151
|
Wan Q, Xu C, Zhu L, Zhang Y, Peng Z, Chen H, Rao H, Zhang E, Wang H, Chu F, Ning X, Yang X, Yuan J, Wu Y, Huang Y, Hu S, Liu DP, Wang M. Targeting PDE4B (Phosphodiesterase-4 Subtype B) for Cardioprotection in Acute Myocardial Infarction via Neutrophils and Microcirculation. Circ Res 2022; 131:442-455. [PMID: 35899614 DOI: 10.1161/circresaha.122.321365] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Timely and complete restoration of blood flow is the most effective intervention for patients with acute myocardial infarction. However, the efficacy is limited by myocardial ischemia-reperfusion (MI/R) injury. PDE4 (phosphodiesterase-4) hydrolyzes intracellular cAMP and it has 4 subtypes A-D. This study aimed to delineate the role of PDE4B (phosphodiesterase-4 subtype B) in MI/R injury. METHODS Mice were subjected to 30-minute coronary artery ligation, followed by 24-hour reperfusion. Cardiac perfusion was assessed by laser Doppler flow. Vasomotor reactivities were determined in mouse and human coronary (micro-)arteries. RESULTS Cardiac expression of PDE4B, but not other PDE4 subtypes, was increased in mice following reperfusion. PDE4B was detected primarily in endothelial and myeloid cells of mouse and human hearts. PDE4B deletion strikingly reduced infarct size and improved cardiac function 24-hour or 28-day after MI/R. PDE4B in bone marrow-derived cells promoted MI/R injury and vascular PDE4B further exaggerated this injury. Mechanistically, PDE4B-mediated neutrophil-endothelial cell interaction and PKA (protein kinase A)-dependent expression of cell adhesion molecules, neutrophil cardiac infiltration, and release of proinflammatory cytokines. Meanwhile, PDE4B promoted coronary microcirculatory obstruction and vascular permeability in MI/R, without affecting flow restriction-induced thrombosis. PDE4B blockade increased flow-mediated vasodilatation and promoted endothelium-dependent dilatation of coronary arteries in a PKA- and nitric oxide-dependent manner. Furthermore, postischemia administration with piclamilast, a PDE4 pan-inhibitor, improved cardiac microcirculation, suppressed inflammation, and attenuated MI/R injury in mice. Incubation with sera from patients with acute myocardial infarction impaired acetylcholine-induced relaxations in human coronary microarteries, which was abolished by PDE4 inhibition. Similar protection against MI/R-related coronary injury was recapitulated in mice with PDE4B deletion or inhibition, but not with the pure vasodilator, sodium nitroprusside. CONCLUSIONS PDE4B is critically involved in neutrophil inflammation and microvascular obstruction, leading to MI/R injury. Selective inhibition of PDE4B might protect cardiac function in patients with acute myocardial infarction designated for reperfusion therapy.
Collapse
Affiliation(s)
- Qing Wan
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erli Zhang
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyue Wang
- Department of Pathology (H.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Chu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pharmacy, First Affiliated Hospital, Bengbu Medical College, Anhui, China (F.C.)
| | - Xuan Ning
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejian Yang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjian Wu
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Huang
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong SAR, China (Y.H.)
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (S.H.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.-P.L.)
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
152
|
Desilles JP, Di Meglio L, Delvoye F, Maïer B, Piotin M, Ho-Tin-Noé B, Mazighi M. Composition and Organization of Acute Ischemic Stroke Thrombus: A Wealth of Information for Future Thrombolytic Strategies. Front Neurol 2022; 13:870331. [PMID: 35873787 PMCID: PMC9298929 DOI: 10.3389/fneur.2022.870331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
During the last decade, significant progress has been made in understanding thrombus composition and organization in the setting of acute ischemic stroke (AIS). In particular, thrombus organization is now described as highly heterogeneous but with 2 preserved characteristics: the presence of (1) two distinct main types of areas in the core—red blood cell (RBC)-rich and platelet-rich areas in variable proportions in each thrombus—and (2) an external shell surrounding the core composed exclusively of platelet-rich areas. In contrast to RBC-rich areas, platelet-rich areas are highly complex and are mainly responsible for the thrombolysis resistance of these thrombi for the following reasons: the presence of platelet-derived fibrinolysis inhibitors in large amounts, modifications of the fibrin network structure resistant to the tissue plasminogen activator (tPA)-induced fibrinolysis, and the presence of non-fibrin extracellular components, such as von Willebrand factor (vWF) multimers and neutrophil extracellular traps. From these studies, new therapeutic avenues are in development to increase the fibrinolytic efficacy of intravenous (IV) tPA-based therapy or to target non-fibrin thrombus components, such as platelet aggregates, vWF multimers, or the extracellular DNA network.
Collapse
Affiliation(s)
- Jean-Philippe Desilles
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France
| | - Lucas Di Meglio
- Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France
| | - Francois Delvoye
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,University of Liège, Liege, Belgium
| | - Benjamin Maïer
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France
| | - Michel Piotin
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France
| | - Benoît Ho-Tin-Noé
- Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France.,Laboratory of Vascular Translational Science, U1148 INSERM, Paris, France.,Université Paris Cité, Paris, France.,FHU Neurovasc, Paris, France.,Department of Neurology, Hopital Lariboisère, APHP Nord, Paris, France
| |
Collapse
|
153
|
Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2022; 81:731-745. [PMID: 35856898 PMCID: PMC9803909 DOI: 10.1093/jnen/nlac057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral small vessel diseases (CSVDs) are prominent contributors to vascular cognitive impairment and dementia and can arise from a range of etiologies. Cerebral amyloid angiopathy (CAA) and hypertension (HTN), both prevalent in the elderly population, lead to cerebral microhemorrhages, macrohemorrhages, and white matter damage. However, their respective underlying mechanisms and molecular events are poorly understood. Here, we show that the transgenic rat model of CAA type 1 (rTg-DI) exhibits perivascular inflammation that is lacking in the spontaneously hypertensive stroke-prone (SHR-SP) rat model of HTN. Alternatively, SHR-SP rats display notable dilation of arteriolar perivascular spaces. Comparative proteomics analysis revealed few shared altered proteins, with key proteins such as ANXA3, H2A, and HTRA1 unique to rTg-DI rats, and Nt5e, Flot-1 and Flot-2 unique to SHR-SP rats. Immunolabeling confirmed that upregulation of ANXA3, HTRA1, and neutrophil extracellular trap proteins were distinctly associated with rTg-DI rats. Pathway analysis predicted activation of TGF-β1 and TNFα in rTg-DI rat brain, while insulin signaling was reduced in the SHR-SP rat brain. Thus, we report divergent protein signatures associated with distinct cerebral vessel pathologies in the SHR-SP and rTg-DI rat models and provide new mechanistic insight into these different forms of CSVD.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Aleksandra Stanisavljevic
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Feng Xu
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - William E Van Nostrand
- Send correspondence to: William E. Van Nostrand, PhD, George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881, USA; E-mail:
| |
Collapse
|
154
|
Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer 2022; 1877:188762. [PMID: 35853517 DOI: 10.1016/j.bbcan.2022.188762] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.
Collapse
|
155
|
Sung PS, Yang SP, Peng YC, Sun CP, Tao MH, Hsieh SL. CLEC5A and TLR2 are critical in SARS-CoV-2-induced NET formation and lung inflammation. J Biomed Sci 2022; 29:52. [PMID: 35820906 PMCID: PMC9277873 DOI: 10.1186/s12929-022-00832-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. Results We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a−/−/tlr2−/− mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a−/−/tlr2−/− mice. Conclusions This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00832-z.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Shao-Ping Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Yu-Chun Peng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mi-Hwa Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
156
|
Galli E, Maggio E, Pomero F. Venous Thromboembolism in Sepsis: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10071651. [PMID: 35884956 PMCID: PMC9313423 DOI: 10.3390/biomedicines10071651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Septic patients were commonly affected by coagulation disorders; thus, they are at high risk of thrombotic complications. In the last decades, novel knowledge has emerged about the interconnected and reciprocal influence of immune and coagulation systems. This phenomenon is called immunothrombosis, and it indicates an effective response whereby immune cells and the coagulation cascade cooperate to limit pathogen invasion and endothelial damage. When this network becomes dysregulated due to a systemic inflammatory activation, as occurs during sepsis, it can result in pathological thrombosis. Endothelium, platelets and neutrophils are the main characters involved in this process, together with the TF and coagulation cascade, playing a critical role in both the host defense and in thrombogenesis. A deeper understanding of this relationship may allow us to answer the growing need for clinical instruments to establish the thrombotic risk and treatments that consider more the connection between coagulation and inflammation. Heparin remains the principal therapeutical response to this phenomenon, although not sufficiently effective. To date, no other significant alternatives have been found yet. In this review, we discuss the role of sepsis-related inflammation in the development and resolution of venous thromboembolism and its clinical implications, from bench to bedside.
