151
|
Civin CI. CD34 stem cell stories and lessons from the CD34 wars: the Landsteiner Lecture 2009. Transfusion 2010; 50:2046-56. [PMID: 20561292 DOI: 10.1111/j.1537-2995.2010.02729.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
152
|
Outten JT, Cheng X, Gadue P, French DL, Diamond SL. A high-throughput multiplexed screening assay for optimizing serum-free differentiation protocols of human embryonic stem cells. Stem Cell Res 2010; 6:129-42. [PMID: 21169079 DOI: 10.1016/j.scr.2010.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/21/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022] Open
Abstract
Serum-free differentiation protocols of human embryonic stem cells (hESCs) offer the ability to maximize reproducibility and to develop clinically applicable therapies. We developed a high-throughput, 96-well plate, four-color flow cytometry-based assay to optimize differentiation media cocktails and to screen a variety of conditions. We were able to differentiate hESCs to all three primary germ layers, screen for the effect of a range of activin A, BMP4, and VEGF concentrations on endoderm and mesoderm differentiation, and perform RNA-interference (RNAi)-mediated knockdown of a reporter gene during differentiation. Cells were seeded in suspension culture and embryoid bodies were induced to differentiate to the three primary germ layers for 6 days. Endoderm (CXCR4(+)KDR(-)), mesoderm (KDR(+)SSEA-3(-)), and ectoderm (SSEA-3(+)NCAM(+)) differentiation yields for H9 cells were 80 ± 11, 78 ± 7, and 41 ± 9%, respectively. Germ layer identities were confirmed by quantitative PCR. Activin A, BMP4, and bFGF drove differentiation, with increasing concentrations of activin A inducing higher endoderm yields and increasing BMP4 inducing higher mesoderm yields. VEGF drove lateral mesoderm differentiation. RNAi-mediated knockdown of constitutively expressed red fluorescent protein did not affect endoderm differentiation. This assay facilitates the development of serum-free protocols for hESC differentiation to target lineages and creates a platform for screening small molecules or RNAi during ESC differentiation.
Collapse
Affiliation(s)
- Joel T Outten
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
153
|
Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 2010; 129:290-306. [PMID: 21073897 DOI: 10.1016/j.pharmthera.2010.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/25/2023]
Abstract
Stem cell-based therapeutics have the potential to effectively treat many terminal and debilitating human diseases, but the mechanisms by which their growth and differentiation are regulated are incompletely defined. Recent data from multiple systems suggest major roles for G protein coupled receptor (GPCR) pathways in regulating stem cell function in vivo and in vitro. The goal of this review is to illustrate common ground between the growing field of stem cell therapeutics and the long-established field of G protein coupled receptor signaling. Herein, we briefly introduce basic stem cell biology and discuss how several conserved pathways regulate pluripotency and differentiation in mouse and human stem cells. We further discuss general mechanisms by which GPCR signaling may impact these pluripotency and differentiation pathways, and summarize specific examples of receptors from each of the major GPCR subfamilies that have been shown to regulate stem cell function. Finally, we discuss possible therapeutic implications of GPCR regulation of stem cell function.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | | | | | | | | |
Collapse
|
154
|
Kopher RA, Penchev VR, Islam MS, Hill KL, Khosla S, Kaufman DS. Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells. Bone 2010; 47:718-28. [PMID: 20601304 PMCID: PMC2939152 DOI: 10.1016/j.bone.2010.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/04/2010] [Accepted: 06/18/2010] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have been isolated from various tissues and utilized for an expanding number of therapies. The developmental pathways involved in producing MSCs and the phenotypic precursor/progenitor cells that give rise to human MSCs remain poorly defined. Human embryonic stem cells (hESCs) have the capability to generate functional hemato-endothelial cells and other mesoderm lineage cells. hESC-derived CD73(+) cells have been isolated and found to have similar phenotypic and functional characteristics as adult MSCs. Here we demonstrate hESC-derived CD34(+)CD73(-) cells can serve as MSC progenitor cells with the ability to differentiate into adipocytes, osteoblasts and chondrocytes. Additionally, gene array analysis of hESC-derived MSCs show substantially different gene expression compared to bone marrow (BM)-derived MSCs, especially with increased expression of pluripotent and multipotent stem cell and endothelial cell-associated genes. The isolation of functional MSCs from hESC-derived CD34(+)CD73(-) cells provides improved understanding of MSC development and utilization of pluripotent stem cells to produce MSCs suited for novel regenerative therapies.
Collapse
Affiliation(s)
- Ross A. Kopher
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Vesselin R. Penchev
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mohammad S. Islam
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Katherine L. Hill
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Sundeep Khosla
- Endocrine Research Unit, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan S. Kaufman
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
155
|
Leveraging human genetics to develop future therapeutic strategies in rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36:259-70. [PMID: 20510233 DOI: 10.1016/j.rdc.2010.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this article is to place these genetic discoveries in the context of current and future therapeutic strategies for patients with RA. More specifically, this article focuses on (1) a brief overview of genetic studies, (2) human genetics as an approach to identify the Achilles heel of disease pathways, (3) humans as the model organism for functional studies of human mutations, (4) pharmacogenetic studies to gain insight into the mechanism of action of drugs, and (5) next-generation patient registries to enable large-scale genotype-phenotype studies.
Collapse
|
156
|
Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage. Mol Ther 2010; 18:2173-81. [PMID: 20736931 DOI: 10.1038/mt.2010.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage-specific differentiation potential varies among different human pluripotent stem cell (hPSC) lines, becoming therefore highly desirable to prospectively know which hPSC lines exhibit the highest differentiation potential for a certain lineage. We have compared the hematopoietic potential of 14 human embryonic stem cell (hESC)/induced pluripotent stem cell (iPSC) lines. The emergence of hemogenic progenitors, primitive and mature blood cells, and colony-forming unit (CFU) potential was analyzed at different time points. Significant differences in the propensity to differentiate toward blood were observed among hPSCs: some hPSCs exhibited good blood differentiation potential, whereas others barely displayed blood-differentiation capacity. Correlation studies revealed that the CFU potential robustly correlates with hemogenic progenitors and primitive but not mature blood cells. Developmental progression of mesoendodermal and hematopoietic transcription factors expression revealed no correlation with either hematopoietic initiation or maturation efficiency. Microarray studies showed distinct gene expression profile between hPSCs with good versus poor hematopoietic potential. Although neuroectoderm-associated genes were downregulated in hPSCs prone to hematopoietic differentiation many members of the Nodal/Activin signaling were upregulated, suggesting that this signaling predicts those hPSC lines with good blood-differentiation potential. The association between Nodal/Activin signaling and the hematopoietic differentiation potential was confirmed using loss- and gain-of-function functional assays. Our data reinforce the value of prospective comparative studies aimed at determining the lineage-specific differentiation potential among different hPSCs and indicate that Nodal/Activin signaling seems to predict those hPSC lines prone to hematopoietic specification.
