151
|
Koncz G, Tóth GK, Bökönyi G, Kéri G, Pecht I, Medgyesi D, Gergely J, Sármay G. Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3898-906. [PMID: 11453982 DOI: 10.1046/j.1432-1327.2001.02295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Motifs
- Antigens, CD/metabolism
- Intracellular Signaling Peptides and Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphopeptides/metabolism
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- G Koncz
- Research Group of the Hungarian Academy of Science at the Department of Immunology, Loránd Eötvös University, Göd, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Craddock BL, Hobbs J, Edmead CE, Welham MJ. Phosphoinositide 3-kinase-dependent regulation of interleukin-3-induced proliferation: involvement of mitogen-activated protein kinases, SHP2 and Gab2. J Biol Chem 2001; 276:24274-83. [PMID: 11335710 DOI: 10.1074/jbc.m009098200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated previously that class I(A) phosphoinositide 3-kinases play a major role in regulation of interleukin-3 (IL)-3-dependent proliferation. Investigations into the downstream targets involved have identified the MAPK cascade as a target. Expression of Deltap85 and incubation with LY294002 both inhibited IL-3-induced activation of Mek, Erk1, and Erk2. This was most pronounced during the initial phase of Erk activation. The Mek inhibitor, PD98059, blocked IL-3-driven proliferation, an effect enhanced by Deltap85 expression, suggesting that inhibition of Mek and Erks by Deltap85 contributes to the decrease in IL-3-induced proliferation in these cells but that additional pathways may also be involved. To investigate the mechanism leading to decreased activation of Erks, we investigated effects on SHP2 and Gab2, both implicated in IL-3 regulation of Erk activation. Expression of Deltap85 led to a reduction in SHP2 tyrosine phosphorylation and its ability to interact with Grb2 and Gab2 but increased overall tyrosine phosphorylation of Gab2. LY294002 did not perturb SHP2 interactions, potentially related to differences in the effects of these inhibitors on levels of phosphoinositides. These results imply that the regulation of Erks by class I(A) phosphoinositide 3-kinase may contribute to IL-3-driven proliferation and that both SHP2 and Gab2 are possibly involved in this regulation.
Collapse
Affiliation(s)
- B L Craddock
- Department of Pharmacy and Pharmacology, the University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
153
|
Kontaridis MI, Liu X, Zhang L, Bennett AM. SHP-2 complex formation with the SHP-2 substrate-1 during C2C12 myogenesis. J Cell Sci 2001; 114:2187-98. [PMID: 11493654 DOI: 10.1242/jcs.114.11.2187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myogenesis is a highly ordered process that involves the expression of muscle-specific genes, cell-cell recognition and multinucleated myotube formation. Although protein tyrosine kinases have figured prominently in myogenesis, the involvement of tyrosine phosphatases in this process is unknown. SHP-2 is an SH2 domain-containing tyrosine phosphatase, which positively regulates growth and differentiation. We show that in C2C12 myoblasts, SHP-2 becomes upregulated early on during myogenesis and associates with a 120 kDa tyrosyl-phosphorylated complex. We have identified that the 120 kDa complex consists of the SHP-2 substrate-1 (SHPS-1) and the Grb2-associated binder-1 (Gab-1). SHPS-1, but not Gab-1, undergoes tyrosyl phosphorylation and association with SHP-2 during myogenesis, the kinetics of which correlate with the expression of MyoD. Either constitutive expression or inducible activation of MyoD in 10T½ fibroblasts promotes SHPS-1 tyrosyl phosphorylation and its association with SHP-2. It has been shown that p38 mitogen-activated protein kinase (MAPK) activity is required for the expression/activation of MyoD and MyoD-responsive genes. Inhibition of p38 MAPK by SB203580 in differentiating C2C12 myoblasts blocks MyoD expression, SHPS-1 tyrosyl phosphorylation and the association of SHPS-1 with SHP-2. These data suggest that SHPS-1/SHP-2 complex formation is an integral signaling component of skeletal muscle differentiation.
Collapse
Affiliation(s)
- M I Kontaridis
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
154
|
Liu Y, Jenkins B, Shin JL, Rohrschneider LR. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase. Mol Cell Biol 2001; 21:3047-56. [PMID: 11287610 PMCID: PMC86933 DOI: 10.1128/mcb.21.9.3047-3056.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fms is the receptor for macrophage colony-stimulating factor (M-CSF) and contains intrinsic tyrosine kinase activity. Expression of exogenous Fms in a murine myeloid progenitor cell line, FDC-P1 (FD-Fms), results in M-CSF-dependent growth and macrophage differentiation. Previously, we described a 100-kDa protein that was tyrosine phosphorylated upon M-CSF stimulation of FD-Fms cells. In this report, we identify this 100-kDa protein as the recently cloned scaffolding protein Gab2, and we demonstrate that Gab2 associates with several molecules involved in M-CSF signaling, including Grb2, SHP2, the p85 subunit of phosphatidylinositol 3'-kinase, SHIP, and SHC. Tyrosine phosphorylation of Gab2 in response to M-CSF requires the kinase activity of Fms, but not that of Src. Overexpression of Gab2 in FD-Fms cells enhanced both mitogen-activated protein kinase (MAPK) activity and macrophage differentiation, but reduced proliferation, in response to M-CSF. In contrast, a mutant of Gab2 that is unable to bind SHP2 did not potentiate MAPK activity. Furthermore, overexpression of this mutant in FD-Fms cells inhibited macrophage differentiation and resulted in a concomitant increase in growth potential in response to M-CSF. These data indicate that Gab2 is involved in the activation of the MAPK pathway and that the interaction between Gab2 and SHP2 is essential for the differentiation signal triggered by M-CSF.