Collapse
Affiliation(s)
- Eleonora Galli
- Internal Medicine Residency Program, University of Turin, 10100 Turin, TO, Italy;
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Elena Maggio
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Fulvio Pomero
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
- Correspondence: ; Tel.: +39-01721408100
| |
Collapse
|
157
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
158
|
de Vries JJ, Autar ASA, van Dam-Nolen DHK, Donkel SJ, Kassem M, van der Kolk AG, van Velzen TJ, Kooi ME, Hendrikse J, Nederkoorn PJ, Bos D, van der Lugt A, de Maat MPM, van Beusekom HMM. Association between plaque vulnerability and neutrophil extracellular traps (NETs) levels: The Plaque At RISK study. PLoS One 2022; 17:e0269805. [PMID: 35679310 PMCID: PMC9182254 DOI: 10.1371/journal.pone.0269805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Carotid atherosclerotic plaque rupture and its sequelae are among the leading causes of acute ischemic stroke. The risk of rupture and subsequent thrombosis is, among others, determined by vulnerable plaque characteristics and linked to activation of the immune system, in which neutrophil extracellular traps (NETs) potentially play a role. The aim of this study was to investigate how plaque vulnerability is associated with NETs levels. We included 182 patients from the Plaque At RISK (PARISK) study in whom carotid imaging was performed to measure plaque ulceration, fibrous cap integrity, intraplaque hemorrhage, lipid-rich necrotic core, calcifications and plaque volume. Principal component analysis generated a ‘vulnerability index’ comprising all plaque characteristics. Levels of the NETs marker myeloperoxidase-DNA complex were measured in patient plasma. The association between the vulnerability index and low or high NETs levels (dependent variable) was assessed by logistic regression. No significant association between the vulnerability index and NETs levels was detected in the total population (odds ratio 1.28, 95% confidence interval 0.90–1.83, p = 0.18). However, in the subgroup of patients naive to statins or antithrombotic medication prior to the index event, this association was statistically significant (odds ratio 2.08, 95% confidence interval 1.04–4.17, p = 0.04). Further analyses revealed that this positive association was mainly driven by intraplaque hemorrhage, lipid-rich necrotic core and ulceration. In conclusion, plaque vulnerability is positively associated with plasma levels of NETs, but only in patients naive to statins or antithrombotic medication prior to the index event.
Collapse
Affiliation(s)
- Judith J. de Vries
- Department of Hematology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anouchska S. A. Autar
- Department of Hematology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Experimental Cardiology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dianne H. K. van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Samantha J. Donkel
- Department of Hematology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohamed Kassem
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anja G. van der Kolk
- Department of Radiology, Netherlands Cancer Institute / Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Twan J. van Velzen
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - M. Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. Nederkoorn
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Moniek P. M. de Maat
- Department of Hematology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M. M. van Beusekom
- Department of Experimental Cardiology, Erasmus MC Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
159
|
Leiva O, Hobbs G, Ravid K, Libby P. Cardiovascular Disease in Myeloproliferative Neoplasms: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:166-182. [PMID: 35818539 PMCID: PMC9270630 DOI: 10.1016/j.jaccao.2022.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloproliferative neoplasms are associated with increased risk for thrombotic complications. These conditions most commonly involve somatic mutations in genes that lead to constitutive activation of the Janus-associated kinase signaling pathway (eg, Janus kinase 2, calreticulin, myeloproliferative leukemia protein). Acquired gain-of-function mutations in these genes, particularly Janus kinase 2, can cause a spectrum of disorders, ranging from clonal hematopoiesis of indeterminate potential, a recently recognized age-related promoter of cardiovascular disease, to frank hematologic malignancy. Beyond thrombosis, patients with myeloproliferative neoplasms can develop other cardiovascular conditions, including heart failure and pulmonary hypertension. The authors review the pathophysiologic mechanisms of cardiovascular complications of myeloproliferative neoplasms, which involve inflammation, prothrombotic and profibrotic factors (including transforming growth factor-beta and lysyl oxidase), and abnormal function of circulating clones of mutated leukocytes and platelets from affected individuals. Anti-inflammatory therapies may provide cardiovascular benefit in patients with myeloproliferative neoplasms, a hypothesis that requires rigorous evaluation in clinical trials.
Collapse
Key Words
- ASXL1, additional sex Combs-like 1
- CHIP, clonal hematopoiesis of indeterminate potential
- DNMT3a, DNA methyltransferase 3 alpha
- IL, interleukin
- JAK, Janus-associated kinase
- JAK2, Janus kinase 2
- LOX, lysyl oxidase
- MPL, myeloproliferative leukemia protein
- MPN, myeloproliferative neoplasm
- STAT, signal transducer and activator of transcription
- TET2, tet methylcytosine dioxygenase 2
- TGF, transforming growth factor
- atherosclerosis
- cardiovascular complications
- clonal hematopoiesis
- myeloproliferative neoplasms
- thrombosis
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela Hobbs
- Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
160
|
Zhou Y, Xu Z, Liu Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front Cell Infect Microbiol 2022; 12:910908. [PMID: 35711663 PMCID: PMC9195303 DOI: 10.3389/fcimb.2022.910908] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Thrombotic diseases seriously endanger human health, neutrophils and neutrophil extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs are extracellular structures released by neutrophils upon stimulation by pathogens. NETs include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active substances. The network structure provided by NETs can prevent the spread of pathogens and effectively kill and eliminate pathogens. However, the components of NETs can also abnormally activate the coagulation pathway and participate in the formation of pathological thrombi. This review aims to summarize the mechanisms of NETs formation in detail; the research progress of NETs in venous thrombosis, arterial thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as well as the strategies to target NETs in thrombosis prevention and treatment.
Collapse
Affiliation(s)
| | - Zhendong Xu
- *Correspondence: Zhiqiang Liu, ; Zhendong Xu,
| | | |
Collapse
|
161
|
Cantrell R, Palumbo JS. Hemostasis and tumor immunity. Res Pract Thromb Haemost 2022; 6:e12728. [PMID: 35647476 PMCID: PMC9130907 DOI: 10.1002/rth2.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 12/13/2022] Open
Abstract
Significant data have accumulated demonstrating a reciprocal relationship between cancer and the hemostatic system whereby cancer promotes life‐threatening hemostatic system dysregulation (e.g., thromboembolism, consumptive coagulopathy), and hemostatic system components directly contribute to cancer pathogenesis. The mechanistic underpinnings of this relationship continue to be defined, but it is becoming increasingly clear that many of these mechanisms involve crosstalk between the hemostatic and immune systems. This is perhaps not surprising given that there is ample evidence for bidirectional crosstalk between the hemostatic and immune systems at multiple levels that likely evolved to coordinate the response to injury, host defense, and tissue repair. Much of the data linking hemostasis and immunity in cancer biology focus on innate immune system components. However, the advent of adaptive immunity‐based cancer therapies such as immune checkpoint inhibitors has revealed that the relationship of hemostasis and immunity in cancer extends to the adaptive immune system. Adaptive immunity‐based cancer therapies appear to be associated with an increased risk of thromboembolic complications, and hemostatic system components appear to regulate adaptive immune functions through diverse mechanisms to affect tumor progression. In this review, the evidence for crosstalk between hemostatic and adaptive immune system components is discussed, and the implications of this relationship in the context of cancer therapy are reviewed. A better understanding of these relationships will likely lead to strategies to make existing adaptive immune based therapies safer by decreasing thromboembolic risk and may also lead to novel targets to improve adaptive immune‐based cancer treatments.
Collapse
Affiliation(s)
- Rachel Cantrell
- Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
162
|
Datsi A, Piotrowski L, Markou M, Köster T, Kohtz I, Lang K, Plöttner S, Käfferlein HU, Pleger B, Martinez R, Pintea B, Fried R, Müller M, Chapot R, Gousias K. Stroke-derived neutrophils demonstrate higher formation potential and impaired resolution of CD66b + driven neutrophil extracellular traps. BMC Neurol 2022; 22:186. [PMID: 35596126 PMCID: PMC9121602 DOI: 10.1186/s12883-022-02707-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Recent evidence suggests a merging role of immunothrombosis in the formation of arterial thrombosis. Our study aims to investigate its relevance in stroke patients. Methods We compared the peripheral immunological profile of stroke patients vs. healthy controls. Serum samples were functionally analyzed for their formation and clearance of Neutrophil-Extracellular-Traps. The composition of retrieved thrombi has been immunologically analyzed. Results Peripheral blood of stroke patients showed significantly elevated levels of DNAse-I (p < 0.001), LDG (p = 0.003), CD4 (p = 0.005) as well as the pro-inflammatory cytokines IL-17 (p < 0.001), INF-γ (p < 0.001) and IL-22 (p < 0.001) compared to controls, reflecting a TH1/TH17 response. Increased counts of DNAse-I in sera (p = 0.045) and Neutrophil-Extracellular-Traps in thrombi (p = 0.032) have been observed in patients with onset time of symptoms longer than 4,5 h. Lower values of CD66b in thrombi were independently associated with greater improvement of NIHSS after mechanical thrombectomy (p = 0.045). Stroke-derived neutrophils show higher potential for Neutrophil-Extracellular-Traps formation after stimulation and worse resolution under DNAse-I treatment compared to neutrophils derived from healthy individuals. Conclusions Our data provide new insight in the role of activated neutrophils and Neutrophil-Extracellular-Traps in ischemic stroke. Future larger studies are warranted to further investigate the role of immunothrombosis in the cascades of stroke. Trial registration DRKS, DRKS00013278, Registered 15 November 2017, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013278 Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02707-0.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Laura Piotrowski
- Medical School, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund Freud Strasse 25, 53121, Bonn, Germany
| | - Markella Markou
- Department of Neurology and Psychotraumatology, BG Klinikum Duisburg, Großenbaumer Allee 250, 47249, Duisburg, Germany
| | - Thomas Köster
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn Venusberg-Campus 1, 53127, Bonn, Germany
| | - Isabelle Kohtz
- Ruhr University Bochum, Universitätsstraße 150, Bergmannsheil Bochum, 44801, Bochum, Germany
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Heiko Udo Käfferlein
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Burkhard Pleger
- Department of Neurology, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Ramon Martinez
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Bogdan Pintea
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Roland Fried
- Statistics in the Biosciences, TU Dortmund University, Vogelpothsweg 87, 44221, Dortmund, Germany
| | - Marcus Müller
- Department of Neurology, St Marien Academic Hospital Hamm, St Paulus Corporation, Knappenstrasse 19, 59071, Hamm, Germany
| | - Rene Chapot
- Department of Radiology and Neuroradiology, Alfried-Krupp-Hospital Rüttenscheid, 45131, Essen, Germany
| | - Konstantinos Gousias
- Department of Neurosurgery, KLW St Paulus Corporation, St Marien Academic Hospital Lünen, Westfälische Wilhelms-University Münster, Altstadtstrasse 23, 44534, Lünen, Germany. .,Medical School, University of Münster, Domagkstrasse 3, 48149, Münster, Germany. .,Medical School, University of Nicosia, Ilia Papakyriakou 21, 2414, Nicosia, Cyprus.