Collapse
|
157
|
VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver. Blood 2010; 116:4444-55. [PMID: 20693433 DOI: 10.1182/blood-2010-03-272625] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Edification of the human hematopoietic system during development is characterized by the production of waves of hematopoietic cells separated in time, formed in distinct embryonic sites (ie, yolk sac, truncal arteries including the aorta, and placenta). The embryonic liver is a major hematopoietic organ wherein hematopoietic stem cells (HSCs) expand, and the future, adult-type, hematopoietic cell hierarchy becomes established. We report herein the identification of a new, transient, and rare cell population in the human embryonic liver, which coexpresses VE-cadherin, an endothelial marker, CD45, a pan-hematopoietic marker, and CD34, a common endothelial and hematopoietic marker. This population displays an outstanding self-renewal, proliferation, and differentiation potential, as detected by in vitro and in vivo hematopoietic assays compared with its VE-cadherin negative counterpart. Based on VE-cadherin expression, our data demonstrate the existence of 2 phenotypically and functionally separable populations of multipotent HSCs in the human embryo, the VE-cadherin(+) one being more primitive than the VE-cadherin(-) one, and shed a new light on the hierarchical organization of the embryonic liver HSC compartment.
Collapse
|
158
|
Bai H, Gao Y, Arzigian M, Wojchowski DM, Wu WS, Wang ZZ. BMP4 regulates vascular progenitor development in human embryonic stem cells through a Smad-dependent pathway. J Cell Biochem 2010; 109:363-74. [PMID: 19950207 DOI: 10.1002/jcb.22410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The signals that direct pluripotent stem cell differentiation into lineage-specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum-free condition, hESCs sequentially differentiated into CD34+CD31-, CD34+CD31+, and then CD34-CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFbeta suppressed BMP4-induced CD34+CD31+ cell development, and promoted CD34+CD31- cells that failed to give rise to either endothelial or smooth muscle cells. The BMP-Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad-dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells.
Collapse
Affiliation(s)
- Hao Bai
- Maine Medical Center, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | |
Collapse
|
159
|
Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 2010; 21:1218-22. [PMID: 20558536 DOI: 10.1681/asn.2009111156] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some reports suggest that autologous hematopoietic stem cell transplantation holds potential for treatment of renal diseases such as lupus nephritis, but the safety of delivering various stem cell types (hematopoietic, mesenchymal, and endothelial precursors) is not well established. Here, we report a case of lupus nephritis treated by direct renal injection of autologous stem cells recovered from peripheral blood. The patient developed masses at the sites of injection and hematuria. We suspected transitional cell carcinoma but nephrectomy revealed that the masses were angiomyeloproliferative lesions. We believe that this previously undescribed pathologic entity is stem cell-derived or -induced. The biologic potential, including the neoplastic potential, of this lesion is unknown. This case illustrates that the development of angiomyeloproliferative lesions is a possible complication of stem cell therapy.
Collapse
Affiliation(s)
- Duangpen Thirabanjasak
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Patumwan, Bangkok, Thailand.
| | | | | |
Collapse
|
160
|
Renda MC, Giambona A, Fecarotta E, Leto F, Makrydimas G, Renda D, Damiani G, Jakil MC, Picciotto F, Piazza A, Valtieri M, Maggio A. Embryo-fetal erythroid megaloblasts in the human coelomic cavity. J Cell Physiol 2010; 225:385-9. [DOI: 10.1002/jcp.22269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
161
|
Iacobas I, Vats A, Hirschi KK. Vascular potential of human pluripotent stem cells. Arterioscler Thromb Vasc Biol 2010; 30:1110-7. [PMID: 20453170 DOI: 10.1161/atvbaha.109.191601] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and preclinical studies to human trials.
Collapse
Affiliation(s)
- Ionela Iacobas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
162
|
Abstract
Genetic studies have identified more than 150 autoimmune loci, and next-generation sequencing will identify more. Is it time to make human the model organism for autoimmune research?
Collapse
Affiliation(s)
- Robert Plenge
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA 02115, USA.
| |
Collapse
|
163
|
Mountford JC, Olivier E, Jordanides NE, de Sousa P, Turner ML. Red blood cells from pluripotent stem cells for use in transfusion. Regen Med 2010; 5:411-23. [DOI: 10.2217/rme.10.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The use of donated red blood cells in transfusion is a well-established cellular therapy. However, problems including insufficient supply, transfusion-transmitted infections and the need for immunological matching hamper even in the best services. These issues may be eliminated by using pluripotent stem cells to generate universal donor group O, Rhesus D-negative red blood cells. Human embryonic stem cells can be maintained and expanded indefinitely and can, therefore, produce the very large cell numbers required for this application. Red blood cell production is also an attractive goal for pluripotent stem cell-derived therapeutics because it is a well-characterized single cell suspension, lacking nucleated cells and with a low expression of HLA molecules. Much progress has been made; however, a number of challenges remain including scale-up, clinical effectiveness and product safety.
Collapse
Affiliation(s)
| | - Emmanuel Olivier
- Faculty of Biomedical & Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Niove E Jordanides
- Faculty of Biomedical & Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- Scottish National Blood Transfusion Service Cell Therapy Group, Royal Infirmary Edinburgh, 51 Little France Cresent, Edinburgh, E16 4SA, UK
| | - Paul de Sousa
- MRC Centre for Regenerative Medicine, University of Edinburgh, Royal Infirmary Edinburgh, 51 Little France Crescent, Edinburgh E16 4SA, UK
| | - Marc L Turner
- Scottish National Blood Transfusion Service Cell Therapy Group, Royal Infirmary Edinburgh, 51 Little France Cresent, Edinburgh, E16 4SA, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Royal Infirmary Edinburgh, 51 Little France Crescent, Edinburgh E16 4SA, UK
| |
Collapse
|
164
|
Winnicka B, O'Conor C, Schacke W, Vernier K, Grant CL, Fenteany FH, Pereira FE, Liang B, Kaur A, Zhao R, Montrose DC, Rosenberg DW, Aguila HL, Shapiro LH. CD13 is dispensable for normal hematopoiesis and myeloid cell functions in the mouse. J Leukoc Biol 2010; 88:347-59. [PMID: 20430777 PMCID: PMC2908940 DOI: 10.1189/jlb.0210065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While the myeloid marker CD13 has been implicated in numerous myeloid cell functions, its genetic ablation reveals a nominal contribution of CD13 to these functions. The robust and consistent expression of the CD13 cell surface marker on very early as well as differentiated myeloid hematopoietic cells has prompted numerous investigations seeking to define roles for CD13 in myeloid cells. To address the function of myeloid CD13 directly, we created a CD13 null mouse and assessed the responses of purified primary macrophages or DCs from WT and CD13 null animals in cell assays and inflammatory disease models, where CD13 has been implicated previously. We find that mice lacking CD13 develop normally with normal hematopoietic profiles except for an increase in thymic but not peripheral T cell numbers. Moreover, in in vitro assays, CD13 appears to be largely dispensable for the aspects of phagocytosis, proliferation, and antigen presentation that we tested, although we observed a slight decrease in actin‐independent erythrocyte uptake. However, in agreement with our published studies, we show that lack of monocytic CD13 completely ablates anti‐CD13‐dependent monocyte adhesion to WT endothelial cells. In vivo assessment of four inflammatory disease models showed that lack of CD13 has little effect on disease onset or progression. Nominal alterations in gene expression levels between CD13 WT and null macrophages argue against compensatory mechanisms. Therefore, although CD13 is highly expressed on myeloid cells and is a reliable marker of the myeloid lineage of normal and leukemic cells, it is not a critical regulator of hematopoietic development, hemostasis, or myeloid cell function.
