151
|
Current World Literature. Curr Opin Allergy Clin Immunol 2004. [DOI: 10.1097/01.all.0000136752.28324.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
152
|
Sauer MG, Ericson ME, Weigel BJ, Herron MJ, Panoskaltsis-Mortari A, Kren BT, Levine BL, Serody JS, June CH, Taylor PA, Blazar BR. A novel system for simultaneous in vivo tracking and biological assessment of leukemia cells and ex vivo generated leukemia-reactive cytotoxic T cells. Cancer Res 2004; 64:3914-21. [PMID: 15173002 DOI: 10.1158/0008-5472.can-03-3991] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To determine the mechanisms by which adoptive immunotherapy could reduce lethality to acute myelogenous leukemia (AML), a novel technique was developed to track both leukemic blasts and adoptively transferred cytotoxic T cells (CTLs) independently and simultaneously in mice. To follow the fate of ex vivo generated anti-AML-reactive CTLs, splenocytes obtained from enhanced green fluorescent protein transgenic mice were cocultured with AML lysate-pulsed dendritic cells, which subsequently were expanded by exposure to anti-CD3/CD28 monoclonal antibody-coated magnetic microspheres. To track AML cells, stable transfectants of C1498 expressing DsRed2, a red fluorescent protein, were generated. Three factors related to CTLs correlated with disease-free survival: (a). CTL L-selectin expression. L-Selectin high fractions resulted in 70% disease-free survival, whereas L-selectin low-expressing CTLs resulted in only 30% disease-free survival. (b). Duration of ex vivo expansion (9 versus 16 days). Short-term expanded CTLs could be found at high frequency in lymphoid organs for longer than 4 weeks after transfer, whereas long-term expanded CTLs were cleared from the system after 2 weeks. Duration of expansion correlated inversely with L-selectin expression. (c). CTL dose. A higher dose (40 versus 5 x 10(6)) resulted in superior disease-free survival. This survival advantage was achieved with short-term expanded CTLs only. The site of treatment failure was mainly the central nervous system where no CTLs could be identified at AML sites.
Collapse
Affiliation(s)
- Martin G Sauer
- University of Minnesota Cancer Center and Department of Pediatrics, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Sivanandam AS, Mohan S, Kita H, Kapur S, Chen ST, Linkhart TA, Bagi G, Baylink DJ, Qin X. Studies on regulation of IGF (insulin-like growth factor)-binding protein (IGFBP) 4 proteolysis by pregnancy-associated plasma protein-A (PAPP-A) in cells treated with phorbol ester. Biochem J 2004; 379:57-64. [PMID: 14705967 PMCID: PMC1224057 DOI: 10.1042/bj20030937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 12/09/2003] [Accepted: 01/06/2004] [Indexed: 11/17/2022]
Abstract
PAPP-A (pregnancy-associated plasma protein-A) is produced by hSFs (human skin fibroblasts) and hOBs (human osteoblasts) and enhances the mitogenic activity of IGFs (insulin-like growth factors) by degradation of IGFBP-4 (insulin-like growth factor-binding protein 4). PKC (protein kinase C) activation in these cells led to reduction in IGFBP-4 proteolysis. This study was undertaken to determine the mechanism by which activation of PKC suppresses IGFBP-4 proteolysis. Treatment of hSFs/hOBs with TPA (PMA; 100 nM) reduced IGFBP-4 proteolysis without significantly decreasing the PAPP-A level in the CM (conditioned medium). Immunodepletion of the proform of eosinophil major basic protein (proMBP), a known PAPP-A inhibitor, from CM of TPA-treated cells (TPA CM) failed to increase IGFBP-4 proteolytic activity. Transduction of hSFs with proMBP retrovirus increased the concentration of proMBP up to 30 ng/ml and led to a moderate reduction in IGFBP-4 proteolysis. In contrast, TPA treatment blocked IGFBP-4 proteolysis but failed to induce a detectable amount of proMBP in the CM. While proMBP overexpression led to the formation of a covalent proMBP-PAPP-A complex and reduced the migration of PAPP-A on SDS/PAGE, TPA treatment dose- and time-dependently increased the conversion of a approximately 470 kDa PAPP-A form (PAPP-A470) to a approximately 400 kDa PAPP-A form (PAPP-A400). Since unreduced PAPP-A400 co-migrated with the 400 kDa recombinant PAPP-A homodimer and since PAPP-A monomers from reduced PAPP-A470 and PAPP-A400 co-migrated on SDS/PAGE, conversion of PAPP-A470 to PAPP-A400 is unlikely to be caused by proteolytic cleavage of PAPP-A. Consistent with the data showing that the increase in the ratio of PAPP-A400/PAPP-A470 is correlated with the extent of reduction in IGFBP-4 proteolysis, partially purified PAPP-A400 exhibited a 4-fold reduction in IGFBP-4 proteolytic activity compared with PAPP-A470. These data suggest that a novel mechanism, namely conversion of PAPP-A470 to the less-active PAPP-A400, could account for the TPA-induced suppression of PAPP-A activity.