| |
Collapse
|
163
|
Wohlsein JC, Meurer M, Neßler J, Wohlsein P, von Köckritz-Blickwede M, Baumgärtner W, Tipold A. Detection of Extracellular Traps in Canine Steroid-Responsive Meningitis-Arteritis. Front Vet Sci 2022; 9:863579. [PMID: 35591872 PMCID: PMC9111528 DOI: 10.3389/fvets.2022.863579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular traps (ETs) are DNA networks formed by immune cells to fight infectious diseases by catching and attacking pathogenic microorganisms. Uncontrolled ET formation or impaired ET clearance can cause tissue and organ damage. Steroid-responsive meningitis-arteritis (SRMA) represents an immune-mediated, presumably non-infectious, purulent leptomeningitis and fibrinoid-necrotizing arteritis and periarteritis of young-adult dogs. Chronic and recurrent cases of SRMA are characterized by lymphohistiocytic inflammatory cell infiltration in the meninges and perivascular tissue. This study aimed to identify extracellular traps in dogs with SRMA, a model for immune-mediated diseases in the central nervous system (CNS). Hematoxylin and eosin-stained samples of two young dogs with chronic, recurrent SRMA were examined by light microscopy for characteristic lesions and consecutive slices of affected tissues were stained for detection of ETs by immunofluorescence microscopy using antibodies against DNA–histone-1 complexes, myeloperoxidase, and citrullinated histone H3. Histology revealed purulent and lymphohistiocytic leptomeningitis (n = 2/2) with meningeal periarteritis (n = 2/2) and periadrenal located lymphohistiocytic periarteritis (n = 1). Extracellular DNA networks and inflammatory cell infiltrates of macrophages, neutrophil granulocytes, and lymphocytes were detected in the subarachnoid space of the leptomeninx (n = 2/2) and perivascularly in meningeal (n = 2/2) as well as periadrenal vessels (n = 1/1). In summary, extracellular DNA fibers and attached ET markers are detectable in affected perivascular and meningeal tissues of dogs suffering from SRMA. The proof of principle could be confirmed that ETs are present in canine, inflammatory, and non-infectious CNS diseases and possibly play a role in the pathogenesis of SRMA.
Collapse
Affiliation(s)
- Jan C. Wohlsein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Jan C. Wohlsein
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Neßler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center of Emerging Diseases and Zoonosis, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
164
|
Poenou G, Dumitru Dumitru T, Lafaie L, Mismetti V, Heestermans M, Bertoletti L. Factor XI Inhibition for the Prevention of Venous Thromboembolism: An Update on Current Evidence and Future perspectives. Vasc Health Risk Manag 2022; 18:359-373. [PMID: 35707632 PMCID: PMC9191224 DOI: 10.2147/vhrm.s331614] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
During the past decade, emergence of direct oral anticoagulants (DOACs) has drastically improved the prevention of thrombosis. However, several unmet needs prevail in the field of thrombosis prevention, even in the DOACs’ era. The use of DOACs is still constrained and the drugs cannot be administered in every clinical scenario, such as an increased anticoagulant-associated bleeding risk, particularly in some specific populations (cancer – notably those with gastrointestinal or genitourinary cancer – and frail patients), the impossibility to be used in certain patients (eg, end-stage kidney failure during hemodialysis, pregnancy and breastfeeding), and their lack of efficacy in certain clinical scenarios (eg, mechanical heart valves, triple-positive antiphospholipid syndrome). Efforts to find a factor that upon antagonization prevents thrombosis but spares haemostasis have resulted in the identification of coagulation factor XI (FXI) as a therapeutic target. After briefly recapitulating the role of factor XI in the balance of haemostasis, we propose a narrative review of the key data published to date with compounds targeting factor XI to prevent thrombosis as well as the main ongoing clinical studies, opening up prospects for improving the care of patients requiring thrombosis prevention.
Collapse
Affiliation(s)
- Geraldine Poenou
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
| | - Teona Dumitru Dumitru
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
- Internal Medicine Department, University Hospital Santa Lucía, Cartagena, Murcia, Spain
- Catholic University San Antonio, Murcia, Spain
| | - Ludovic Lafaie
- Geriatric Department, University Hospital of Saint Etienne, Saint Etienne, France
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
| | - Valentine Mismetti
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- Pneumology Department, University Hospital of Saint Etienne, Saint Etienne, France
| | - Marco Heestermans
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- Auvergne-Rhône-Alpes French Blood Donation Agency, Saint-Etienne, F-42100, France
| | - Laurent Bertoletti
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- INSERM, CIC-1408, University Hospital of Saint Etienne, Saint Etienne, France
- Correspondence: Laurent Bertoletti, Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France, Tel +33477827771, Fax +33477820482, Email
| |
Collapse
|
165
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
166
|
Witsch J, Spalart V, Martinod K, Schneider H, Oertel J, Geisel J, Hendrix P, Hemmer S. Neutrophil Extracellular Traps and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. Crit Care Explor 2022; 4:e0692. [PMID: 35620772 PMCID: PMC9116951 DOI: 10.1097/cce.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IMPORTANCE Myeloperoxidase (MPO)-DNA complexes, biomarkers of neutrophil extracellular traps (NETs), have been associated with arterial and venous thrombosis. Their role in aneurysmal subarachnoid hemorrhage (aSAH) is unknown. OBJECTIVES To assess whether serum MPO-DNA complexes are present in patients with aSAH and whether they are associated with delayed cerebral ischemia (DCI). DESIGN SETTING AND PARTICIPANTS Post-hoc analysis of a prospective, observational single-center study, with de novo serum biomarker measurements in consecutive patients with aSAH between July 2018 and September 2020, admitted to a tertiary care neuroscience ICU. MAIN OUTCOMES AND MEASURES We analyzed serum obtained at admission and hospital day 4 for concentrations of MPO-DNA complexes. The primary outcome was DCI, defined as new infarction on brain CT. The secondary outcome was clinical vasospasm, a composite of clinical and transcranial Doppler parameters. We used Wilcoxon signed-rank-test to assess for differences between paired measures. RESULTS Among 100 patients with spontaneous subarachnoid hemorrhage, mean age 59 years (sd ± 13 yr), 55% women, 78 had confirmed aSAH. Among these, 29 (37%) developed DCI. MPO-DNA complexes were detected in all samples. The median MPO-DNA level was 33 ng/mL (interquartile range [IQR], 18-43 ng/mL) at admission, and 22 ng/mL (IQR, 11-31 ng/mL) on day 4 (unpaired test; p = 0.015). We found a significant reduction in MPO-DNA levels from admission to day 4 in patients with DCI (paired test; p = 0.036) but not in those without DCI (p = 0.17). There was a similar reduction in MPO-DNA levels between admission and day 4 in patients with (p = 0.006) but not in those without clinical vasospasm (p = 0.47). CONCLUSIONS AND RELEVANCE This is the first study to detect the NET biomarkers MPO-DNA complexes in peripheral serum of patients with aSAH and to associate them with DCI. A pronounced reduction in MPO-DNA levels might serve as an early marker of DCI. This diagnostic potential of MPO-DNA complexes and their role as potential therapeutic targets in aSAH should be explored further.
Collapse
Affiliation(s)
- Jens Witsch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valérie Spalart
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hauke Schneider
- Department of Neurology, University Hospital Augsburg, Augsburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Sina Hemmer
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
167
|
Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med 2022:10.1007/s10238-022-00829-w. [PMID: 35471714 DOI: 10.1007/s10238-022-00829-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.
Collapse
Affiliation(s)
- Simón Navarrete
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Carla Solar
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | | | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile.
| |
Collapse
|
168
|
Pilard M, Ollivier EL, Gourdou-Latyszenok V, Couturaud F, Lemarié CA. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:864735. [PMID: 35528838 PMCID: PMC9068971 DOI: 10.3389/fcvm.2022.864735] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.