Collapse
Affiliation(s)
- Beata Winnicka
- Center for Vascular Biology, Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030-3501, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Erythropoietic differentiation of a human embryonic stem cell line harbouring the sickle cell anaemia mutation. Reprod Biomed Online 2010; 21:196-205. [PMID: 20541472 DOI: 10.1016/j.rbmo.2010.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/04/2010] [Accepted: 03/11/2010] [Indexed: 12/31/2022]
Abstract
Herein is reported efficient erythropoietic differentiation of a human embryonic stem cell (ESC) line derived from a preimplantation genetic diagnosis (PGD)-screened embryo that harbours the homozygous sickle cell disease (SCD) haemoglobinopathy mutation. This human ESC line possesses typical pluripotency characteristics and forms multilineage teratomas in vivo. SCD-human ESC efficiently differentiated to the haematopoietic lineage under serum-free and stromal co-culture conditions and gave rise to robust primitive and definitive erythrocytes. Expression of embryonic, fetal and adult sickle globin genes in SCD PGD-derived human ESC-derived erythrocytes was confirmed by quantitative real-time PCR, intracytoplasmic fluorescence-activated cell sorting and in-situ immunostaining of PGD-derived human ESC teratoma sections. These data introduce important methodologies and paradigms for using patient-specific human ESC to generate normal and haemoglobinopathic erythroid progenitors for biomedical research.
Collapse
|
166
|
Mountford J, Olivier E, Turner M. Prospects for the manufacture of red cells for transfusion. Br J Haematol 2010; 149:22-34. [DOI: 10.1111/j.1365-2141.2010.08079.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
167
|
WU Q, XI JF, LI YL, PEI XT. Progress of Differentiating Human Embryonic Stem Cells Into Endothelial Progenitor Cells and Potential Applications*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
168
|
Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol 2010; 38:403-16. [PMID: 20206228 DOI: 10.1016/j.exphem.2010.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/27/2022]
Abstract
OBJECTIVE RUNX1 (also known as acute myeloid leukemia 1) is an essential regulator of hematopoiesis and has multiple isoforms arising from differential splicing and utilization of two promoters. We hypothesized that the rare Runx1c isoform has a distinct role in hematopoietic stem cells (HSCs). MATERIALS AND METHODS We have characterized the expression pattern of Runx1c in mouse embryos and human embryonic stem cell (hESC)-derived embryoid bodies using in situ hybridization and expression levels in mouse and human HSCs by real-time polymerase chain reaction. We then determined the functional effects of Runx1c using enforced retroviral overexpression in mouse HSCs. RESULTS We observed differential expression profiles of RUNX1 isoforms during hematopoietic differentiation of hESCs. The RUNX1a and RUNX1b isoforms were expressed consistently throughout hematopoietic differentiation, whereas the RUNX1c isoform was only expressed at the time of emergence of definitive HSCs. RUNX1c was also expressed in the AGM region of E10.5 to E11.5 mouse embryos, the region where definitive HSCs arise. These observations suggested that the RUNX1c isoform may be important for the specification or function of definitive HSCs. However, using retroviral overexpression to study the effect of RUNX1 isoforms on HSCs in a gain-of-function system, no discernable functional difference could be identified between RUNX1 isoforms in mouse HSCs. Overexpression of both RUNX1b and RUNX1c induced quiescence in mouse HSCs in vitro and in vivo. CONCLUSIONS Although the divergent expression profiles of Runx1 isoforms during development suggest specific roles for these proteins at different stages of HSC maturation, we could not detect an important functional distinction in adult mouse HSCs using our assay systems.
Collapse
Affiliation(s)
- Grant A Challen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Tex. 77030, USA
| | | |
Collapse
|
169
|
Sakamoto H, Tsuji-Tamura K, Ogawa M. Hematopoiesis from pluripotent stem cell lines. Int J Hematol 2010; 91:384-91. [PMID: 20169427 DOI: 10.1007/s12185-010-0519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/12/2009] [Indexed: 01/20/2023]
Abstract
Embryonic stem cells (ESCs) can differentiate into various types of hematopoietic cells (HPCs) when placed in an appropriate environment. Various methods for the differentiation of ESCs into specific HPC lineages have been developed using mouse ESCs. These ESC-differentiation methods have been utilized also as an in vitro model to investigate hematopoiesis in embryos and they provided critical perceptions into it. These methods have been adapted for use with human ESCs, which have the possibility of being employed in regenerative medicine; further improvement of these methods may lead to the efficient production of HPCs for use in transfusions. The generation of transplantable hematopoietic stem cells is a medical goal that is still difficult to achieve. Recently, induced pluripotent stem (iPS) cells have been established from differentiated cells. Thereby, iPS cells have expanded further possibilities of the use of pluripotent stem cell lines in clinical application. Indeed, iPS cells have been established from cells with disease genes and those which have undergone reprogramming and targeting have generated phenotypically normal HPCs. Here, we mainly summarize the recent progress in research on hematopoiesis conducted with ESCs and iPS cells.
