
| | - Paul Rademeyer
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Sarah Wing
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Veerle Brans
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Dario Carugo
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
- Faculty of Engineering and Physical Sciences , University of Southampton , Highfield, Southampton SO17 1BJ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
198
|
Abstract
Ultrasound and magneto-responsive nanosized drug delivery systems have been designed as novel carriers for controlled release. Colloidal bubbles (CBs) could be designed to incorporate different materials, such as protein, lipid, polymer, surfactants, and even nanoparticles in their shell, which makes them suitable for a wide range of drug delivery applications. The interior of CBs may be filled with different gases, which is essential for conferring the characteristics of an ultrasounds contrasting agent. Manipulating the core of CBs enhances features such as stability and duration of the echogenic effect. Thus CBs derivatized with nanoparticles combine functional properties of CBs and NPs to yield a versatile theranostics platform technology.
Collapse
|
199
|
Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020; 154-155:236-244. [PMID: 32659255 DOI: 10.1016/j.addr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microbubbles with diagnostic ultrasound have had a long history of use in the medical field. In recent years, the therapeutic application of the combination of microbubbles and ultrasound, called sonoporation, has received increased attention as microbubble oscillation or collapse close to various barriers in the body was recognized to potentially open those barriers, increasing drug transport across them. In this review, we aimed to describe the development of lipid-stabilized microbubbles equipped with functions, such as long circulation and drug loading, and the therapeutic application of sonoporation for tumor-targeted therapy, brain-targeted therapy, and immunotherapy. We also attempted to discuss the current status of the field and potential future developments.
Collapse
|
200
|
Wijaya A, Maruf A, Wu W, Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8:4920-4939. [DOI: 10.1039/d0bm00762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro- and nano-bubbles have been developed as powerful multimodal theranostic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| |
Collapse
|