Collapse
|
169
|
Aymonnier K, Ng J, Fredenburgh LE, Zambrano-Vera K, Münzer P, Gutch S, Fukui S, Desjardins M, Subramaniam M, Baron RM, Raby BA, Perrella MA, Lederer JA, Wagner DD. Inflammasome activation in neutrophils of patients with severe COVID-19. Blood Adv 2022; 6:2001-2013. [PMID: 34991159 PMCID: PMC8741335 DOI: 10.1182/bloodadvances.2021005949] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engages the inflammasome in monocytes and macrophages and leads to the cytokine storm in COVID-19. Neutrophils, the most abundant leukocytes, release neutrophil extracellular traps (NETs), which have been implicated in the pathogenesis of COVID-19. Our recent study shows that activation of the NLRP3 inflammasome is important for NET release in sterile inflammation. However, the role of neutrophil inflammasome formation in human disease is unknown. We hypothesized that SARS-CoV-2 infection may induce inflammasome activation in neutrophils. We also aimed to assess the localization of inflammasome formation (ie, apoptosis-associated speck-like protein containing a CARD [ASC] speck assembly) and timing relative to NETosis in stimulated neutrophils by real-time video microscopy. Neutrophils isolated from severe COVID-19 patients demonstrated that ∼2% of neutrophils in both the peripheral blood and tracheal aspirates presented ASC speck. ASC speck was observed in neutrophils with an intact poly-lobulated nucleus, suggesting early formation during neutrophil activation. Additionally, 40% of nuclei were positive for citrullinated histone H3, and there was a significant correlation between speck formation and nuclear histone citrullination. Time-lapse microscopy in lipopolysaccharide -stimulated neutrophils from fluorescent ASC reporter mice showed that ASC speck formed transiently and at the microtubule organizing center long before NET release. Our study shows that ASC speck is present in neutrophils from COVID-19 patients with respiratory failure and that it forms early in NETosis. Our findings suggest that inhibition of neutrophil inflammasomes may be beneficial in COVID-19.
Collapse
Affiliation(s)
- Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Katherin Zambrano-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Patrick Münzer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Michael Desjardins
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Division of Infectious Diseases, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Benjamin A Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Pediatric Newborn Medicine, and
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; and
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
170
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
171
|
Alexander ET, Gilmour SK. Immunomodulatory role of thrombin in cancer progression. Mol Carcinog 2022; 61:527-536. [PMID: 35338515 DOI: 10.1002/mc.23398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-β that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| |
Collapse
|
172
|
Shah M, He Z, Rauf A, Beikoghli Kalkhoran S, Heiestad CM, Stensløkken KO, Parish CR, Soehnlein O, Arjun S, Davidson SM, Yellon D. Extracellular histones are a target in myocardial ischaemia-reperfusion injury. Cardiovasc Res 2022; 118:1115-1125. [PMID: 33878183 PMCID: PMC8930072 DOI: 10.1093/cvr/cvab139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Acute myocardial infarction causes lethal cardiomyocyte injury during ischaemia and reperfusion (I/R). Histones have been described as important Danger Associated Molecular Proteins (DAMPs) in sepsis. The objective of this study was to establish whether extracellular histone release contributes to myocardial infarction. METHODS AND RESULTS Isolated, perfused rat hearts were subject to I/R. Nucleosomes and histone-H4 release was detected early during reperfusion. Sodium-β-O-Methyl cellobioside sulfate (mCBS), a newly developed histone-neutralizing compound, significantly reduced infarct size whilst also reducing the detectable levels of histones. Histones were directly toxic to primary adult rat cardiomyocytes in vitro. This was prevented by mCBS or HIPe, a recently described, histone-H4 neutralizing peptide, but not by an inhibitor of TLR4, a receptor previously reported to be involved in DAMP-mediated cytotoxicity. Furthermore, TLR4-reporter HEK293 cells revealed that cytotoxicity of histone H4 was independent of TLR4 and NF-κB. In an in vivo rat model of I/R, HIPe significantly reduced infarct size. CONCLUSION Histones released from the myocardium are cytotoxic to cardiomyocytes, via a TLR4-independent mechanism. The targeting of extracellular histones provides a novel opportunity to limit cardiomyocyte death during I/R injury of the myocardium.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Ali Rauf
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Christina Mathisen Heiestad
- Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Pettenkoferstrasse 8a, D-80336 Munich, Germany
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation, WWU Münster, Von-Esmarch-Strasse 56 48149 Münster, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
| | - Sapna Arjun
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
173
|
Len P, Iskakova G, Sautbayeva Z, Kussanova A, Tauekelova AT, Sugralimova MM, Dautbaeva AS, Abdieva MM, Ponomarev ED, Tikhonov A, Bekbossynova MS, Barteneva NS. Meta-Analysis and Systematic Review of Coagulation Disbalances in COVID-19: 41 Studies and 17,601 Patients. Front Cardiovasc Med 2022; 9:794092. [PMID: 35360017 PMCID: PMC8962835 DOI: 10.3389/fcvm.2022.794092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Coagulation parameters are important determinants for COVID-19 infection. We conducted meta-analysis to assess the association between early hemostatic parameters and infection severity. Methods Electronic search was made for papers that addressed clinical characteristics of COVID-19 patients and disease severity. Results were filtered using exclusion and inclusion criteria and then pooled into a meta-analysis to estimate the standardized mean difference (SMD) with 95% confidence interval (CI) for D-dimers, fibrinogen, prothrombin time, platelet count (PLT), activated partial thromboplastin time. To explore the heterogeneity and robustness of our fundings, sensitivity and subgroup analyses were conducted. Publication bias was assessed with contour-enhanced funnel plots and Egger's test by linear regression. Coagulation parameters data from retrospective cohort study of 451 patients with COVID-19 at National Research Center for Cardiac Surgery were included in meta-analysis of published studies. Results Overall, 41 original studies (17,601 patients) on SARS-CoV-2 were included. For the two groups of patients, stratified by severity, we identified that D-dimers, fibrinogen, activated partial thromboplastin time, and prothrombin time were significantly higher in the severe group [SMD 0.6985 with 95%CI (0.5155; 0.8815); SMD 0.661 with 95%CI (0.3387; 0.9833); SMD 0.2683 with 95%CI (0.1357; 0.4009); SMD 0.284 with 95%CI (0.1472; 0.4208)]. In contrast, PLT was significantly lower in patients with more severe cases of COVID-19 [SMD -0.1684 with 95%CI (-0.2826; -0.0542)]. Neither the analysis by the leave-one-out method nor the influence diagnostic have identified studies that solely cause significant change in the effect size estimates. Subgroup analysis showed no significant difference between articles originated from different countries but revealed that severity assessment criteria might have influence over estimated effect sizes for platelets and D-dimers. Contour-enhanced funnel plots and the Egger's test for D-dimers and fibrinogen revealed significant asymmetry that might be a sign of publication bias. Conclusions The hemostatic laboratory parameters, with exception of platelets, are significantly elevated in patients with severe COVID-19. The two variables with strongest association to disease severity were D-dimers and fibrinogen levels. Future research should aim outside conventional coagulation tests and include analysis of clotting formation and platelet/platelet progenitors characteristics.
Collapse
Affiliation(s)
- Polina Len
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gaukhar Iskakova
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zarina Sautbayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Aigul Kussanova
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Core Facilities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Anar S. Dautbaeva
- National Research Center for Cardiac Surgery, Nur-Sultan, Kazakhstan
| | | | - Eugene D. Ponomarev
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alexander Tikhonov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Natasha S. Barteneva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
174
|
Shimonaga K, Matsushige T, Takahashi H, Hashimoto Y, Yoshiyama M, Kaneko M, Sakamoto S. Association of Neutrophil Extracellular Traps with plaque instability in patient with carotid artery stenosis. Ann Vasc Surg 2022; 85:284-291. [PMID: 35276352 DOI: 10.1016/j.avsg.2022.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Vulnerable carotid plaques are related to cerebral thromboembolic and ischemic events. Neutrophil extracellular traps (NETs) can induce endothelial dysfunction, and induce inflammation and coagulation. The aim of the present study was to investigate NETs in patients with carotid artery plaques. METHODS Carotid plaques were collected by carotid endarterectomy (CEA) from 26 symptomatic and 8 asymptomatic patients between August 2017 and January 2021. The specimens were stained with hematoxylin-eosin and Elastica-van Gieson. Immunohistochemistry was performed staining by CD31 for identifying endothelial cells. NETs were detected by digoxigenin-labeled anti-histone H3 (HH3)(citrulline R2+R8+R17). The relationships between the presence of NETs and patient profile and histopathological findings were assessed. RESULTS HH3-positive cells were detected in 17 (asymptomatic=2 symptomatic=15) of 34 carotid plaques (median=9.7/mm). The number of NETs was correlated with the number of diffusion-weighted imaging high-intensity lesions [p=0.01], plaque rupture [p=0.001], intraplaque hemorrhage [p=0.02], intra luminal thrombus [p=0.001], and thin fibrous cap [p=0.001]. CONCLUSIONS The presence of NETs was associated with the instability of carotid plaques, intraluminal thrombus, which may lead to subsequent cerebral infarction. Clarifying the roles of NETs in carotid plaques may improve the treatment of carotid artery disease.