Collapse
Affiliation(s)
- Hiroshi Sakamoto
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | | | |
Collapse
|
170
|
Gerecht S, Ferreira LS, Langer R. Vascular differentiation of human embryonic stem cells in bioactive hydrogel-based scaffolds. Methods Mol Biol 2010; 584:333-54. [PMID: 19907986 DOI: 10.1007/978-1-60761-369-5_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The vascularization of tissue constructs remains a major challenge in regenerative medicine, as the diffusional supply of oxygen can support only 100-200 mum thick layers of viable tissue. The formation of a mature and functional vascular network requires communication between endothelial cells (ECs) and smooth muscle cells (SMCs). Potential sources of these cells that involve noninvasive methodologies are required for numerous applications including tissue-engineered vascular grafts, myocardial ischemia, wound healing, plastic surgery, and general tissue-engineering applications. Human embryonic stem cells (hESCs) can be an unlimited source of these cells. They can be expanded in vitro in an undifferentiated state without apparent limit, and hES-derived cells can be created in virtually unlimited amounts for potential clinical uses. Recently, vascular progenitor cells as well as endothelial and smooth muscle cells have been isolated from hESCs.
Collapse
Affiliation(s)
- Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
171
|
Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp Hematol 2010; 38:246-257.e1. [PMID: 20067819 DOI: 10.1016/j.exphem.2010.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34(+) cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization. MATERIALS AND METHODS hESCs are cocultured on M2-10B4 stromal cells or Wnt1-expressing M2-10B4 for 13 to 15 days to generate a CD34(+) cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin-coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24 to 48 hours. RESULTS CD34(+) vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell-specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when cocultured in Matrigel. Human umbilical vein endothelial cells cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1-overexpressing stromal cells produced an increased number of progenitor cells. CONCLUSIONS The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The stepwise differentiation outlined here is an efficient, reproducible method with potential for large-scale cultures suitable for clinical applications.
Collapse
|
172
|
Kim EM, Zavazava N. Differentiation of human embryonic stem cells into hematopoietic cells in vitro. Methods Mol Biol 2010; 651:89-101. [PMID: 20686962 DOI: 10.1007/978-1-60761-786-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability of embryonic stem cells (ES) cells to form cells and tissues from all three germ layers can be exploited to generate cells that can be used to treat diseases. In particular, successful generation of hematopoietic cells from ES cells could provide safer and less immunogenic cells than bone cells, obviating the need for severe host preconditioning when transplanted across major histocompatibility complex barriers. To generate hematopoietic stem cells, protocols utilizing embryoid body (EB)-induced differentiation of human ES (hES) cells have been applied in the authors' laboratory. While this protocol results in targeted differentiation into hematopoietic cells, much remains to be done to improve these methods and make them more efficient.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Internal Medicine, Division of Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
173
|
Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 2009; 61:800-30. [PMID: 19621348 DOI: 10.1002/iub.226] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human erythropoiesis is a complex multistep developmental process that begins at the level of pluripotent hematopoietic stem cells (HSCs) at bone marrow microenvironment (HSCs niche) and terminates with the production of erythrocytes (RBCs). This review covers the basic and contemporary aspects of erythropoiesis. These include the: (a) cell-lineage restricted pathways of differentiation originated from HSCs and going downward toward the blood cell development; (b) model systems employed to study erythropoiesis in culture (erythroleukemia cell lines and embryonic stem cells) and in vivo (knockout animals: avian, mice, zebrafish, and xenopus); (c) key regulators of erythropoiesis (iron, hypoxia, stress, and growth factors); (d) signaling pathways operating at hematopoietic stem cell niche for homeostatic regulation of self renewal (SCF/c-kit receptor, Wnt, Notch, and Hox) and for erythroid differentiation (HIF and EpoR). Furthermore, this review presents the mechanisms through which transcriptional factors (GATA-1, FOG-1, TAL-1/SCL/MO2/Ldb1/E2A, EKLF, Gfi-1b, and BCL11A) and miRNAs regulate gene pattern expression during erythroid differentiation. New insights regarding the transcriptional regulation of alpha- and beta-globin gene clusters were also presented. Emphasis was also given on (i) the developmental program of erythropoiesis, which consists of commitment to terminal erythroid maturation and hemoglobin production, (two closely coordinated events of erythropoieis) and (ii) the capacity of human embryonic and umbilical cord blood (UCB) stem cells to differentiate and produce RBCs in culture with highly selective media. These most recent developments will eventually permit customized red blood cell production needed for transfusion.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
174
|
|
175
|
Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009; 27:559-67. [PMID: 19259936 DOI: 10.1634/stemcells.2008-0922] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro, as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In this study, we employed an OP9 differentiation system to characterize the hematopoietic and endothelial differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC, H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs generated CD34(+)CD43(+) hematopoietic progenitors and CD31(+)CD43(-) endothelial cells in coculture with OP9. When cultured in semisolid media in the presence of hematopoietic growth factors, iPSC-derived primitive blood cells formed all types of hematopoietic colonies, including GEMM colony-forming cells. Human induced pluripotent cells (hiPSCs)-derived CD43(+) cells could be separated into the following phenotypically defined subsets of primitive hematopoietic cells: CD43(+)CD235a(+)CD41a(+/-) (erythro-megakaryopoietic), lin(-)CD34(+)CD43(+)CD45(-) (multipotent), and lin(-)CD34(+)CD43(+)CD45(+) (myeloid-skewed) cells. Although we observed some variations in the efficiency of hematopoietic differentiation between different hiPSCs, the pattern of differentiation was very similar in all seven tested lines obtained through reprogramming of human fetal, neonatal, or adult fibroblasts with three or four genes. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks.
Collapse
Affiliation(s)
- Kyung-Dal Choi
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 53715, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Sun G, Gerecht S. Vascular regeneration: engineering the stem cell microenvironment. Regen Med 2009; 4:435-47. [PMID: 19438318 DOI: 10.2217/rme.09.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vascular diseases are a major threat to human health nowadays. While current treatments can cure some vascular diseases, their beneficial effects are only temporary; vascular regeneration holds the promise of permanent, effective treatments for many vascular diseases. Stem cells and endothelial progenitor cells can differentiate into vascular lineages and therefore have the potential to repair vascular systems. However, engineering appropriate microenvironments that will allow cell maturation and delivery remains the major challenge to the successful implementation of this treatment. This review introduces the cells that are being studied for vascular differentiation and regeneration; we then consider recent approaches to engineering microenvironments, including proper signaling cues and biodegradable scaffolds that will guide the development of these cells into vessels suitable for cell-based vascular therapy.
Collapse
Affiliation(s)
- Guoming Sun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
177
|
Douay L, Lapillonne H, Turhan AG. Stem cells--a source of adult red blood cells for transfusion purposes: present and future. Crit Care Clin 2009; 25:383-98, Table of Contents. [PMID: 19341915 DOI: 10.1016/j.ccc.2008.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have sufficient knowledge of the biology of hematopoietic stem cells to hope that we might generate human red blood cells in the laboratory. It may soon be possible to produce enough to transfuse "cultured" red blood cells to manufacture human red blood cells from hematopoietic stem cells for transfusion purposes. This article describes progress and the challenges that remain in the search for in vitro generated red blood cells that can be efficiently manufactured in high volumes and given to any recipient.