Collapse
Affiliation(s)
- Y Liu
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | |
Collapse
|
155
|
Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J. A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners. FEBS Lett 2001; 495:148-53. [PMID: 11334882 DOI: 10.1016/s0014-5793(01)02373-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p97/Gab2 is a recently characterized member of a large family of scaffold proteins that play essential roles in signal transduction. Gab2 becomes tyrosine-phosphorylated in response to a variety of growth factors and forms multimolecular complexes with SH2 domain-containing signaling molecules such as the p85-regulatory subunit of the phosphoinositide-3-kinase (p85-PI3K), the tyrosine phosphatase SHP-2 and the adapter protein CrkL. To characterize the interactions between Gab2 and its SH2-containing binding partners, we designed a modified yeast two-hybrid system in which the Lyn tyrosine kinase is expressed in a regulated manner in yeast. Using this assay, we demonstrated that p97/Gab2 specifically interacts with the SH2 domains of PI3K, SHP-2 and CrkL. Interaction with p85-PI3K is mediated by tyrosine residues Y452, Y476 and Y584 of Gab2, while interaction with SHP-2 depends exclusively on tyrosine Y614. CrkL interaction is mediated by its SH2 domain recognizing Y266 and Y293, despite the latter being in a non-consensus (YTFK) environment.
Collapse
Affiliation(s)
- C Crouin
- Inserm Unit 461, Faculté de Pharmacie Paris-XI, Châtenay-Malabry, france
| | | | | | | | | |
Collapse
|
156
|
Bouscary D, Lecoq-Lafon C, Chrétien S, Zompi S, Fichelson S, Muller O, Porteu F, Dusanter-Fourt I, Gisselbrecht S, Mayeux P, Lacombe C. Role of Gab proteins in phosphatidylinositol 3-kinase activation by thrombopoietin (Tpo). Oncogene 2001; 20:2197-204. [PMID: 11402314 DOI: 10.1038/sj.onc.1204317] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 01/22/2001] [Accepted: 01/30/2001] [Indexed: 12/18/2022]
Abstract
In this study, we show that upon thrombopoietin (Tpo) stimulation the two adapter proteins Gab1 and Gab2 are strongly tyrosine phosphorylated and associated with Shc, SHP2, PI 3-kinase and Grb2 in mpl-expressing UT7 cells. Although Gab1 and Gab2 seem to mediate overlapping biological signals in many cells, only Gab1 is expressed and phosphorylated in response to Tpo in primary human megakaryocytic progenitors; furthermore, it associates with the same proteins. Although a low level of tyrosine phosphorylated IRS-2 protein is also detected in PI 3-kinase immunoprecipitates, Gab proteins are the essential proteins associated with PI 3-kinase after Tpo stimulation. We demonstrate that, albeit no association is detected between the Tpo receptor mpl and Gab proteins, Y112 located in the C-terminal cytoplasmic domain of mpl is required for Gab1/2 tyrosine phosphorylation. Gab proteins are not tyrosine phosphorylated after Tpo stimulation of UT-7 and Ba/F3 cells expressing a mpl mutant lacking Y112. Moreover, no activation of the PI 3-kinase/Akt pathway is observed in cells expressing this mpl mutant. Finally, we show that this mutant does not allow cell proliferation, thereby confirming that PI 3-kinase activation is required for Tpo-induced cell proliferation.
Collapse
Affiliation(s)
- D Bouscary
- Institut Cochin de Génétique Moléculaire (ICGM), Institut National de la Santé et de la Recherche Médicale (INSERM U363), Université René Descartes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Ingham RJ, Santos L, Dang-Lawson M, Holgado-Madruga M, Dudek P, Maroun CR, Wong AJ, Matsuuchi L, Gold MR. The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J Biol Chem 2001; 276:12257-65. [PMID: 11278704 DOI: 10.1074/jbc.m010590200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B cell antigen receptor (BCR) signaling causes tyrosine phosphorylation of the Gab1 docking protein. This allows phosphatidylinositol 3-kinase (PI3K) and the SHP2 tyrosine phosphatase to bind to Gab1. In this report, we tested the hypothesis that Gab1 acts as an amplifier of PI3K- and SHP2-dependent signaling in B lymphocytes. By overexpressing Gab1 in the WEHI-231 B cell line, we found that Gab1 can potentiate BCR-induced phosphorylation of Akt, a PI3K-dependent response. Gab1 expression also increased BCR-induced tyrosine phosphorylation of SHP2 as well as the binding of Grb2 to SHP2. We show that the pleckstrin homology (PH) domain of Gab1 is required for BCR-induced phosphorylation of Gab1 and for Gab1 participation in BCR signaling. Moreover, using confocal microscopy, we show that BCR ligation can induce the translocation of Gab1 from the cytosol to the plasma membrane and that this requires the Gab1 PH domain as well as PI3K activity. These findings are consistent with a model in which the binding of the Gab1 PH domain to PI3K-derived lipids brings Gab1 to the plasma membrane, where it can be tyrosine-phosphorylated and then act as an amplifier of BCR signaling.