Collapse
Affiliation(s)
- Koji Shimonaga
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan.
| | - Toshinori Matsushige
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan; Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Takahashi
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Yukishige Hashimoto
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Michitsura Yoshiyama
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Mayumi Kaneko
- Department of Histopathology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Shigeyuki Sakamoto
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
175
|
Wortmann N, Andersek T, Guerreiro H, Kyselyova AA, Frölich AM, Fiehler J, Krause D. Development of synthetic thrombus models to simulate stroke treatment in a physical neurointerventional training model. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2046181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Nadine Wortmann
- Institute of Product Development and Mechanical Engineering Design, Hamburg University of Technology, Hamburg, Germany
| | - Thomas Andersek
- WEINMANN Emergency Medical Technology GmbH + Co. KG, Hamburg, Germany
| | - Helena Guerreiro
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna A. Kyselyova
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Krause
- Institute of Product Development and Mechanical Engineering Design, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
176
|
Sakuma M, Wang X, Ellett F, Edd JF, Babatunde KA, Viens A, Mansour MK, Irimia D. Microfluidic capture of chromatin fibres measures neutrophil extracellular traps (NETs) released in a drop of human blood. LAB ON A CHIP 2022; 22:936-944. [PMID: 35084421 PMCID: PMC8978531 DOI: 10.1039/d1lc01123e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils are the largest population of white blood cells in the circulation, and their primary function is to protect the body from microbes. They can release the chromatin in their nucleus, forming characteristic web structures and trap microbes, contributing to antimicrobial defenses. The chromatin webs are known as neutrophil extracellular traps (NETs). Importantly, neutrophils can also release NETs in pathological conditions related to rheumatic diseases, atherosclerosis, cancer, and sepsis. Thus, determining the concentration of NETs in the blood is increasingly important for monitoring patients, evaluating treatment efficacy, and understanding the pathology of various diseases. However, traditional methods for measuring NETs require separating cells and plasma from blood, are prone to sample preparation artifacts, and cannot distinguish between intact and degraded NETs. Here, we design a microfluidic analytical tool that captures NETs mechanically from a drop of blood and measures the amount of intact NETs unbiased by the presence of degraded NETs in the sample.
Collapse
Affiliation(s)
- Miyuki Sakuma
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Xiao Wang
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| | - Jon F Edd
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kehinde Adebayo Babatunde
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Adam Viens
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
177
|
Kashir J, Ambia AR, Shafqat A, Sajid MR, AlKattan K, Yaqinuddin A. Scientific premise for the involvement of neutrophil extracellular traps (NETs) in vaccine-induced thrombotic thrombocytopenia (VITT). J Leukoc Biol 2022; 111:725-734. [PMID: 34467562 PMCID: PMC8667645 DOI: 10.1002/jlb.5covr0621-320rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Following on from the devastating spread of COVID-19, a major global priority has been the production, procurement, and distribution of effective vaccines to ensure that the global pandemic reaches an end. However, concerns were raised about worrying side effects, particularly the occurrence of thrombosis and thrombocytopenia after administration of the Oxford/AstraZeneca and Johnson & Johnson's Janssen COVID-19 vaccine, in a phenomenon being termed vaccine-induced thrombotic thrombocytopenia (VITT). Similar to heparin-induced thrombocytopenia (HIT), this condition has been associated with the development of anti-platelet factor 4 antibodies, purportedly leading to neutrophil-platelet aggregate formation. Although thrombosis has also been a common association with COVID-19, the precise molecular mechanisms governing its occurrence are yet to be established. Recently, increasing evidence highlights the NLRP3 (NOD-like, leucine-rich repeat domains, and pyrin domain-containing protein) inflammasome complex along with IL-1β and effete neutrophils producing neutrophil extracellular traps (NETs) through NETosis. Herein, we propose and discuss that perhaps the incidence of VITT may be due to inflammatory reactions mediated via IL-1β/NLRP3 inflammasome activation and consequent overproduction of NETs, where similar autoimmune mechanisms are observed in HIT. We also discuss avenues by which such modalities could be treated to prevent the occurrence of adverse events and ensure vaccine rollouts remain safe and on target to end the current pandemic.
Collapse
Affiliation(s)
- Junaid Kashir
- Alfaisal UniversityRiyadhKingdom of Saudi Arabia
- Department of Comparative MedicineKing Faisal Specialist Hospital and Research CenterRiyadhKingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
178
|
Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, Li T, Di WC, Chen Y, Li H, Cheng YD, Yang Y. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin 2022; 43:520-528. [PMID: 34040166 PMCID: PMC8888646 DOI: 10.1038/s41401-021-00676-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is present in almost all cells and regulates the activity of innate immune responses in both intracellular and extracellular settings. Current evidence suggests that HMGB1 plays a pivotal role in human pathological and pathophysiological processes such as the inflammatory response, immune reactions, cell migration, aging, and cell death. Sepsis is a systemic inflammatory response syndrome (SIRS) that occurs in hosts in response to microbial infections with a proven or suspected infectious etiology and is the leading cause of death in intensive care units worldwide, particularly in the aging population. Dysregulated systemic inflammation is a classic characteristic of sepsis, and suppression of HMGB1 may ameliorate inflammation and improve patient outcomes. Here, we focus on the latest breakthroughs regarding the roles of HMGB1 in sepsis and sepsis-related organ injury, the ways by which HMGB1 are released, and the signaling pathways and therapeutics associated with HMGB1. This review highlights recent advances related to HMGB1: the regulation of HMBG1 might be helpful for both basic research and drug development for the treatment of sepsis and sepsis-related organ injury.
Collapse
Affiliation(s)
- Chao Deng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Department of Orthopaedics, Huaian Medical District of Jingling Hospital, Medical School of Nanjing University, Huaian, 213001, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Jia-Jia Shang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Chang-Yu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
| | - Ming-Zhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, 572013, China
| | - Shuai Jiang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Tian Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
| | - Wen-Cheng Di
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - He Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Ye-Dong Cheng
- Department of Orthopaedics, Huaian Medical District of Jingling Hospital, Medical School of Nanjing University, Huaian, 213001, China.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China.
| |
Collapse
|
179
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
180
|
Ma G, Sun X, Cheng H, Burgin WS, Luo W, Jia W, Liu Y, He W, Geng X, Zhu L, Chen X, Shi H, Xu H, Zhang L, Wang A, Mo D, Ma N, Gao F, Song L, Huo X, Deng Y, Liu L, Luo G, Jia B, Tong X, Liu L, Ren Z, Miao Z. Combined Approach to Eptifibatide and Thrombectomy in Acute Ischemic Stroke Because of Large Vessel Occlusion: A Matched-Control Analysis. Stroke 2022; 53:1580-1588. [PMID: 35105182 DOI: 10.1161/strokeaha.121.036754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In patients undergoing mechanical thrombectomy (MT), adjunctive antithrombotic might improve angiographic reperfusion, reduce the risk of distal emboli and reocclusion but possibly expose patients to a higher intracranial hemorrhage risk. This study evaluated the safety and efficacy of combined MT plus eptifibatide for acute ischemic stroke. METHODS This was a propensity-matched analysis of data from 2 prospective trials in Chinese populations: the ANGEL-ACT trial (Endovascular Treatment Key Technique and Emergency Workflow Improvement of Acute Ischemic Stroke) in 111 hospitals between November 2017 and March 2019, and the EPOCH trial (Eptifibatide in Endovascular Treatment of Acute Ischemic Stroke) in 15 hospitals between April 2019 and March 2020. The primary efficacy outcome was good outcome (modified Rankin Scale score 0-2) at 3 months. Secondary efficacy outcomes included the distribution of 3-month modified Rankin Scale scores and poor outcome (modified Rankin Scale score 5-6) and successful recanalization. The safety outcomes included any intracranial hemorrhage, symptomatic intracranial hemorrhage, and 3-month mortality. Mixed-effects logistic regression models were used to account for within-hospital clustering in adjusted analyses. RESULTS Eighty-one combination arm EPOCH subjects were matched with 81 ANGEL-ACT noneptifibatide patients. Compared with the no eptifibatide group, the eptifibatide group had significantly higher rates of successful recanalization (91.3% versus 81.5%; P=0.043) and 3-month good outcomes (53.1% versus 33.3%; P=0.016). No significant difference was found in the remaining outcome measures between the 2 groups. All outcome measures of propensity score matching were consistent with mixed-effects logistic regression models in the total population. CONCLUSIONS This matched-control study demonstrated that MT combined with eptifibatide did not raise major safety concerns and showed a trend of better efficacy outcomes compared with MT alone. Overall, eptifibatide shows potential as a periprocedural adjunctive antithrombotic therapy when combined with MT. Further randomized controlled trials of MT plus eptifibatide should be prioritized. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03844594 (EPOCH), NCT03370939 (ANGEL-ACT).
Collapse
Affiliation(s)
- Gaoting Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Huiran Cheng
- Department of Neurosurgery, Anyang People's Hospital, China (H.C., L.Z.)
| | - W Scott Burgin
- Department of Neurology, Morsani College of Medicine University of South Florida, Tampa (W.S.B.)
| | - Weiliang Luo
- Department of Neurology, Huizhou Municipal Central Hospital, China (W.L.)
| | - Weihua Jia
- Department of Neurology, Beijing Shijingshan Teaching Hospital, Capital Medical University, China (W.J.)
| | - Yajie Liu
- Department of Neurology, Shenzhen Hospital, Southern Medical University, China (Y.L.)
| | - Wenlong He
- Department of Neurology, Xinxiang Central Hospital, China (W.H.)