Collapse
Affiliation(s)
- Luc Douay
- INSERM, UMR_S 893, Proliferation and differentiation of stem cells, Paris, France.
| | | | | |
Collapse
|
178
|
Choi JH, Ryu YS, Kim KH, Lee YR, Cha KW, Han IS, Kwon BS. In vitro development of a hemangioblast from a human embryonic stem cell, SNUhES#3. Life Sci 2009; 85:39-45. [DOI: 10.1016/j.lfs.2009.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/01/2009] [Accepted: 04/18/2009] [Indexed: 11/26/2022]
|
179
|
Saeki K, Saeki K, Nakahara M, Matsuyama S, Nakamura N, Yogiashi Y, Yoneda A, Koyanagi M, Kondo Y, Yuo A. A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells 2009; 27:59-67. [PMID: 18845766 DOI: 10.1634/stemcells.2007-0980] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel, feeder-free hematopoietic differentiation protocol was established for highly efficient production of neutrophils from human embryonic stem cells (hESCs). For the induction of differentiation, spheres were generated in the presence of serum and cytokine cocktail and subjected to attachment culture on gelatin-coated plates. After approximately 2 weeks, a sac-like structure filled with abundant round cells emerged at the center of flattened spheres. After cutting off this sac-like structure, round cells actively proliferated, either floating in the supernatant or associated weakly with the adherent cells. Almost all of these round cells were CD45-positive hematopoietic cells with myeloid phagocytic markers (CD33 and CD11b), and approximately 30%-50% of the round cells were mature neutrophils, as judged from morphology, cytochemical characteristics (myeloperoxidase and neutrophil alkaline phosphatase), and neutrophil-specific cell surface markers (CD66b, CD16b, and GPI-80). In addition, hESC-derived neutrophils had chemotactic capacity in response to the bacterial chemotactic peptide formyl-methionyl-leucyl-phenylalanine and neutrophil-specific chemokine interleukin (IL)-8. Using "semipurified" neutrophils migrated to IL-8, both phagocytic and respiratory burst activities were demonstrated. Finally, it was shown that hESC-derived neutrophils had chemotactic activity in vivo in a murine air-pouch inflammatory model. The present results indicate successful induction of functional mature neutrophils from hESCs via highly efficient feeder-free differentiation culture system of human hematopoietic cells.
Collapse
Affiliation(s)
- Koichi Saeki
- Department of Hematology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Galić Z, Kitchen SG, Subramanian A, Bristol G, Marsden MD, Balamurugan A, Kacena A, Yang O, Zack JA. Generation of T lineage cells from human embryonic stem cells in a feeder free system. Stem Cells 2009; 27:100-7. [PMID: 18974209 DOI: 10.1634/stemcells.2008-0813] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human embryonic stem cells (hESC) have the potential to revolutionize certain medical treatments, including T-cell-based therapies. However, optimal approaches to develop T cells from hESC are lacking. In this report, we show that T-cell progenitors can be derived from hESC cultured as embryoid bodies (EBs). These EB-derived T-cell progenitors give rise to phenotypically and functionally normal cells of the T lineage when transferred into human thymic tissue implanted in immunocompromised mice, suggesting that introduction of these progenitors into patients may also yield functional T cells. Moreover, hematopoietic progenitors demonstrating T-cell potential appeared to be CD45+/CD34+, resembling those found in normal bone marrow. In contrast to T cells developed from hESC cocultured on murine stromal cells, the EB-derived T cells also expressed normal levels of CD45. Importantly, the EB system eliminates the previous need for murine cocultures, a key impediment to developing a protocol for T-cell progenitor derivation suitable for clinical use. Furthermore, following lentiviral-mediated introduction of a vector expressing enhanced green fluorescent protein into hESC, stable transgene expression was maintained throughout differentiation, suggesting a potential for gene therapy approaches aimed at the augmentation of T-cell function or treatment of T-cell disorders.
Collapse
Affiliation(s)
- Zoran Galić
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, Moore HD, Leclercq G, Langerak AW, Kerre T, Plum J, Vandekerckhove B. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. THE JOURNAL OF IMMUNOLOGY 2009; 182:6879-88. [PMID: 19454684 DOI: 10.4049/jimmunol.0803670] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human embryonic stem cells (hESC) are pluripotent stem cells. A major challenge in the field of hESC is the establishment of specific differentiation protocols that drives hESC down a particular lineage fate. So far, attempts to generate T cells from hESC in vitro were unsuccessful. In this study, we show that T cells can be generated in vitro from hESC-derived hematopoietic precursor cells present in hematopoietic zones (HZs). These zones are morphologically similar to blood islands during embryonic development, and are formed when hESC are cultured on OP9 stromal cells. Upon subsequent transfer of these HZs on OP9 cells expressing high levels of Delta-like 1 and in the presence of growth factors, cells expand and differentiate to T cells. Furthermore, we show that T cells derive exclusively from a CD34(high)CD43(low) population, further substantiating the notion that hESC-derived CD34(high)CD43(low) cells are formed in HZs and are the only population containing multipotent hematopoietic precursor cells. Differentiation to T cells sequentially passes through the physiological intermediates: CD34(+)CD7(+) T/NK committed, CD7(+)CD4(+)CD8(-) immature single positive, CD4(+)CD8(+) double positive, and finally CD3(+)CD1(-)CD27(+) mature T cell stages. TCRalphabeta(+) and TCRgammadelta(+) T cells are generated. Mature T cells are polyclonal, proliferate, and secrete cytokines in response to mitogens. This protocol for the de novo generation of T cells from hESC could be clinically and scientifically relevant.
Collapse
Affiliation(s)
- Frank Timmermans
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Wang Y, Nakayama N. WNT and BMP signaling are both required for hematopoietic cell development from human ES cells. Stem Cell Res 2009; 3:113-25. [PMID: 19595658 DOI: 10.1016/j.scr.2009.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022] Open
Abstract
Pluripotent human embryonic stem (hES) cells are capable of generating a variety of mature cell types, including hematopoietic cells in vitro. However, the precise signaling mechanisms that regulate hematopoietic cell development from hES cells are still poorly documented. Here we demonstrate that hemoangiogenic cells derived from hES cells are defined by their high-level expression of KDR and low-level expression of PDGFRalpha (KDR(+)PDGFRalpha(lo)), and that the generation of such cells from hES cells is significantly elevated by the addition of WNT3a or BMP4 during differentiation. The addition of WNT3a caused the induction of both hemogenic and angiogenic activities, and the addition of BMP4 preferentially increased angiogenic activity, all enriched in the KDR(+)PDGFRalpha(lo) cell fraction. Interestingly, WNT3a stimulation of hemoangiogenic cell genesis was virtually abolished in the presence of a BMP inhibitor. On the other hand, the BMP4-induced angiogenic cell genesis was suppressed by coaddition of a WNT inhibitor. Thus, WNT and BMP signaling coordinately direct the differentiation of hES cells into KDR(+)PDGFRalpha(lo) hemoangiogenic cells.