Collapse
Affiliation(s)
- R J Ingham
- Departments of Microbiology and Immunology and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Santos SC, Lacronique V, Bouchaert I, Monni R, Bernard O, Gisselbrecht S, Gouilleux F. Constitutively active STAT5 variants induce growth and survival of hematopoietic cells through a PI 3-kinase/Akt dependent pathway. Oncogene 2001; 20:2080-90. [PMID: 11360192 DOI: 10.1038/sj.onc.1204308] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2000] [Revised: 01/17/2001] [Accepted: 01/22/2001] [Indexed: 11/09/2022]
Abstract
Signal Transducer and Activator of Transcription (STATs) are important mediators of cytokine and growth factor-induced signal transduction. STAT5A and STAT5B have been shown to play a role in survival and proliferation of hematopoietic cells both in vitro and in vivo and to contribute to the growth and viability of cells transformed by the TEL-JAK2 oncoprotein. In this study, we investigated the molecular mechanisms by which constitutively active STAT5 proteins induce cell proliferation and survival of Ba/F3 cell lines expressing either dominant positive STAT5A or STAT5B variants or TEL-JAK2 or TEL-ABL fusion proteins. Our results showed that active STAT5 constitutively interacted with p85, the regulatory subunit of the PI 3-kinase. A constitutive activity of the PI 3-kinase/Akt pathway was observed in these cells and required for their cell cycle progression. In contrast, while activity of the PI 3-kinase/Akt pathway was required for survival of Ba/F3 cells expressing the constitutively active forms of STAT5A or STAT5B, it was dispensable for cells transformed by TEL-JAK2 or TEL-ABL fusion proteins, suggesting that additional survival pathways take place in these transformed cells.
Collapse
Affiliation(s)
- S C Santos
- Institut Cochin de Génétique Moléculaire (ICGM), Institut National de la Santé et de la Recherche Médicale (INSERM U363), Hôpital Cochin, 27 rue du Fbg St Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
159
|
Miyakawa Y, Rojnuckarin P, Habib T, Kaushansky K. Thrombopoietin induces phosphoinositol 3-kinase activation through SHP2, Gab, and insulin receptor substrate proteins in BAF3 cells and primary murine megakaryocytes. J Biol Chem 2001; 276:2494-502. [PMID: 11054408 DOI: 10.1074/jbc.m002633200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) is a recently characterized member of the hematopoietic growth factor family that serves as the primary regulator of megakaryocyte (MK) and platelet production. The hormone acts by binding to the Mpl receptor, the product of the cellular proto-oncogene c-mpl. Although many downstream signaling targets of TPO have been identified in cell lines, primary MKs, and platelets, the molecular mechanism(s) by which many of these molecules are activated remains uncertain. In this report we demonstrate that the TPO-induced activation of phosphoinositol 3-kinase (PI3K), a signaling intermediate vital for cellular survival and proliferation, occurs through its association with inducible signaling complexes in both BaF3 cells engineered to express Mpl (BaF3/Mpl) and in primary murine MKs. Although a direct association between PI3K and Mpl could not be demonstrated, we found that several proteins, including SHP2, Gab2, and IRS2, undergo phosphorylation and association in BaF3/Mpl cells in response to TPO stimulation, complexes that recruit and enhance the enzymatic activity of PI3K. To verify the physiological relevance of the complex, SHP2-Gab2 association was disrupted by overexpressing a dominant negative SHP2 construct. TPO-induced Akt phosphorylation was significantly decreased in transfected cells suggesting an important role of SHP2 in the complex to enhance PI3K activity. In primary murine MKs, TPO also induced phosphorylation of SHP2, its association with p85 and enhanced PI3K activity, but in contrast to the results in cell lines, neither Gab2 nor IRS2 are phosphorylated in MKs. Instead, a 100-kDa tyrosine-phosphorylated protein (pp100) co-immunoprecipitated with the regulatory subunit of PI3K. These findings support a model where PI3K activity is dependent on its recruitment into TPO-induced multiphosphoprotein complexes, implicate the existence of a scaffolding protein in primary MKs distinct from the known Gab and IRS proteins, and suggest that, in contrast to erythroid progenitor cells that employ Gab1 in PI3K signaling complexes, utilization of an alternate member of the Gab/IRS family could be responsible for specificity in TPO signaling.
Collapse
Affiliation(s)
- Y Miyakawa
- Division of Hematology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
160
|
Gual P, Giordano S, Anguissola S, Parker PJ, Comoglio PM. Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene 2001; 20:156-66. [PMID: 11313945 DOI: 10.1038/sj.onc.1204047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2000] [Revised: 10/20/2000] [Accepted: 10/23/2000] [Indexed: 02/07/2023]
Abstract
Signal transduction by HGF receptor, the tyrosine kinase encoded by the MET oncogene, switches on a genetic program called 'invasive growth' inducing epithelial cell dissociation, migration, growth, and ultimately leading to differentiation into branched tubular structures. Sustained tyrosine phosphorylation of the downstream adaptor protein Gab1 is required for the HGF response. Here we show that serine/threonine phosphorylation of Gab1 provides a control mechanism for negative regulation. Treatment with okadaic acid, a potent inhibitor of the serine/threonine protein phosphatases PP1 and PP2A, was followed by activation of a number of serine/threonine kinases, hyper-phosphorylation in serine and threonine of Gab1 and severe inhibition of the HGF-induced biological responses. Under these conditions, Gab1 was found to be concomitantly hypo-phosphorylated in tyrosine, and thus endowed with reduced ability to recruit SH2 containing signal transducers such as PI3 kinase. Among the serine-threonine kinases activated by PP1 and PP2A inhibition, we found that PKC-alpha and PKC-beta1 are required for negative regulation of Gab1. These data provide a novel negative mechanism for the HGF receptor signaling pathways and highlight a potentially useful target for inhibitors of invasive growth.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | | | |
Collapse
|
161
|
Ali S, Ali S. Recruitment of the protein-tyrosine phosphatase SHP-2 to the C-terminal tyrosine of the prolactin receptor and to the adaptor protein Gab2. J Biol Chem 2000; 275:39073-80. [PMID: 10991949 DOI: 10.1074/jbc.m007478200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.