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China (X.G.)
| | - Liangfu Zhu
- Department of Neurosurgery, Anyang People's Hospital, China (H.C., L.Z.).,Department of Cerebral Vascular Diseases, Interventional Center, Henan Provincial People's Hospital, Zhengzhou, China (L.Z.)
| | - Xingyu Chen
- Department of Neurology, Zhongshan Hospital Xiamen University, China (X.C.)
| | - Huaizhang Shi
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, China (H.S.)
| | - Haowen Xu
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, China (H.X,)
| | | | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University (A.W.)
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.).,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (L.L.)
| | - Gang Luo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | - Baixue Jia
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | | | | | - Zeguang Ren
- Department of Neurosurgery, University of South Florida, Tampa (Z.R.)
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (G.M., X.S., D.M., N.M., F.G., L.S., X.H., Y.D., L.L., G.L., B.J., X.Y., Z.M.)
| | | |
Collapse
|
181
|
Luther J, Friedman LS. Management of Thrombocytopenia and Coagulopathy in Patients with Chronic Liver Disease Undergoing Therapeutic Endoscopic Interventions. Clin Liver Dis 2022; 26:1-12. [PMID: 34802655 DOI: 10.1016/j.cld.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Management of coagulopathy in patients with advanced liver disease undergoing therapeutic endoscopic procedures is complex. Improvements in the understanding of hemostasis at a physiologic level have highlighted the inaccuracy of currently available clinical tests, like platelet count and prothrombin time, in estimating hemostasis in patients with cirrhosis. With identification of novel factors that contribute to bleeding risk in patients with cirrhosis, there is a dearth of clinical trial data that account for all potentially relevant factors and that examine interventions to reduce bleeding risk. Precise recommendations regarding transfusion strategies based on hemostatic test results in patients with cirrhosis are impractical.
Collapse
Affiliation(s)
- Jay Luther
- MGH Alcohol Liver Center, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Blake 4, 55 Fruit Street, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence S Friedman
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Blake 4, 55 Fruit Street, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medicine, Newton-Wellesley Hospital, Newton, MA, USA; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
182
|
Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis. Br J Anaesth 2022; 128:283-293. [PMID: 34893315 PMCID: PMC8792833 DOI: 10.1016/j.bja.2021.10.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) facilitate bacterial clearance but also promote thrombosis and organ injury in sepsis. We quantified ex vivo NET induction in septic humans and murine models of sepsis to identify signalling pathways that may be modulated to improve outcome in human sepsis. METHODS NET formation in human donor neutrophils was quantified after incubation with plasma obtained from patients with sepsis or systemic inflammation (double-blinded assessment of extracellular DNA using immunofluorescence microscopy). NET formation (% neutrophils forming NETs) was correlated with plasma cytokine levels (MultiPlex assay). Experimental sepsis (caecal ligation and puncture or intraperitoneal injection of Escherichia coli) was assessed in C57/BL6 male mice. The effect of pharmacological inhibition of CXCR1/2 signalling (reparixin) on NET formation, organ injury (hepatic, renal, and cardiac biomarkers), and survival in septic mice was examined. RESULTS NET formation was higher after incubation with plasma from septic patients (median NETs=25% [10.5-46.5%]), compared with plasma obtained from patients with systemic inflammation (14% [4.0-23.3%]; P=0.02). Similar results were observed after incubation of plasma from mice with neutrophils from septic non-septic mice. Circulating CXCR1/2 ligands correlated with NETosis in patients (interleukin-8; r=0.643) and mice (macrophage inflammatory protein-2; r=0.902). In experimental sepsis, NETs were primarily observed in the lungs, correlating with fibrin deposition (r=0.702) and lung injury (r=0.692). Inhibition of CXCR1/2 using reparixin in septic mice reduced NET formation, multi-organ injury, and mortality, without impairing bacterial clearance. CONCLUSION CXCR1/2 signalling-induced NET formation is a therapeutic target in sepsis, which may be guided by ex vivo NET assays.
Collapse
|
183
|
Laggner M, Lingitz MT, Copic D, Direder M, Klas K, Bormann D, Gugerell A, Moser B, Radtke C, Hacker S, Mildner M, Ankersmit HJ, Haider T. Severity of thermal burn injury is associated with systemic neutrophil activation. Sci Rep 2022; 12:1654. [PMID: 35102298 PMCID: PMC8803945 DOI: 10.1038/s41598-022-05768-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Burn injuries elicit a unique and dynamic stress response which can lead to burn injury progression. Though neutrophils represent crucial players in the burn-induced immunological events, the dynamic secretion pattern and systemic levels of neutrophil-derived factors have not been investigated in detail so far. Serum levels of neutrophil elastase (NE), myeloperoxidase (MPO), citrullinated histone H3 (CitH3), and complement factor C3a were quantified in burn victims over 4 weeks post injury. Furthermore, the potential association with mortality, degree of burn injury, and inhalation trauma was evaluated. In addition, leukocyte, platelet, neutrophil, and lymphocyte counts were assessed. Lastly, we analyzed the association of neutrophil-derived factors with clinical severity scoring systems. Serum levels of NE, MPO, CitH3, and C3a were remarkably elevated in burn victims compared to healthy controls. Leukocyte and neutrophil counts were significantly increased on admission day and day 1, while relative lymphocytes were decreased in the first 7 days post burn trauma. Though neutrophil-derived factors did not predict mortality, patients suffering from 3rd degree burn injuries displayed increased CitH3 and NE levels. Accordingly, CitH3 and NE were elevated in cases with higher abbreviated burn severity indices (ABSI). Taken together, our data suggest a role for neutrophil activation and NETosis in burn injuries and burn injury progression. Targeting exacerbated neutrophil activation might represent a new therapeutic option for severe cases of burn injury.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Marie-Therese Lingitz
- Division of General Anesthesia and Intensive Care Medicine, Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria
| | - Bernhard Moser
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefan Hacker
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Landesklinikum Wiener Neustadt, 2700, Wiener Neustadt, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090, Vienna, Austria.
| | - Thomas Haider
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
184
|
Milone G, Bellofiore C, Leotta S, Milone GA, Cupri A, Duminuco A, Garibaldi B, Palumbo G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J Clin Med 2022; 11:jcm11030623. [PMID: 35160072 PMCID: PMC8837122 DOI: 10.3390/jcm11030623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is frequently encountered in transplant medicine. ED is an argument of high complexity, and its understanding requires a wide spectrum of knowledge based on many fields of basic sciences such as molecular biology, immunology, and pathology. After hematopoietic stem cell transplantation (HSCT), ED participates in the pathogenesis of various complications such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), graft-versus-host disease (GVHD), transplant-associated thrombotic microangiopathy (TA-TMA), idiopathic pneumonia syndrome (IPS), capillary leak syndrome (CLS), and engraftment syndrome (ES). In the first part of the present manuscript, we briefly review some biological aspects of factors involved in ED: adhesion molecules, cytokines, Toll-like receptors, complement, angiopoietin-1, angiopoietin-2, thrombomodulin, high-mobility group B-1 protein, nitric oxide, glycocalyx, coagulation cascade. In the second part, we review the abnormalities of these factors found in the ED complications associated with HSCT. In the third part, a review of agents used in the treatment of ED after HSCT is presented.
Collapse
|
185
|
Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci 2022; 79:94. [PMID: 35079870 PMCID: PMC8788905 DOI: 10.1007/s00018-022-04126-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
Numerous
post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.
Collapse
|
186
|
Giles JB, Miller EC, Steiner HE, Karnes JH. Elucidation of Cellular Contributions to Heparin-Induced Thrombocytopenia Using Omic Approaches. Front Pharmacol 2022; 12:812830. [PMID: 35126147 PMCID: PMC8814424 DOI: 10.3389/fphar.2021.812830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an unpredictable, complex, immune-mediated adverse drug reaction associated with a high mortality. Despite decades of research into HIT, fundamental knowledge gaps persist regarding HIT likely due to the complex and unusual nature of the HIT immune response. Such knowledge gaps include the identity of a HIT immunogen, the intrinsic roles of various cell types and their interactions, and the molecular basis that distinguishes pathogenic and non-pathogenic PF4/heparin antibodies. While a key feature of HIT, thrombocytopenia, implicates platelets as a seminal cell fragment in HIT pathogenesis, strong evidence exists for critical roles of multiple cell types. The rise in omic technologies over the last decade has resulted in a number of agnostic, whole system approaches for biological research that may be especially informative for complex phenotypes. Applying multi-omics techniques to HIT has the potential to bring new insights into HIT pathophysiology and identify biomarkers with clinical utility. In this review, we review the clinical, immunological, and molecular features of HIT with emphasis on key cell types and their roles. We then address the applicability of several omic techniques underutilized in HIT, which have the potential to fill knowledge gaps related to HIT biology.