Collapse
Affiliation(s)
- Yi Wang
- Developmental Biology Laboratory, Australian Stem Cell Centre and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
183
|
Abstract
Runx1 binds DNA in cooperation with CBFbeta to activate or repress transcription, dependent upon cellular context and interaction with a variety of co-activators and co-repressors. Runx1 is required for emergence of adult hematopoietic stem cells (HSC) during embryonic development and for lymphoid, myeloid, and megakaryocyte lineage maturation from HSC in adult marrow. Runx1 levels vary during the cell cycle, and Runx1 regulates G1 to S cell cycle progression. Both Cdk and ERK phosphorylate Runx1 to influence its interaction with co-repressors, and the Wnt effector LEF-1/TCF also modulates Runx1 activities. These links likely allow cytokines and signals from adjacent cells to influence HSC proliferation versus quiescence and the rate of progenitor expansion, in response to developmental or environmental demands. J. Cell. Physiol. 219: 520-524, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
184
|
Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood 2009; 114:268-78. [PMID: 19420357 DOI: 10.1182/blood-2008-12-193888] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface antigens on hematopoietic stem cells (HSCs) enable prospective isolation and characterization. Here, we compare the cell-surface phenotype of hematopoietic repopulating cells from murine yolk sac, aorta-gonad-mesonephros, placenta, fetal liver, and bone marrow with that of HSCs derived from the in vitro differentiation of murine embryonic stem cells (ESC-HSCs). Whereas c-Kit marks all HSC populations, CD41, CD45, CD34, and CD150 were developmentally regulated: the earliest embryonic HSCs express CD41 and CD34 and lack CD45 and CD150, whereas more mature HSCs lack CD41 and CD34 and express CD45 and CD150. ESC-HSCs express CD41 and CD150, lack CD34, and are heterogeneous for CD45. Finally, although CD48 was absent from all in vivo HSCs examined, ESC-HSCs were heterogeneous for the expression of this molecule. This unique phenotype signifies a developmentally immature population of cells with features of both primitive and mature HSC. The prospective fractionation of ESC-HSCs will facilitate studies of HSC maturation essential for normal functional engraftment in irradiated adults.
Collapse
|
185
|
Basak GW, Yasukawa S, Alfaro A, Halligan S, Srivastava AS, Min WP, Minev B, Carrier E. Human embryonic stem cells hemangioblast express HLA-antigens. J Transl Med 2009; 7:27. [PMID: 19386101 PMCID: PMC2680830 DOI: 10.1186/1479-5876-7-27] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/22/2009] [Indexed: 02/02/2023] Open
Abstract
Background It has been suggested that the initial differentiation of endothelial and hematopoietic cells during embryogenesis occurs from a common progenitor, called hemangioblast (hB). We hypothesized that these cells with dual hematopoietic/endothelial potential could be used in future regenerative medicine. Methods We used the two-step differentiation technology to generate bipotential blast cells from human embryonic stem cells (hES). This involved short differentiation in our in vitro EB system followed by differentiation in semisolid culture medium supplemented with mixture of cytokines. Results The occurrence of blast-colony-forming cells (BL-CFC) during EB differentiation (day 0–6) was transient and peaked on day 3. The emergence of this event was associated with expression of mesoderm gene T, and inversely correlated with expression of endoderm gene FoxA2. Similarly, the highest BL-CFC number was associated with increase in expression of early hematopoietic/endothelial genes: CD34, CD31 and KDR. The derived colonies were composed of 30–50 blast cells on day 6 in culture. These cells had homogenous appearance in Wright-Giemsa stain, but to a different extent expressed markers of immature hematopoietic and endothelial cells (CD31, CD34, VE-cadherin, Flt-1) and mature differentiated cells (CD45, CD33, CD146). We found that some of them expressed fetal and embryonic globin genes. Interestingly, these cells expressed also HLA class I molecules, however at very low levels compared to endothelial and hematopoietic cells. The blast cells could be successfully differentiated to hematopoietic cells in a CFU assay. In these conditions, blast cells formed CFU-M colonies (63.4 ± 0.8%) containing macrophages, BFU-E colonies (19.5 ± 3.5%) containing nucleated red blood cells, and CFU-EM colonies (17.1 ± 2.7%) composed of macrophages and nucleated erythrocytes. Cells of CFU-EM and BFU-E colonies expressed both ε – and γ- globin genes, but not adult-type γ-globin. When in endothelial cell culture conditions, blast cells differentiated to endothelial cells which had the ability to take up Dil-Ac-LDL and to form complex vascular networks in Matrigel. Conclusion 1) Hematoendothelial precursors exist transiently in early embryonic development and form single cell-derived colonies; 2) their differentiation can be tracked by the use of chosen molecular markers; 3) blast colonies consist of cells having properties of endothelial and hematopoietic precursors, however the issue of their ability to maintain dual properties over time needs to be further explored; 4) blast cells can potentially be used in regenerative medicine due to their low expression of HLA molecules.
Collapse
|
186
|
Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W, Vodyanik M, Thomson J, Slukvin I. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009. [DOI: 10.1002/stem.20080922] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
187
|
Liu YX, Ji L, Yue W, Yan ZF, Wang J, Xi JF, Zhang R, Nan X, Bai CX, Chen L, Wang YF, Pei XT. Cells Extract from Fetal Liver Promotes the Hematopoietic Differentiation of Human Embryonic Stem Cells. CLONING AND STEM CELLS 2009; 11:51-60. [DOI: 10.1089/clo.2008.0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yu-Xiao Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
- Center for Disease Control of Beijing military region, Beijing 100042, People's Republic of China
| | - Lei Ji
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Zhi-Feng Yan
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Jing Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Rui Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Ci-Xian Bai
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Yun-Fang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institution of Transfusion Medicine, Beijing 100850, People's Republic of China
| |
Collapse
|
188
|
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2009; 2:72-82. [PMID: 18371423 DOI: 10.1016/j.stem.2007.10.022] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 01/10/2023]
Abstract
The formation of blood in the embryo is dependent on bone morphogenetic protein (BMP), but how BMP signaling intersects with other regulators of hematopoietic development is unclear. Using embryonic stem (ES) cells, we show that BMP4 first induces ventral-posterior (V-P) mesoderm and subsequently directs mesodermal cells toward blood fate by activating Wnt3a and upregulating Cdx and Hox genes. When BMP signaling is blocked during this latter phase, enforced expression of either Cdx1 or Cdx4 rescues hematopoietic development, thereby placing BMP4 signaling upstream of the Cdx-Hox pathway. Wnt signaling cooperates in BMP-induced hemogenesis, and the Wnt effector LEF1 mediates BMP4 activation of Cdx genes. Our data suggest that BMP signaling plays two distinct and sequential roles during blood formation, initially as an inducer of mesoderm, and later to specify blood via activation of Wnt signaling and the Cdx-Hox pathway.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Kelly MA, Hirschi KK. Signaling hierarchy regulating human endothelial cell development. Arterioscler Thromb Vasc Biol 2009; 29:718-24. [PMID: 19213939 DOI: 10.1161/atvbaha.109.184200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. METHODS AND RESULTS Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. CONCLUSIONS Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.