Collapse
Affiliation(s)
- S Ali
- Department of Medicine, Division of Hematology and Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
162
|
Besset V, Scott RP, Ibáñez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 2000; 275:39159-66. [PMID: 10995764 DOI: 10.1074/jbc.m006908200] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.
Collapse
Affiliation(s)
- V Besset
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
163
|
Abstract
Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals. Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction. SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.
Collapse
Affiliation(s)
- C K Qu
- Department of Hematopoiesis, American Red Cross, Rockville, MD 20855, USA.
| |
Collapse
|
164
|
Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene 2000; 19:5582-9. [PMID: 11114738 DOI: 10.1038/sj.onc.1203859] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Met receptor tyrosine kinase is the prototypic member of a small subfamily of growth factor receptors that when activated induce mitogenic, motogenic, and morphogenic cellular responses. The ligand for Met is hepatocyte growth factor/scatter factor (HGF/SF) and while normal HGF/SF-Met signaling is required for embryonic development, abnormal Met signaling has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. Following ligand binding and autophosphorylation, Met transmits intercellular signals using a unique multisubstrate docking site present within the C-terminal end of the receptor. The multisubstrate docking site mediates the binding of several adapter proteins such as Grb2, SHC, Crk/CRKL, and the large adapter protein Gab1. These adapter proteins in turn recruit several signal transducing proteins to form an intricate signaling complex. Analysis of how these adapter proteins bind to the Met receptor and what signal transducers they recruit have led to more substantial models of HGF/SF-Met signal transduction and have uncovered new potential pathways that may be involved into Met mediated tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- K A Furge
- Van Andel Research Institute, 333 Bostwick, N.E., Grand Rapids, Michigan, MI 49503, USA
| | | | | |
Collapse
|
165
|
Oda A, Wakao H, Fujihara M, Ozaki K, Komatsu N, Tanaka S, Ikeda H, Miyajima A, Ikebuchi K. Thrombopoietin and interleukin-2 induce association of CRK with STAT5. Biochem Biophys Res Commun 2000; 278:299-305. [PMID: 11097834 DOI: 10.1006/bbrc.2000.3803] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crk (Crk I and II) proteins and closely related CrkL are adapters which are commonly involved in various signaling processes in various cells, and these proteins share many ligands. Whether they have redundant or distinct physiologic roles is unclear. By coprecipitation and far Western blotting analysis, we demonstrate that Crk (I/II) binds to tyrosine phosphorylated STAT5 in cells stimulated by cytokines such as thrombopoietin (TPO) and interleukin-2 (IL-2). The association did not require nuclear elements and can be observed in primary cells as this was also demonstrated in TPO-stimulated platelets. Using a beta-casein promoter STAT5 binding site as a probe, we have also demonstrated that CrkL (a close relative of Crk) antiserum, but not Crk antiserum, supershifted the STAT5-DNA complex by an electrophoretic mobility shift assay, suggesting that CrkL, but not Crk, is the major component of the complex. Thus, Crk and CrkL may have distinct roles in the regulation of STAT5.
Collapse
Affiliation(s)
- A Oda
- Hokkaido Red Cross Blood Center, Sapporo, 063-0002, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Kong M, Mounier C, Wu J, Posner BI. Epidermal growth factor-induced phosphatidylinositol 3-kinase activation and DNA synthesis. Identification of Grb2-associated binder 2 as the major mediator in rat hepatocytes. J Biol Chem 2000; 275:36035-42. [PMID: 10973965 DOI: 10.1074/jbc.m005621200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In previous work we showed that the phosphatidylinositol 3-kinase (PI3-kinase), not the mitogen-activated protein kinase, pathway is necessary and sufficient to account for insulin- and epidermal growth factor (EGF)-induced DNA synthesis in rat hepatocytes. Here, using a dominant-negative p85, we confirmed the key role of EGF-induced PI3-kinase activation and sought to identify the mechanism by which this is effected. Our results show that EGF activates PI3-kinase with a time course similar to that of the association of p85 with three principal phosphotyrosine proteins (i. e. PY180, PY105, and PY52). We demonstrated that each formed a distinct p85-associated complex. PY180 and PY52 each constituted about 10% of EGF-activated PI3-kinase, whereas PY105 was responsible for 80%. PY105 associated with Grb2 and SHP-2, and although it behaved like Gab1, none of the latter was detected in rat liver. We therefore cloned a cDNA from rat liver, which was found to be 95% homologous to the mouse Grb2-associated binder 2 (Gab2) cDNA sequence. Using a specific Gab2 antibody, we demonstrated its expression in and association with p85, SHP-2, and Grb2 upon EGF treatment of rat hepatocytes. Gab2 accounted for most if not all of the PY105 species, since immunoprecipitation of Gab2 with specific antibodies demonstrated parallel immunodepletion of Gab2 and PY105 from the residual supernatants. We also found that the PI3-kinase activity associated with Gab2 was totally abolished by dominant negative p85. Thus, Gab2 appears to be the principal EGF-induced PY protein recruiting and activating PI3-kinase and mitogenesis.