Collapse
Affiliation(s)
- Jason B. Giles
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Elise C. Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Heidi E. Steiner
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Jason H. Karnes,
| |
Collapse
|
187
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GES. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol 2022; 104:108516. [PMID: 35032828 PMCID: PMC8733219 DOI: 10.1016/j.intimp.2021.108516] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1β loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyiah University, Baghdad, Iraq
| | | | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Bagdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia; AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
188
|
Zhu W, Guo S, Homilius M, Nsubuga C, Wright SH, Quan D, Kc A, Eddy SS, Victorio RA, Beerens M, Flaumenhaft R, Deo RC, MacRae CA. PIEZO1 mediates a mechanothrombotic pathway in diabetes. Sci Transl Med 2022; 14:eabk1707. [PMID: 34985971 DOI: 10.1126/scitranslmed.abk1707] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Max Homilius
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Cissy Nsubuga
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shane H Wright
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dajun Quan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashmita Kc
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Samuel S Eddy
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Manu Beerens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Robert Flaumenhaft
- Harvard Medical School, Boston, MA 02115, USA.,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rahul C Deo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Calum A MacRae
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
189
|
Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The role of neutrophil extracellular traps in acute lung injury. Front Immunol 2022; 13:953195. [PMID: 35967320 PMCID: PMC9374003 DOI: 10.3389/fimmu.2022.953195] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI) is a heterogeneous inflammatory condition associated with high morbidity and mortality. Neutrophils play a key role in the development of different forms of ALI, and the release of neutrophil extracellular traps (NETs) is emerging as a common pathogenic mechanism. NETs are essential in controlling pathogens, and their defective release or increased degradation leads to a higher risk of infection. However, NETs also contain several pro-inflammatory and cytotoxic molecules than can exacerbate thromboinflammation and lung tissue injury. To reduce NET-mediated lung damage and inflammation, DNase is frequently used in preclinical models of ALI due to its capability of digesting NET DNA scaffold. Moreover, recent advances in neutrophil biology led to the development of selective NET inhibitors, which also appear to reduce ALI in experimental models. Here we provide an overview of the role of NETs in different forms of ALI discussing existing gaps in our knowledge and novel therapeutic approaches to modulate their impact on lung injury.
Collapse
Affiliation(s)
- Davide Scozzi
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Fuyi Liao
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | | | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Andrew E. Gelman,
| |
Collapse
|
190
|
Parthasarathy U, Martinelli R, Vollmann EH, Best K, Therien AG. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem Pharmacol 2022; 195:114847. [PMID: 34801526 PMCID: PMC8600760 DOI: 10.1016/j.bcp.2021.114847] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The host response to SARS-CoV-2, the virus that causes COVID-19, is highly heterogeneous, ranging from mild/asymptomatic to severe. The moderate to severe forms of COVID-19 often require hospitalization, are associated with a high rate of mortality, and appear to be caused by an inappropriately exaggerated inflammatory response to the virus. Emerging data confirm the involvement of both innate and adaptive immune pathways both in protection from SARS-CoV-2, and in driving the pathology of severe COVID-19. In particular, innate immune cells including neutrophils appear to be key players in the inflammation that causes the vicious cycle of damage and inflammation that underlies the symptomatology of severe COVID-19. Several recent studies support a link between damage and inflammation, with damage-associated molecular patterns (DAMPs) playing a key role in the pathology of severe COVID-19. In this review, we put into perspective the role of DAMPs and of components of the DAMP-signaling cascade, including Siglecs and their cognate ligands CD24 and CD52, in COVID-19. Further, we review clinical data on proposed therapeutics targeting DAMP pathways to treat SARS-CoV-2 infection and the regulation of these signaling cascades in COVID-19. We also discuss the potential impact of DAMP-mediated inflammation in other indications related to COVID-19, such as ARDS, endothelial dysfunction, hypercoagulation, and sepsis.
Collapse
Affiliation(s)
| | | | | | - Katharine Best
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA
| | - Alex G Therien
- Exploratory Science Center, MRL, Merck & Co., Inc, Cambridge, MA, USA.
| |
Collapse
|
191
|
Wolach O, Martinod K. Casting a NET on cancer: the multiple roles for neutrophil extracellular traps in cancer. Curr Opin Hematol 2022; 29:53-62. [PMID: 34854835 DOI: 10.1097/moh.0000000000000690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The role of the innate immune system has become widely appreciated in cancer and cancer-associated disorders. Neutrophils, the most abundant circulating leukocytes, have prognostic value in determining cancer progression and survival. One of the ways by which neutrophils negatively impact outcome is by formation of neutrophil extracellular traps (NETs) which result in release of nuclear chromatin and bioactive proteins into the extracellular space. Here, we review the evidence for NETs contributions to cancer progression, metastasis, and cancer-associated thrombosis (CAT). RECENT FINDINGS NETs are increased across several cancer types and predict progression and adverse outcome. Several preclinical and clinical observations implicate NETs in promoting tumor growth, angiogenesis and metastasis via distinct pathways. Furthermore, NETs are shown to contribute to resistance to immunotherapy. NETs also emerge as key players in the prothrombotic phenotype associated with cancer that can result in potentially life-threatening arterial and venous thrombosis. Recent mechanistic insights expose several potential targets to inhibit NET formation and disrupt the interaction between NETs and tumor cells. SUMMARY Clinical and translational insights highlight the central role of NETs in cancer progression and metastasis, disease resistance and CAT. Targeting NETs and NET-associated pathways may represent a novel approach to treat cancer.
Collapse
Affiliation(s)
- Ofir Wolach
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
192
|
Prevention and Management of Deep Vein Thrombosis and Pulmonary Embolism. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
193
|
Tang Y, Yang Y, Lu X, Liu Q, Li Q, Song X, Wang M, Hu H, Zhou L, Wang Y. Oral therapy of recombinant Subtilisin QK-2 potentiates thrombolytic effect in a carrageenan-induced thrombosis animal model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
194
|
Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 2022; 20:17-31. [PMID: 34672094 PMCID: PMC8646423 DOI: 10.1111/jth.15566] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic extended all around the world causing millions of deaths. In addition to acute respiratory distress syndrome, many patients with severe COVID-19 develop thromboembolic complications associated to multiorgan failure and death. Here, we review evidence for the contribution of neutrophils, platelets, and extracellular vesicles (EVs) to the thromboinflammatory process in COVID-19. We discuss how the immune system, influenced by pro-inflammatory molecules, EVs, and neutrophil extracellular traps (NETs), can be caught out in patients with severe outcomes. We highlight how the deficient regulation of the innate immune system favors platelet activation and induces a vicious cycle amplifying an immunothrombogenic environment associated with platelet/NET interactions. In light of these considerations, we discuss potential therapeutic strategies underlining the modulation of purinergic signaling as an interesting target.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, McGill University, Montréal, Quebec, Canada
| | - Antonin Trimaille
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Julie Favre
- INSERM, UMR S 1121, Biomaterials and Bioengineering, CRBS, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Laurence Jesel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Morel
- UMR INSERM 1260, CRBS, Strasbourg University, Strasbourg, France
- Division of Cardiovascular Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | |
Collapse
|
195
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
196
|
Telerman A, Granot G, Leibovitch C, Yarchovsky-Dolberg O, Shacham-Abulafia A, Partouche S, Yeshurun M, Ellis MH, Raanani P, Wolach O. Neutrophil Extracellular Traps Are Increased in Chronic Myeloid Leukemia and Are Differentially Affected by Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 14:cancers14010119. [PMID: 35008283 PMCID: PMC8750902 DOI: 10.3390/cancers14010119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neutrophil extracellular traps (NETs) are a recently described form of neutrophil cellular death that has been associated with a thrombotic tendency in many diseases. We studied NET formation in neutrophils derived from patients with chronic myeloid leukemia (CML) and in CML neutrophil cell lines and demonstrated that NETs are increased in CML and that certain drugs used to treat CML (tyrosine kinase inhibitors—TKIs) increase NET formation. These findings may shed light on a novel mechanism linking CML, TKIs and vascular toxicity. Abstract Cardiovascular complications are increasingly reported with the use of certain tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML). We studied neutrophil extracellular trap (NET) formation in CML and evaluated the effect of TKIs on NET formation. Neutrophils isolated from treatment-naïve patients with CML showed a significant increase in NET formation compared to matched controls at baseline and after stimulation with ionomycin (IO) and phorbol 12-myristate 13-acetate (PMA). Expression of citrullinated histone H3 (H3cit), peptidyl arginine deiminase 4 (PAD4) and reactive oxygen species (ROS) was significantly higher in CML samples compared to controls. Pre-treatment of neutrophils with TKIs was associated with a differential effect on NET formation, and ponatinib significantly augmented NET-associated elastase and ROS levels as compared to controls and other TKIs. BCR-ABL1 retroviral transduced HoxB8-immortalized mouse hematopoietic progenitors, which differentiate into neutrophils in-vitro, demonstrated increased H3cit & myeloperoxidase (MPO) expression consistent with excess NET formation. This was inhibited by Cl-amidine, a PAD4 inhibitor, but not by the NADPH inhibitor diphenyleneiodonium (DPI). Ponatinib pre-exposure significantly increased H3cit expression in HoxB8-BCR-ABL1 cells after stimulation with IO. In summary, CML is associated with increased NET formation, which is augmented by ponatinib, suggesting a possible role for NETs in promoting vascular toxicity in CML.