Collapse
Affiliation(s)
- Arun S Sivanandam
- Musculoskeletal Disease Center, J. L. Pettis Memorial Veterans' Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Affiliation(s)
- M Bendandi
- Department of Hematology and Cell Therapy Area, University Clinic, University of Navarra, Avda. Pio XII 36, 31008 Pamplona, Spain.
| | | | | |
Collapse
|
155
|
Abstract
Artificial antigen presentation aims to accelerate the establishment of therapeutic cellular immunity. Artificial antigen-presenting cells (AAPCs) and their cell-free substitutes are designed to stimulate the expansion and acquisition of optimal therapeutic features of T cells before therapeutic infusion, without the need for autologous antigen-presenting cells. Compelling recent advances include fibroblast AAPCs that process antigens, magnetic beads that are antigen specific, novel T-cell costimulatory combinations, the augmentation of therapeutic potency of adoptively transferred T lymphocytes by interleukin-15, and the safe use of dendritic cell-derived exosomes pulsed with tumor antigen. Whereas the safety and potency of the various systems warrant further preclinical and clinical studies, these emerging technologies are poised to have a major impact on adoptive T-cell therapy and the investigation of T cell-mediated immunity.
Collapse
Affiliation(s)
- Jiyun V Kim
- Laboratory of Gene Transfer and Gene Expression, Gene Transfer and Somatic Cell Engineering Facility, Department of Medicine and Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
156
|
Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR, Porter SB. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004; 104:453-61. [PMID: 15031211 DOI: 10.1182/blood-2004-01-0151] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CD4(+)CD25(+) T-regulatory (Treg) cells have been shown to critically regulate self- and allograft tolerance in several model systems. Studies of human Treg cells have been restricted by the small number present in peripheral blood and their naturally hypoproliferative state. To better characterize Treg suppressor cell function, we determined methods for the isolation and expansion of these cells. Stringent magnetic microbead-based purification was required for potent suppressor cell line generation. Culture stimulation with cell-sized Dynabeads coated with anti-CD3 and anti-CD28 monoclonal antibodies, CD4(+) feeder cells, and interleukin 2, provided for marked expansion in cell number (100-fold), with retention and enhancement of suppressor function. The potent Treg cell lines suppressed proliferation in dendritic cell-driven allo-mixed lymphocyte reaction (MLR) cultures by more than 90%. The Treg-derived suppressor cells functioned early in allo-MLR because expression of activation antigens and accumulation of cytokines was nearly completely prevented. Importantly, cultured Treg cells also suppressed activated and matured dendritic cell-driven responses. These results demonstrate that short-term suppressor cell lines can be generated, and they can express a very potent suppressive activity. This approach will enable more detailed biologic studies of Treg cells and facilitate the evaluation of cultured Treg cells as a novel form of immunosuppressive therapy.