Collapse
Affiliation(s)
- M Kong
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
167
|
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 2000; 20:8513-25. [PMID: 11046147 PMCID: PMC102157 DOI: 10.1128/mcb.20.22.8513-8525.2000] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.
Collapse
Affiliation(s)
- C R Maroun
- Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | |
Collapse
|
168
|
Pratt JC, Igras VE, Maeda H, Baksh S, Gelfand EW, Burakoff SJ, Neel BG, Gu H. Cutting edge: gab2 mediates an inhibitory phosphatidylinositol 3'-kinase pathway in T cell antigen receptor signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4158-63. [PMID: 11035047 DOI: 10.4049/jimmunol.165.8.4158] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol 3'-kinase (PI3K) is a key component of multiple signaling pathways, where it typically promotes survival, proliferation, and/or adhesion. Here, we show that in TCR signaling, the scaffolding adapter Gab2 delivers an inhibitory signal via PI3K. Overexpression of Gab2 in T cell lines inhibits TCR-evoked activation of the IL-2 promoter, blocking NF-AT- and NF-kappaB-directed transcription. Inhibition is abrogated by mutating the Gab2 p85-binding sites, by treatment with PI3K inhibitors or by cotransfection of phosphatase homolog of tensin. Our findings provide the first evidence of a negative function for a scaffolding adapter in T cells and identify Gab2/PI3K-containing complexes as novel regulators of TCR signaling.
Collapse
Affiliation(s)
- J C Pratt
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun 2000; 277:195-9. [PMID: 11027663 DOI: 10.1006/bbrc.2000.3662] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor tyrosine kinase Flt3 has been shown to play an important role in proliferation, differentiation, and survival of hematopoietic stem and progenitor cells. Although some postreceptor signaling events of Flt3 have been characterized, the involvement of Gab family proteins in Flt3 signaling is not known. In this study, we show that both Gab1 and Gab2 are rapidly tyrosine phosphorylated after Flt3 ligand stimulation of Flt3 ligand-responsive cells. They interact with tyrosine-phosphorylated Shp-2, p85, Grb2, and Shc. The results suggest that Gab proteins are engaged in Flt3 signaling to mediate downstream activation of Shp-2 and PI3 kinase pathways and possibly the Ras/Raf/MAPK pathway.
Collapse
Affiliation(s)
- S Zhang
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
170
|
Lock LS, Royal I, Naujokas MA, Park M. Identification of an atypical Grb2 carboxyl-terminal SH3 domain binding site in Gab docking proteins reveals Grb2-dependent and -independent recruitment of Gab1 to receptor tyrosine kinases. J Biol Chem 2000; 275:31536-45. [PMID: 10913131 DOI: 10.1074/jbc.m003597200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.
Collapse
Affiliation(s)
- L S Lock
- Departments of Biochemistry, Medicine, and Oncology, Molecular Oncology Group, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | | | |
Collapse
|
171
|
Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, Neel BG. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol 2000; 20:7109-20. [PMID: 10982827 PMCID: PMC86258 DOI: 10.1128/mcb.20.19.7109-7120.2000] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.
Collapse
Affiliation(s)
- H Gu
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
172
|
Gadina M, Sudarshan C, Visconti R, Zhou YJ, Gu H, Neel BG, O'Shea JJ. The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common γ Chain-using Cytokines. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61466-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
173
|
Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol 2000; 20:6779-98. [PMID: 10958675 PMCID: PMC86204 DOI: 10.1128/mcb.20.18.6779-6798.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 06/13/2000] [Indexed: 11/20/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.
Collapse
Affiliation(s)
- A W Lee
- Departments of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
174
|
Garcia-Guzman M, Larsen E, Vuori K. The proto-oncogene c-Cbl is a positive regulator of Met-induced MAP kinase activation: a role for the adaptor protein Crk. Oncogene 2000; 19:4058-65. [PMID: 10962563 DOI: 10.1038/sj.onc.1203750] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocyte growth factor triggers a complex biological program leading to invasive cell growth by activating the c-Met receptor tyrosine kinase. Following activation, Met signaling is elicited via its interactions with SH2-containing proteins, or via the phosphorylation of the docking protein Gab1, and the subsequent interaction of Gab1 with additional SH2-containing effector molecules. We have previously shown that the interaction between phosphorylated Gab1 and the adaptor protein Crk mediates activation of the JNK pathway downstream of Met. We report here that c-Cbl, which is a Gab1-like docking protein, also becomes tyrosine-phosphorylated in response to Met activation and serves as a docking molecule for various SH2-containing molecules, including Crk. We further show that Cbl is similarly capable of enhancing Met-induced JNK activation, and several lines of experimentation suggests that it does so by interacting with Crk. We also show that both Cbl and Gab1 enhance Met-induced activation of another MAP kinase cascade, the ERK pathway, in a Crk-independent manner. Taken together, our studies demonstrate a previously unidentified functional role for Cbl in Met signaling and suggest that Met utilizes at least two docking proteins, Gab1 and Cbl, to activate downstream signaling pathways. Oncogene (2000) 19, 4058 - 4065.