Collapse
Affiliation(s)
- Alona Telerman
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Galit Granot
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Chiya Leibovitch
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Osnat Yarchovsky-Dolberg
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Adi Shacham-Abulafia
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva 4941492, Israel; (A.T.); (G.G.); (S.P.)
| | - Moshe Yeshurun
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Martin H. Ellis
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar Saba 4428164, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
| | - Ofir Wolach
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 39040, Israel; (C.L.); (O.Y.-D.); (A.S.-A.); (M.Y.); (M.H.E.); (P.R.)
- Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Beilinson Hospital, Petah-Tikva 4941492, Israel
- Correspondence: ; Tel.: +972-50-406-5590
| |
Collapse
|
197
|
Ansari J, Gavins FNE. Neutrophils and Platelets: Immune Soldiers Fighting Together in Stroke Pathophysiology. Biomedicines 2021; 9:biomedicines9121945. [PMID: 34944761 PMCID: PMC8698717 DOI: 10.3390/biomedicines9121945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflammation secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and management of stroke.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Shreveport, Shreveport, LA 71130, USA
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| |
Collapse
|
198
|
Sohrabipour S, Muniz VS, Sharma N, Dwivedi DJ, Liaw PC. Mechanistic Studies of DNase I Activity: Impact of Heparin Variants and PAD4. Shock 2021; 56:975-987. [PMID: 34033618 DOI: 10.1097/shk.0000000000001804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Excessive production of neutrophil extracellular traps (NETs) in sepsis contributes to vascular occlusion by acting as a scaffold and stimulus for thrombus formation. Removal of extracellular DNA, the major structural component of NETs, by DNase I may reduce host injury. Objectives (1) To determine how heparin variants (unfractionated heparin, enoxaparin, Vasoflux, and fondaparinux) affect DNase I activity, (2) to measure temporal changes in circulating DNA and DNase I in septic patients. Methods DNA–histone complexes were treated with DNase I ± heparin variants and visualized via agarose gels. We compared the ability of DNase I ± heparin variants to digest NETs released by phorbol 12-myristate 13-acetate-stimulated neutrophils versus DNA–histone complexes released by necrotic HEK293 cells. Plasma DNA and DNase I levels were measured longitudinally in 76 septic patients. Results Heparin enhances DNase I-mediated digestion of DNA–histone complexes in a size-dependent manner that does not require the antithrombin-binding region. In contrast, DNase I alone was able to degrade the DNA–histone component of NETs presumably due to peptidylarginine deiminase 4 (PAD4)-mediated histone citrullination that weakens DNA–histone interactions. In purified systems, PAD4 treatment of DNA–histone complexes enhanced the ability of DNase I to degrade histone-bound DNA. In septic patients, endogenous DNase I levels remained persistently low over 28 days, and there were no significant correlations between DNA and DNase I levels. Conclusion Heparin enhances DNA-mediated digestion of DNA–histone complexes in a size-dependent manner that is independent of its anticoagulant properties. Citrullination of histones by PAD4 renders DNA–histone complexes susceptible to DNase I digestion. Endogenous DNase I levels are persistently decreased in septic patients, which supports the potential utility of DNase I as a therapy for sepsis.
Collapse
Affiliation(s)
- Sahar Sohrabipour
- Department of Medical Sciences, McMaster University, Hamilton ON, Canada
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton ON, Canada
| | - Valdirene S Muniz
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton ON, Canada
| | - Neha Sharma
- Department of Medical Sciences, McMaster University, Hamilton ON, Canada
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton ON, Canada
| | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton ON, Canada
- Department of Medicine, McMaster University, Hamilton ON, Canada
| | - Patricia C Liaw
- Department of Medical Sciences, McMaster University, Hamilton ON, Canada
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton ON, Canada
- Department of Medicine, McMaster University, Hamilton ON, Canada
| |
Collapse
|
199
|
Tóth E, Beinrohr L, Gubucz I, Szabó L, Tenekedjiev K, Nikolova N, Nagy AI, Hidi L, Sótonyi P, Szikora I, Merkely B, Kolev K. Fibrin to von Willebrand factor ratio in arterial thrombi is associated with plasma levels of inflammatory biomarkers and local abundance of extracellular DNA. Thromb Res 2021; 209:8-15. [PMID: 34844046 DOI: 10.1016/j.thromres.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The composition of thrombi determines their structure, mechanical stability, susceptibility to lysis, and consequently, the clinical outcome in coronary artery disease (CAD), acute ischemic stroke (AIS), and peripheral artery disease (PAD). Fibrin forms the primary matrix of thrombi intertwined with DNA, derived from neutrophil extracellular traps (NETs), and von Willebrand factor (VWF) bridging DNA and platelets. Here we examined the relative content of fibrin, DNA and VWF in thrombi and analyzed their interrelations and quantitative associations with systemic biomarkers of inflammation and clinical characteristics of the patients. PATIENTS, METHODS Thrombi extracted from AIS (n = 17), CAD (n = 18) or PAD (n = 19) patients were processed for scanning electron microscopy, (immune)stained for fibrin, VWF and extracellular DNA. Fibrin fiber diameter, cellular components, fibrin/DNA and fibrin/VWF ratios were measured. RESULTS Patients' age presented as a strong explanatory factor for a linear decline trend of the VWF content relative to fibrin in thrombi from CAD (adjusted-R2 = 0.43) and male AIS (adjusted-R2 = 0.66) patients. In a subgroup of CAD and PAD patients with dyslipidemia and high (above 80%) prevalence of atherothrombosis a significant correlation was observed between the VWF and DNA content in thrombi (adjusted-R2 = 0.40), whereas a 3.7-fold lower linear regression coefficient was seen in AIS patients, in whom the fraction of thrombi of atherosclerotic origin was 57%. Independently of anatomical location, in patients with atherosclerosis the VWF in thrombi correlated with the plasma C-reactive protein levels. CONCLUSIONS The observed interrelations between thrombus constituents and systemic inflammatory biomarkers suggest an intricate interplay along the VWF/NET/fibrin axis in arterial thrombosis.
Collapse
Affiliation(s)
- Erzsébet Tóth
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Beinrohr
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - István Gubucz
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - László Szabó
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kiril Tenekedjiev
- Australian Maritime College, University of Tasmania, Launceston, Australia; Department of Information Technology, Nikola Vaptsarov Naval Academy, Varna, Bulgaria
| | - Natalia Nikolova
- Australian Maritime College, University of Tasmania, Launceston, Australia; Department of Information Technology, Nikola Vaptsarov Naval Academy, Varna, Bulgaria
| | - Anikó I Nagy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - István Szikora
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
200
|
Bilotta C, Perrone G, Adelfio V, Spatola GF, Uzzo ML, Argo A, Zerbo S. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Front Immunol 2021; 12:729251. [PMID: 34912330 PMCID: PMC8666479 DOI: 10.3389/fimmu.2021.729251] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The World Health Organization declared the coronavirus disease 2019 (COVID-19) pandemic on March 11, 2020. Two vaccine types were developed using two different technologies: viral vectors and mRNA. Thrombosis is one of the most severe and atypical adverse effects of vaccines. This study aimed to analyze published cases of thrombosis after COVID-19 vaccinations to identify patients' features, potential pathophysiological mechanisms, timing of appearance of the adverse events, and other critical issues. Materials and Methods We performed a systematic electronic search of scientific articles regarding COVID-19 vaccine-related thrombosis and its complications on the PubMed (MEDLINE) database and through manual searches. We selected 10 out of 50 articles from February 1 to May 5, 2021 and performed a descriptive analysis of the adverse events caused by the mRNA-based Pfizer and Moderna vaccines and the adenovirus-based AstraZeneca vaccine. Results In the articles on the Pfizer and Moderna vaccines, the sample consisted of three male patients with age heterogeneity. The time from vaccination to admission was ≤3 days in all cases; all patients presented signs of petechiae/purpura at admission, with a low platelet count. In the studies on the AstraZeneca vaccine, the sample consisted of 58 individuals with a high age heterogeneity and a high female prevalence. Symptoms appeared around the ninth day, and headache was the most common symptom. The platelet count was below the lower limit of the normal range. All patients except one were positive for PF4 antibodies. The cerebral venous sinus was the most affected site. Death was the most prevalent outcome in all studies, except for one study in which most of the patients remained alive. Discussion Vaccine-induced thrombotic thrombocytopenia (VITT) is an unknown nosological phenomenon secondary to inoculation with the COVID-19 vaccine. Several hypotheses have been formulated regarding its physiopathological mechanism. Recent studies have assumed a mechanism that is assimilable to heparin-induced thrombocytopenia, with protagonist antibodies against the PF4-polyanion complex. Viral DNA has a negative charge and can bind to PF4, causing VITT. New experimental studies have assumed that thrombosis is related to a soluble adenoviral protein spike variant, originating from splicing events, which cause important endothelial inflammatory events, and binding to endothelial cells expressing ACE2. Conclusion Further studies are needed to better identify VITT's pathophysiological mechanisms and genetic, demographic, or clinical predisposition of high-risk patients, to investigate the correlation of VITT with the different vaccine types, and to test the significance of the findings.
Collapse
Affiliation(s)
- Clio Bilotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Giulio Perrone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Valeria Adelfio
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | - Giovanni Francesco Spatola
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Maria Laura Uzzo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|