151
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
152
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
153
|
Sun CC, Li L, jiang ZC, Liu ZC, Wang L, Wang HJ. The Functional Role of LncRNA UCA1 in Pancreatic Cancer: a mini-review. J Cancer 2023; 14:275-280. [PMID: 36741256 PMCID: PMC9891880 DOI: 10.7150/jca.79171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer (PaC) is a common malignant tumor of the digestive tract, with a 5-year survival rate of less than 5% and high mortality rate in the world. LncRNAs have been showed to possess multiple biological functions in growth, differentiation, and proliferation, which play an important role in different biological processes and diseases, especially in the development of tumors. LncRNA UCA1, which is firstly identified in human bladder cancer, has been showed to be a tumor promoter in pancreatic cancer. Recent researches have showed that UCA1 might promote pancreatic carcinogenesis and progression, and correlate with drug resistance. In this review, we address the biological function and regulatory mechanism of UCA1 in pancreatic cancer, which might give a new approach for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Cen-Cen Sun
- Basic Medical Experimental Teaching Center, Zhejiang University, Hangzhou 310030, Zhejiang, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Zhi-Chen jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Zheng-Chuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Liang Wang
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstruction Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,✉ Corresponding authors: Hui-Ju Wang, E-mail: ; Liang Wang, E-mail:
| | - Hui-Ju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,✉ Corresponding authors: Hui-Ju Wang, E-mail: ; Liang Wang, E-mail:
| |
Collapse
|
154
|
Lauria G, Curcio R, Lunetti P, Tiziani S, Coppola V, Dolce V, Fiermonte G, Ahmed A. Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:411. [PMID: 36672360 PMCID: PMC9857038 DOI: 10.3390/cancers15020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.
Collapse
Affiliation(s)
- Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Lunetti
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
155
|
Han T, Wu Z, Zhang Z, Liang J, Xia C, Yan H. Comprehensive analysis of hypoxia-related genes for prognosis value, immune status, and therapy in osteosarcoma patients. Front Pharmacol 2023; 13:1088732. [PMID: 36686667 PMCID: PMC9853159 DOI: 10.3389/fphar.2022.1088732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma is a common malignant bone tumor in children and adolescents. The overall survival of osteosarcoma patients is remarkably poor. Herein, we sought to establish a reliable risk prognostic model to predict the prognosis of osteosarcoma patients. Patients ' RNA expression and corresponding clinical data were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus databases. A consensus clustering was conducted to uncover novel molecular subgroups based on 200 hypoxia-linked genes. A hypoxia-risk models were established by Cox regression analysis coupled with LASSO regression. Functional enrichment analysis, including Gene Ontology annotation and KEGG pathway analysis, were conducted to determine the associated mechanisms. Moreover, we explored relationships between the risk scores and age, gender, tumor microenvironment, and drug sensitivity by correlation analysis. We identified two molecular subgroups with significantly different survival rates and developed a risk model based on 12 genes. Survival analysis indicated that the high-risk osteosarcoma patients likely have a poor prognosis. The area under the curve (AUC) value showed the validity of our risk scoring model, and the nomogram indicates the model's reliability. High-risk patients had lower Tfh cell infiltration and a lower stromal score. We determined the abnormal expression of three prognostic genes in osteosarcoma cells. Sunitinib can promote osteosarcoma cell apoptosis with down-regulation of KCNJ3 expression. In summary, the constructed hypoxia-related risk score model can assist clinicians during clinical practice for osteosarcoma prognosis management. Immune and drug sensitivity analysis can provide essential insights into subsequent mechanisms. KCNJ3 may be a valuable prognostic marker for osteosarcoma development.