Collapse
Affiliation(s)
- Melissa A Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
190
|
Krtolica A, Genbacev O, Escobedo C, Zdravkovic T, Nordstrom A, Vabuena D, Nath A, Simon C, Mostov K, Fisher SJ. Disruption of Apical-Basal Polarity of Human Embryonic Stem Cells Enhances Hematoendothelial Differentiation. Stem Cells 2009; 25:2215-23. [PMID: 17569786 DOI: 10.1634/stemcells.2007-0230] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During murine development, the formation of tight junctions and acquisition of polarity are associated with allocation of the blastomeres on the outer surface of the embryo to the trophoblast lineage, whereas the absence of polarization directs cells to the inner cell mass. Here, we report the results of ultrastructural analyses that suggest a similar link between polarization and cell fate in human embryos. In contrast, the five human embryonic stem cell (hESC) lines displayed apical-basal, epithelial-type polarity with electron-dense tight junctions, apical microvilli, and asymmetric distribution of organelles. Consistent with these findings, molecules that are components of tight junctions or play regulatory roles in polarization localized to the apical regions of the hESCs at sites of cell-cell contact. The tight junctions were functional, as shown by the ability of hESC colonies to exclude the pericellular passage of a biotin compound. Depolarization of hESCs produced multilayered aggregates of rapidly proliferating cells that continued to express transcription factors that are required for pluripotency at the same level as control cells. However, during embryoid body formation, depolarized cells differentiated predominantly along mesenchymal lineage and spontaneously produced hematoendothelial precursors more efficiently than control ESC. Our findings have numerous implications with regard to strategies for deriving, propagating, and differentiating hESC.
Collapse
Affiliation(s)
- Ana Krtolica
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Lu SJ, Ivanova Y, Feng Q, Luo C, Lanza R. Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells. Regen Med 2009; 4:37-47. [DOI: 10.2217/17460751.4.1.37] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: The formation and regeneration of functional vasculatures require both endothelial cells (ECs) and vascular smooth muscle cells (SMCs). Identification and isolation of progenitors with potential for both EC and SMC lineage differentiation from an inexhaustible source, such as human embryonic stem (hES) or induced pluripotent stem cells, will be desirable for cell replacement therapy. Method: Recently, we have developed a serum-free and animal feeder-free differentiation system to generate blast cells (BCs) from hESCs. These cells possess the characteristics of hemangioblasts in vitro and are capable of repairing damaged retinal vasculatures, restoring blood flow in hind-limb ischemia and reducing the mortality rate after myocardial infarction in vivo. We demonstrate here that BCs express markers of SMCs and differentiate into smooth muscle-like cells (SMLCs), in addition to ECs and hematopoietic cells. Results: When BCs from individual blast colonies were cultured in SMC medium, they differentiated into both ECs and SMLCs, which formed capillary-vascular-like structures after replating on Matrigel™. The SMLCs expressed SMC-specific markers (α-SM actin and calponin) and contracted upon treatment with carbachol. When implanted in nude mice, these cells formed microvasculature with ECs in Matrigel plaques. The BCs differentiated into both ECs and SMLCs, and incorporated into blood vessels after injection into ischemic tissue. Conclusion: These results demonstrate that hemangioblasts (BCs) generated from hESCs are tripotential and can provide a potentially inexhaustible source of cells for the treatment of human blood and vascular diseases.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| | - Yordanka Ivanova
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| | - Qiang Feng
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| | - Chenmei Luo
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| | - Robert Lanza
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA
| |
Collapse
|
192
|
Hanjaya-Putra D, Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog 2009; 25:2-9. [DOI: 10.1002/btpr.129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
193
|
Su Z, Frye C, Bae KM, Kelley V, Vieweg J. Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res 2008; 14:6207-17. [PMID: 18829500 DOI: 10.1158/1078-0432.ccr-08-0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective of this study was to develop a scalable and broadly applicable active immunotherapy approach against cancer, circumventing the limitations typically encountered with autologous vaccination strategies. We hypothesized that human embryonic stem cells (hESC) can serve as a virtually unlimited source for generating dendritic cells (DC) with potent antigen-presenting function. Here, we investigated the developmental processes and requirements for generating large numbers of mature, antigen-presenting DC from pluripotent hESC. EXPERIMENTAL DESIGN A feeder cell-free culture system was developed to differentiate hESC into mature DC sequentially through hematopoietic and myeloid precursor stages. RESULTS Using this method, we were able to yield large numbers of mature immunostimulatory DC from hESC to enable clinical investigation. Upon activation, the hESC-derived DC secreted interleukin-12p70, migrated in response to MIP-3beta, and exhibited allostimulatory capacity. Most importantly, antigen-loaded, hESC-derived DC were capable of stimulating potent antigen-specific CD8(+) T-cell responses in an HLA class I-matched semiallogeneic assay system. Moreover, HLA class II-mismatched hESC-derived DC induced a potent Th1-type cytokine response without expanding FOXP3(+) regulatory T cells in vitro. CONCLUSIONS These data suggest the development of a novel active immunotherapy platform to stimulate potent T-cell immunity in patients with intractable diseases, such as cancer or viral infection.
Collapse
Affiliation(s)
- Zhen Su
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
194
|
Lu SJ, Luo C, Holton K, Feng Q, Ivanova Y, Lanza R. Robust generation of hemangioblastic progenitors from human embryonic stem cells. Regen Med 2008; 3:693-704. [PMID: 18729794 DOI: 10.2217/17460751.3.5.693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) are a potentially inexhaustible source of cells for replacement therapy. However, successful preclinical and clinical progress requires efficient and controlled differentiation towards the specific differentiated cell fate. METHODS We previously developed a strategy to generate blast cells (BCs) from hESCs that were capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Although the BCs were shown to repair damaged vasculature in multiple animal models, the large-scale generation of cells under these conditions was challenging. Here we report a simpler and more efficient method for robust generation of hemangioblastic progenitors. RESULTS In addition to eliminating several expensive factors that are unnecessary, we demonstrate that bone morphogenetic protein (BMP)-4 and VEGF are necessary and sufficient to induce hemangioblastic commitment and development from hESCs during early stages of differentiation. BMP-4 and VEGF significantly upregulate T-brachyury, KDR, CD31 and Lmo2 gene expression, while dramatically downregulating Oct-4 expression. The addition of basic FGF during growth and expansion was found to further enhance BC development, consistently generating approximately 1 x 10(8) BCs from one six well plate of hESCs. CONCLUSION This new method represents a significantly improved system for generating hemangioblasts from hESCs, and although simplified, results in an eightfold increase in cell yield.