Collapse
Affiliation(s)
- M Garcia-Guzman
- Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | |
Collapse
|
175
|
van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST. The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv Cancer Res 2000; 79:39-90. [PMID: 10818677 DOI: 10.1016/s0065-230x(00)79002-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article summarizes the structure, signal transduction and physiologic functions of the HGF/Met pathway, as well as its role in tumor growth, invasion, and metastasis. Moreover, it highlights recent studies indicating a role for the HGF/Met pathway in antigen-specific B-cell development and B-cell neoplasia.
Collapse
Affiliation(s)
- R van der Voort
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
176
|
Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 2000; 149:1419-32. [PMID: 10871282 PMCID: PMC2175135 DOI: 10.1083/jcb.149.7.1419] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gab1 is a substrate of the receptor tyrosine kinase c-Met and involved in c-Met-specific branching morphogenesis. It associates directly with c-Met via the c-Met-binding domain, which is not related to known phosphotyrosine-binding domains. In addition, Gab1 is engaged in a constitutive complex with the adaptor protein Grb2. We have now mapped the c-Met and Grb2 interaction sites using reverse yeast two-hybrid technology. The c-Met-binding site is localized to a 13-amino acid region unique to Gab1. Insertion of this site into the Gab1-related protein p97/Gab2 was sufficient to confer c-Met-binding activity. Association with Grb2 was mapped to two sites: a classical SH3-binding site (PXXP) and a novel Grb2 SH3 consensus-binding motif (PX(V/I)(D/N)RXXKP). To detect phosphorylation-dependent interactions of Gab1 with downstream substrates, we developed a modified yeast two-hybrid assay and identified PI(3)K, Shc, Shp2, and CRKL as interaction partners of Gab1. In a trk-met-Gab1-specific branching morphogenesis assay, association of Gab1 with Shp2, but not PI(3)K, CRKL, or Shc was essential to induce a biological response in MDCK cells. Overexpression of a Gab1 mutant deficient in Shp2 interaction could also block HGF/SF-induced activation of the MAPK pathway, suggesting that Shp2 is critical for c-Met/Gab1-specific signaling.
Collapse
Affiliation(s)
- U Schaeper
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
177
|
Tamir I, Dal Porto JM, Cambier JC. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 2000; 12:307-15. [PMID: 10781410 DOI: 10.1016/s0952-7915(00)00092-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One of the areas of greatest recent progress in immunology has been the elucidation of inhibitory receptors and their mode of signal transduction. A common feature of members of this growing family is expression of a conserved cytoplasmic sequence motif, the immunoreceptor tyrosine-based inhibitory motif, which functions to recruit and activate phosphatases that mediate the receptors' function. Family members include the protein tyrosine phosphatases SHP-1 (Src-homology-2-domain-containing protein tyrosine phosphatase 1) and SHP-2, which function to dephosphorylate key intermediaries in antigen receptor signaling pathways. Surprisingly, whereas most data to date support a role for SHP-1 in inhibitory signaling, SHP-2 exhibits distinct functions that appear to positively regulate receptor function.
Collapse
Affiliation(s)
- I Tamir
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
178
|
Abstract
The current understanding of kit signaling is that a limited number of signaling proteins interact to build multiple interacting networks that allow diverse cellular responses. Cytoplasmic signaling proteins are increasingly seen to form networks directed through converging and interacting pathways rather than following a simple linear model. There are also numerous cross-connections between signaling proteins more distal to the receptor. Ras thus binds PI3 kinase and potentiates its activation, whereas the Rac-dependent protein kinase PAK phosphorylates MEK and thereby stabilizes its association with Raf. A signaling network with multiple intersecting pathways can obtain a single, coherent response from numerous, potentially conflicting signals. There is still limited information about the effect of activating mutations on various aspects of kit signaling. There is, however, mounting evidence that an activating mutation may enhance kit signaling and also induce factor-independent activation of kit. For instance, this activation could occur through degradation of SHP-1, the protein tyrosine phosphatase that negatively regulates kit signaling. There is also emerging evidence that inherent inhibitory factors may exist in the juxtamembrane of kit and may be suppressed as a result of a mutation in that region. Understanding the impact of these activating mutations on kit signaling is important, not only in contributing to the understanding of the pathogenesis of mastocytosis but ultimately in forming the basis for more effective therapeutic intervention in this disease.
Collapse
Affiliation(s)
- M L Taylor
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
179
|
Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 2000; 19:2548-56. [PMID: 10851053 DOI: 10.1038/sj.onc.1203551] [Citation(s) in RCA: 931] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias. Oncogene (2000).
Collapse
Affiliation(s)
- T Hirano
- Division of Molecular Oncology C-7, Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamada-oko, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
180
|
Cunnick JM, Dorsey JF, Munoz-Antonia T, Mei L, Wu J. Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor. J Biol Chem 2000; 275:13842-8. [PMID: 10788507 DOI: 10.1074/jbc.275.18.13842] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.