Collapse
Affiliation(s)
- Tao Han
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhouwei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Jinghao Liang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Chuanpeng Xia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Hede Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China,*Correspondence: Hede Yan,
| |
Collapse
|
156
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
157
|
Cai W, Zhu Y, Teng Z, Li D, Feng Q, Jiang Z, Cong R, Chen Z, Liu S, Zhao X, Ma X. Combined CT and serum CA19-9 for stratifying risk for progression in patients with locally advanced pancreatic cancer receiving intraoperative radiotherapy. Front Oncol 2023; 13:1155555. [PMID: 37124483 PMCID: PMC10140514 DOI: 10.3389/fonc.2023.1155555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose The aim of this study was to evaluate the significance of baseline computed tomography (CT) imaging features and carbohydrate antigen 19-9 (CA19-9) in predicting prognosis of locally advanced pancreatic cancer (LAPC) receiving intraoperative radiotherapy (IORT) and to establish a progression risk nomogram that helps to identify the potential beneficiary of IORT. Methods A total of 88 LAPC patients with IORT as their initial treatment were enrolled retrospectively. Clinical data and CT imaging features were analyzed. Cox regression analyses were performed to identify the independent risk factors for progression-free survival (PFS) and to establish a nomogram. A risk-score was calculated by the coefficients of the regression model to stratify the risk of progression. Results Multivariate analyses revealed that relative enhanced value in portal-venous phase (REV-PVP), peripancreatic fat infiltration, necrosis, and CA19-9 were significantly associated with PFS (all p < 0.05). The nomogram was constructed according to the above variables and showed a good performance in predicting the risk of progression with a concordance index (C-index) of 0.779. Our nomogram stratified patients with LAPC into low- and high-risk groups with distinct differences in progression after IORT (p < 0.001). Conclusion The integrated nomogram would help clinicians to identify appropriate patients who might benefit from IORT before treatment and to adapt an individualized treatment strategy.
Collapse
Affiliation(s)
- Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze Teng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinfu Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhichao Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Cong
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaowei Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyun Liu
- Magnetic Resonance Imaging Research, General Electric Healthcare (China), Beijing, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaohong Ma,
| |
Collapse
|
158
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
159
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
160
|
Tomohara K, Maneenet J, Ohashi N, Nose T, Fujii R, Kim MJ, Sun S, Awale S. Ugi Adducts as Novel Anti-austerity Agents against PANC-1 Human Pancreatic Cancer Cell Line: A Rapid Synthetic Approach. Biol Pharm Bull 2023; 46:1412-1420. [PMID: 37779042 DOI: 10.1248/bpb.b23-00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure-activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC50 value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC50 value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer.
Collapse
Affiliation(s)
| | - Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Nao Ohashi
- Graduate School of Science, Kyushu University
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University
- Graduate School of Science, Kyushu University
| | - Rintaro Fujii
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
161
|
Smith PJ, McKeown SR, Patterson LH. Targeting DNA topoisomerase IIα (TOP2A) in the hypoxic tumour microenvironment using unidirectional hypoxia-activated prodrugs (uHAPs). IUBMB Life 2023; 75:40-54. [PMID: 35499745 PMCID: PMC10084299 DOI: 10.1002/iub.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022]
Abstract
The hypoxic tumour microenvironment (hTME), arising from inadequate and chaotic vascularity, can present a major obstacle for the treatment of solid tumours. Hypoxic tumour cells compromise responses to treatment since they can generate resistance to radiotherapy, chemotherapy and immunotherapy. The hTME impairs the delivery of a range of anti-cancer drugs, creates routes for metastasis and exerts selection pressures for aggressive phenotypes; these changes potentially occur within an immunosuppressed environment. Therapeutic strategies aimed at the hTME include targeting the molecular changes associated with hypoxia. An alternative approach is to exploit the prevailing lack of oxygen as a principle for the selective activation of prodrugs to target cellular components within the hTME. This review focuses on the design concepts and rationale for the use of unidirectional Hypoxia-Activated Prodrugs (uHAPs) to target the hTME as exemplified by the uHAPs AQ4N and OCT1002. These agents undergo irreversible reduction in a hypoxic environment to active forms that target DNA topoisomerase IIα (TOP2A). This nuclear enzyme is essential for cell division and is a recognised chemotherapeutic target. An activated uHAP interacts with the enzyme-DNA complex to induce DNA damage, cell cycle arrest and tumour cell death. uHAPs are designed to overcome the shortcomings of conventional HAPs and offer unique pharmacodynamic properties for effective targeting of TOP2A in the hTME. uHAP therapy in combination with standard of care treatments has the potential to enhance outcomes by co-addressing the therapeutic challenge presented by the hTME.