Collapse
Affiliation(s)
- Wayne R Godfrey
- University of Minnesota Cancer Center, MMC no. 806, 420 Delaware St, SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Caligiuri MA, Velardi A, Scheinberg DA, Borrello IM. Immunotherapeutic Approaches for Hematologic Malignancies. Hematology 2004:337-53. [PMID: 15561691 DOI: 10.1182/asheducation-2004.1.337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
The immune system has two complementary arms: one is older and seemingly more primitive, called the innate immune system, found in both plants and animals. The second (already many millions of years old!) is the adaptive or antigen-specific immune system, limited to vertebrate animals. The human innate immune system has many cellular elements that include granulocytes, monocytes, macrophages, natural killer (NK) cells, mast cells, eosinophils, and basophils. Receptors for these cells are non-clonal, fixed in the genome, requiring no rearrangement, and recognize conserved molecular patterns that are specific to pathogens. The adaptive immune system (B cells and T cells) have receptors with great variation, able to recognize an almost an unlimited number of highly specific pathogens through rearrangement of receptor gene segments, and can also provide immunological memory so critical for vaccination. As the immune system has evolved to recognize non-self, malignant transformation of self can likely escape immune surveillance with relative ease. Contributors to this chapter are utilizing distinct components of either the innate or adaptive immune system that recognize non-self, in combination with what we know about differences between malignant and normal self, in an effort to develop novel and effective immunologic approaches against hematologic malignancies.
In Section I, Dr. Andrea Velardi reviews the benefits of NK cell alloreactivity in mismatched hematopoietic transplantation, provides updates on current clinical trials, and discusses further therapeutic perspectives emerging from murine bone marrow transplant models.
In Section II, Dr. David Scheinberg reviews novel leukemic antigens being targeted by humanized monoclonal antibodies as well as mechanisms by which antibody-mediated cytotoxicity occurs in vivo.
In Section III, Dr. Ivan Borrello reviews vaccine and adoptive T cell immunotherapy in the treatment of hematologic malignancies. Specifically, he discusses the various vaccine approaches used as well as strategies aimed at augmenting the tumor specificity of T cell therapies.
Collapse
|
158
|
Abstract
AbstractOver the past few years, improved understanding of the molecular basis of interactions between antigen presenting cells and effector cells and advances in informatics have both led to the identification of many candidate antigens that are targets for immunotherapy. However, while immunotherapy has successfully eradicated relapsed hematologic malignancy after allogeneic transplant as well as virally induced tumors, limitations have been identified in extending immunotherapy to a wider range of hematologic malignancies. This review provides an overview of three immunotherapy strategies and how they may be improved.In Section I, Dr. Stevenson reviews the clinical experience with genetic vaccines delivered through naked DNA alone or viral vectors, which are showing promise in clinical trials in lymphoma and myeloma patients. She describes efforts to manipulate constructs genetically to enhance immunogenicity and to add additional elements to generate a more sustained immune response.In Section II, Dr. Molldrem describes clinical experience with peptide vaccines, with a particular focus on myeloid tissue-restricted proteins as GVL target antigens in CML and AML. Proteinase 3 and other azurophil granule proteins may be particularly good targets for both autologous and allogeneic T-cell responses. The potency of peptide vaccines may potentially be increased by genetically modifying peptides to enhance T-cell receptor affinity.Finally, in Section III, Dr. Heslop reviews clinical experience with adoptive immunotherapy with T cells. Transferred T cells have clinical benefit in treating relapsed malignancy post transplant, and Epstein-Barr virus associated tumors. However, T cells have been less successful in treating other hematologic malignancies due to inadequate persistence or expansion of adoptively transferred cells and the presence of tumor evasion mechanisms. An improved understanding of the interactions of antigen presenting cells with T cells should optimize efforts to manufacture effector T cells, while manipulation of lymphocyte homeostasis in vivo and development of gene therapy approaches may enhance the persistence and function of adoptively transferred T cells.
Collapse
Affiliation(s)
- Helen E Heslop
- Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX 77030-2303, USA
| | | | | |
Collapse
|