Collapse
Affiliation(s)
- J M Cunnick
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
181
|
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 2000; 20:3695-704. [PMID: 10779359 PMCID: PMC85666 DOI: 10.1128/mcb.20.10.3695-3704.2000] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation.
Collapse
Affiliation(s)
- M Itoh
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Nishigaki K, Hanson C, Ohashi T, Thompson D, Muszynski K, Ruscetti S. Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: involvement of insulin receptor substrate-related adapter proteins. J Virol 2000; 74:3037-45. [PMID: 10708418 PMCID: PMC111802 DOI: 10.1128/jvi.74.7.3037-3045.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1999] [Accepted: 01/04/2000] [Indexed: 11/20/2022] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an effort to understand how SFFV causes Epo independence, we have been examining erythroid cells rendered factor independent by SFFV infection for constitutive activation of signal-transducing molecules. Previous studies from our laboratory showed that various signal-transducing molecules known to be activated by Epo, including Stat proteins and components of the Raf-1/MAP kinase pathway, are constitutively activated in SFFV-infected erythroid cells in the absence of Epo. Since another signal transduction pathway involving activation of phosphatidylinositol 3-kinase (PI 3-kinase) after Epo stimulation plays an important role in erythroid cell proliferation and differentiation, we carried out studies to determine if this pathway was also activated in SFFV-infected cells in the absence of Epo. Our studies show that PI 3-kinase is constitutively activated in erythroid cells rendered factor independent by infection with SFFV and that PI 3-kinase activity, but not Epo receptor tyrosine phosphorylation, is required for the proliferation of these cells in the absence of Epo. We further show that in SFFV-infected erythroid cells grown in the absence of Epo, PI 3-kinase associates with the insulin receptor substrate (IRS)-related adapter molecules IRS-2, Gab1, and Gab2, which are constitutively tyrosine phosphorylated in SFFV-infected cells. Finally, Akt, a protein kinase that is one of the downstream effectors of PI 3-kinase, and SHIP, a lipid phosphatase that is important for Akt activation through PI 3-kinase, are both tyrosine phosphorylated in SFFV-infected cells grown in the absence of Epo. Our results indicate that induction of Epo independence by SFFV requires the activation of PI 3-kinase and suggest that constitutive activation of this kinase in SFFV-infected cells may occur primarily through interaction of PI 3-kinase with constitutively phosphorylated IRS-related adapter molecules.
Collapse
Affiliation(s)
- K Nishigaki
- Basic Research Laboratory, Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
183
|
Hibi M, Hirano T. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk Lymphoma 2000; 37:299-307. [PMID: 10752981 DOI: 10.3109/10428190009089430] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.
Collapse
Affiliation(s)
- M Hibi
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
184
|
Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene 2000; 19:1509-18. [PMID: 10734310 DOI: 10.1038/sj.onc.1203514] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A distinctive property of Hepatocyte Growth Factor (HGF) is its ability to induce differentiation of tubular structures from epithelial and endothelial cells (branching tubulogenesis). The HGF receptor directly activates PI3 kinase, Ras and STAT signalling pathways and phosphorylates the adaptator GRB2 Associated Binder-1 (Gab1). Gab1 is also phosphorylated in response to Epidermal Growth Factor (EGF) but is unable to induce tubule formation. Comparison of 32P-peptide maps of Gab1 from EGF- versus HGF-treated cells, demonstrates that the same sites are phosphorylated in vivo. However, while both EGF and HGF induce rapid tyrosine phosphorylation of Gab1 with a peak at 15 min, the phosphorylation persists for over 1 h, only in response to HGF. Nine tyrosines are phosphorylated by both receptors. Three of them (Y307, Y373, Y407) bind phospholipase C-gamma (PLC-gamma). Interestingly, the overexpression of a Gab1 mutant unable to bind PLC-gamma (Gab1 Y307/373/407F) did not alter HGF-stimulated cell scattering, only partially reduced the growth stimulation but completely abolished HGF-mediated tubulogenesis. It is concluded that sustained recruitment of PLCgamma to Gab1 plays an important role in branching tubulogenesis.
Collapse
Affiliation(s)
- P Gual
- Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Str. Prov. 142, Km 3.95, 10060 Candiolo, Italy
| | | | | | | | | | | |
Collapse
|
185
|
Bone H, Welham MJ. Shc associates with the IL-3 receptor beta subunit, SHIP and Gab2 following IL-3 stimulation. Contribution of Shc PTB and SH2 domains. Cell Signal 2000; 12:183-94. [PMID: 10704825 DOI: 10.1016/s0898-6568(99)00088-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
p46(Shc) and p52(Shc) become heavily tyrosine phosphorylated in response to interleukin 3 (IL-3) treatment. We have investigated the potential of Shc to integrate IL-3 signalling pathways and demonstrate that Shc associates with the beta subunits of the human (betac) and murine (Aic2A) IL-3 receptors, SHIP and Gab2 following IL-3 stimulation. The interaction between Shc and the IL-3 receptor beta chains was direct, mediated by both the SH2 and PTB domains. Interaction with SHIP was via the Shc PTB domain and the Shc SH2 domain mediated the interaction with Gab2. Phosphopeptide competition studies suggest that the SH2 domain interacts primarily with tyrosine 612 of betac (610 of Aic2A), and the PTB domain with tyrosine 577 of betac (575 of Aic2A). PTB binding to IL-3R beta chains was of highest affinity, and appeared to play the primary role in binding. These findings suggest that Shc may play an important role in coordinately integrating IL-3 signalling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Humans
- Interleukin-3/pharmacology
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Proteins/metabolism
- Receptors, Interleukin-3/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction/drug effects
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tyrosine/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- H Bone
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK
| | | |
Collapse
|
186
|
Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 2000; 20:1526-36. [PMID: 10669730 PMCID: PMC85329 DOI: 10.1128/mcb.20.5.1526-1536.2000] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Z Q Shi
- Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | |
Collapse
|
187
|
Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins. Genes Dev 2000. [DOI: 10.1101/gad.14.5.505] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
188
|
Korhonen JM, Saïd FA, Wong AJ, Kaplan DR. Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells. J Biol Chem 1999; 274:37307-14. [PMID: 10601297 DOI: 10.1074/jbc.274.52.37307] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.