Collapse
Affiliation(s)
- Shi-Jiang Lu
- Advanced Cell Technology, 381 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
195
|
Park TS, Zambidis ET, Lucitti JL, Logar A, Keller BB, Péault B. Human embryonic stem cell-derived hematoendothelial progenitors engraft chicken embryos. Exp Hematol 2008; 37:31-41. [PMID: 18954935 DOI: 10.1016/j.exphem.2008.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate whether human embryonic stem cells (hESC) committed in culture into hematopoietic/endothelial cell progenitors can be further developed into mature blood and vascular cells following transplantation into chicken embryos. MATERIALS AND METHODS The yolk sac of 42- to 44-hour chicken embryos received yolk sac injections of unfractionated human embryoid body (hEB) cells, CD34-positive hEB cells, or CD34+CD45+ granulocyte colony-stimulating factor-mobilized human peripheral blood hematopoietic stem-progenitor cells. Human cells in the host were detected by flow cytometry and immunohistochemistry. RESULTS All injected cell populations engrafted chicken hematopoietic organs, as assessed by detection of CD45+ cells in the spleen, bursa of Fabricius, and thymus. CD34+ day -10 hEB cells showed the highest efficiency for producing human CD45+ cells in the hosts and yielded human glycophorin A+ erythroid, CD13+ myeloid, and CD19+ lymphoid cells in the spleen and bursa of Fabricius. Spleen cells from chimeric embryos also contained human colony-forming units-granulocyte macrophage, as assessed in methylcellulose colony-forming assays. Human endothelial cells expressing vascular endothelial-cadherin, von Willebrand factor, CD31, and the receptor for the Ulex europaeus lectin were also observed in the yolk sac vasculature following injection of either unfractionated or CD34+ day -10 hEB cells. CONCLUSION Primitive angiohematopoietic stem cells (total and CD34+ day -10 hEB cells) as well as adult hematopoietic stem cells could home to intraembryonic blood-forming organs following injection into the yolk sac. These observations demonstrate the utility of the avian embryo as a convenient and reliable host to model the angiohematopoietic development of human embryonic, or other early stem cells.
Collapse
Affiliation(s)
- Tea Soon Park
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
196
|
Crisan M, Huard J, Zheng B, Sun B, Yap S, Logar A, Giacobino JP, Casteilla L, Péault B. Purification and culture of human blood vessel-associated progenitor cells. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2B.2.1-2B.2.13. [PMID: 18770640 DOI: 10.1002/9780470151808.sc02b02s4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multilineage progenitor cells, diversely designated as MSC, MAPC, or MDSC, have been previously extracted from long-term cultures of fetal and adult organs (e.g., bone marrow, brain, lung, pancreas, muscle, adipose tissue, and several others). The identity and location, within native tissues, of these elusive stem cells are described here. Subsets of endothelial cells and pericytes, which participate in the architecture of human blood vessels, exhibit, following purification to homogeneity, developmental multipotency. The selection from human tissues, by flow cytometry using combinations of positive and negative cell surface markers, of endothelial and perivascular cells is described here. In addition, a rare subset of myoendothelial cells that express markers of both endothelial and myogenic cell lineages and exhibit dramatic myogenic and cardiomyogenic potential has been identified and purified from skeletal muscle. The culture conditions amenable to the long-term proliferation of these blood vessel-associated stem cells in vitro are also described.
Collapse
Affiliation(s)
- Mihaela Crisan
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
The hemangioblast hypothesis was proposed a century ago. The existence of hemangioblasts is now demonstrated in mouse and human embryonic stem cell (ESC)-derived embryoid bodies (EBs), in the mouse and zebrafish gastrula, and in adults. The hemangioblast is believed to derive from mesodermal cells, and is enriched in the Bry+Flk1+ and Flk1+Scl+ cell populations in EBs and in the posterior primitive streak of the mouse gastrula and in the ventral mesoderm of the zebrafish gastrula. However, recent studies suggest that the hemangioblast does not give rise to all endothelial and hematopoietic lineages in mouse and zebrafish embryos. Although several signaling pathways are known to involve the generation of hemangioblasts, it remains largely unknown how the hemangioblast is formed and what are the master genes controlling hemangioblast development. This review will summarize our current knowledge, challenges, and future directions on molecular and developmental aspects of the hemangioblast.
Collapse
Affiliation(s)
- Jing-Wei Xiong
- The Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 01219, USA.
| |
Collapse
|
198
|
Cerdan C, Hong SH, Bhatia M. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures. ACTA ACUST UNITED AC 2008; Chapter 1:Unit 1D.2. [PMID: 18770624 DOI: 10.1002/9780470151808.sc01d02s3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.
Collapse
|
199
|
Sundberg M, Jansson L, Ketolainen J, Pihlajamäki H, Suuronen R, Skottman H, Inzunza J, Hovatta O, Narkilahti S. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2008; 2:113-24. [PMID: 19383417 DOI: 10.1016/j.scr.2008.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.
Collapse
Affiliation(s)
- Maria Sundberg
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 2008; 105:13087-92. [PMID: 18755895 DOI: 10.1073/pnas.0802220105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cells. Large numbers of hESCs-derived erythroid progenitors generated by the coculture enabled us to analyze the development of erythropoiesis at a clone level and investigate their function. The results showed that the globin expression in the erythroid cells in individual clones changed in a time-dependent manner. In particular, embryonic epsilon-globin-expressing erythroid cells from individual clones decreased, whereas adult-type beta-globin-expressing cells increased to approximately 100% in all clones we examined, indicating that the cells undergo definitive hematopoiesis. Enucleated erythrocytes also appeared among the clonal progeny. A comparison analysis showed that hESC-derived erythroid cells took a similar differentiation pathway to human cord blood CD34(+) progenitor-derived cells when examined for the expression of glycophorin A, CD71 and CD81. Furthermore, these hESC-derived erythroid cells could function as oxygen carriers and had a sufficient glucose-6-phosphate dehydrogenase activity. The present study should provide an experimental model for exploring early development of human erythropoiesis and hemoglobin switching and may help in the discovery of drugs for hereditary diseases in erythrocyte development.
Collapse
|