Collapse
Affiliation(s)
- J M Korhonen
- Montreal Neurological Institute, Brain Tumor Research Centre, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
189
|
Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999; 11:709-19. [PMID: 10626893 DOI: 10.1016/s1074-7613(00)80145-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of STAT3 by the cytokine receptor gp130 is required for both the G1 to S cell cycle transition and antiapoptosis. We found that Pim-1 and Pim-2 are targets for the gp130-mediated STAT3 signal. Expression of a kinase-defective Pim-1 mutant attenuated gp130-mediated cell proliferation. Constitutive expression of Pim-1 together with c-myc, another STAT3 target, fully compensated for loss of the STAT3-mediated cell cycle progression, antiapoptosis, and bcl-2 expression. We also identified valosine-containing protein (VCP) as a target gene for the Pim-1-mediated signal. Expression of a mutant VCP led cells to undergo apoptosis. These results indicate that Pim-family proteins play crucial roles in gp130-mediated cell proliferation and explain the synergy between Pim and c-Myc proteins in cell proliferation and lymphomagenesis.
Collapse
Affiliation(s)
- T Shirogane
- Division of Molecular Oncology, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Abstract
Shp-2, a widely expressed cytoplasmic tyrosine phosphatase with two src-homology 2 (SH2) domains, has received much attention in the signal transduction field recently. Significant progress has been made in understanding the structure and function of this phosphatase, together with its Drosophila homologue, Corkscrew, as well as the close relative Shp-1 tyrosine phosphatase. The crystal structure of Shp-2 revealed an autoinhibitory mechanism of the catalytic activity by the N-terminal SH2 domain. Shp-2 apparently participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrixes in the control of cell growth, differentiation, migration, and death. Shp-2 is an important molecule that integrates signals among various cytoplasmic pathways and may also couple intracellular and intercellular information flow.
Collapse
Affiliation(s)
- G S Feng
- Department of Biochemistry, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana, 46202-5254, USA.
| |
Collapse
|
191
|
Sinha S, Corey SJ. Implications for Src kinases in hematopoiesis: signal transduction therapeutics. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:465-80. [PMID: 10791898 DOI: 10.1089/152581699319920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signal transduction therapeutics is now the dominant theme of drug discovery, and its most immediate impact will be in cancer therapeutics. Blood cell proliferation, differentiation, and activation are controlled by cytokines, whose receptors contain tyrosine kinase catalytic domains or recruit cytosolic tyrosine kinases. Among the most important cytosolic protein tyrosine kinases are the Src and Jak families. Receptor or cytosolic protein tyrosine kinases activate a similar set of intracellular signaling molecules. In blood cells, excessive tyrosine kinase activity is associated with either cancer or autoreactive diseases. Therefore, tyrosine kinases and their substrates serve as excellent candidates for drug intervention. Herceptin has been approved for use in breast cancer. Other agents, such as SU101 and CGP 57418B, are well into phase I-III trials. Newer, more selective tyrosine kinase inhibitors are being evaluated for future use in the treatment of hematologic and solid tumors as well as a wide range of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- S Sinha
- Department of Pediatrics (Hematology-Oncology), Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA 15213, USA
| | | |
Collapse
|
192
|
Wickrema A, Uddin S, Sharma A, Chen F, Alsayed Y, Ahmad S, Sawyer ST, Krystal G, Yi T, Nishada K, Hibi M, Hirano T, Platanias LC. Engagement of Gab1 and Gab2 in erythropoietin signaling. J Biol Chem 1999; 274:24469-24474. [PMID: 10455108 DOI: 10.1074/jbc.274.35.24469] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.
Collapse
Affiliation(s)
- A Wickrema
- Section of Hematology-Oncology, University of Illinois at Chicago and West Side Veterans Affairs Medical Center, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Fukada T, Yoshida Y, Nishida K, Ohtani T, Shirogane T, Hibi M, Hirano T. Signaling through Gp130: toward a general scenario of cytokine action. Growth Factors 1999; 17:81-91. [PMID: 10595309 DOI: 10.3109/08977199909103518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytokines play roles in a wide range of responses such as immune response, hematopoiesis and inflammation. A large volume of studies revealed that cytokines show functional pleiotropy and redundancy. Gp130 is a receptor subunit shared by the interleukin-6 family of cytokines. We describe and discuss signaling through gp130 in relation to a general scenario for cytokine signaling regulating cell growth, differentiation and survival.
Collapse
Affiliation(s)
- T Fukada
- Division of Molecular Oncology (C7), Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
194
|
|