Collapse
Affiliation(s)
- Paul J Smith
- Cancer and Genetics Division, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
162
|
The combination of in situ photodynamic promotion and ion-interference to improve the efficacy of cancer therapy. J Colloid Interface Sci 2023; 629:522-533. [PMID: 36088697 DOI: 10.1016/j.jcis.2022.08.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Photodynamic therapy (PDT) is proved to be a promising modality for clinical cancer treatment. However, it also suffers from a key obstacle in association with its oxygen-dependent nature which greatly limits its effective application against hypoxic tumors. Herein, on the basis of the unique property of calcium peroxide (CaO2), we propose an O2-self-supply strategy for the promotion of PDT by combining the in situ O2-generation characteristic of calcium peroxide with the photosensitive nature of porphyrin. A shell of ZIF-8 was synthesized surround the CaO2 core to prevent the CaO2 from premature decomposition and increased the loading of THPP efficiently. Depending on the in situ self-supply of O2, the photosensitizer was able to exhibit an enhanced PDT effect that significantly inhibit the growth of tumor. Moreover, the enrichment of free calcium ions derived from the decomposition of CaO2 under acidic tumor microenvironment also shows the unique ion-interference effect and contributes to the obvious inhibition against tumor growth. This work presents a synergistic strategy for the construction of a photodynamic promotion/ion-interference combined nano-platform which can also serve as an inspiration for the future design of effective nanocomposites in tumor treatment.
Collapse
|
163
|
Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022; 20:586. [PMID: 36510315 PMCID: PMC9743606 DOI: 10.1186/s12967-022-03813-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant immune cells, which act as a key regulator in tumorigenesis and progression. Increasing evidence have demonstrated that the TME alters the nature of macrophages to maintain dynamic tissue homeostasis, allowing TAMs to acquire the ability to stimulate angiogenesis, promote tumor metastasis and recurrence, and suppress anti-tumor immune responses. Furthermore, tumors with high TAM infiltration have poor prognoses and are resistant to treatment. In the field of solid tumor, the exploration of tumor-promoting mechanisms of TAMs has attracted much attention and targeting TAMs has emerged as a promising immunotherapeutic strategy. Currently, the most common therapeutic options for targeting TAMs are as follows: the deletion of TAMs, the inhibition of TAMs recruitment, the release of phagocytosis by TAMs, and the reprogramming of macrophages to remodel their anti-tumor capacity. Promisingly, the study of chimeric antigen receptor macrophages (CAR-Ms) may provide even greater benefit for patients with solid tumors. In this review, we discuss how TAMs promote the progression of solid tumors as well as summarize emerging immunotherapeutic strategies that targeting macrophages.
Collapse
Affiliation(s)
- Mengmeng Liu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052 China
| | - Lina Liu
- grid.414008.90000 0004 1799 4638Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Yongping Song
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Linping Xu
- grid.414008.90000 0004 1799 4638Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
164
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
165
|
Jiang Y, Han L, Xue M, Wang T, Zhu Y, Xiong C, Shi M, Li H, Hai W, Huo Y, Shen B, Jiang L, Chen H. Cystatin B increases autophagic flux by sustaining proteolytic activity of cathepsin B and fuels glycolysis in pancreatic cancer: CSTB orchestrates autophagy and glycolysis in PDAC. Clin Transl Med 2022; 12:e1126. [PMID: 36495123 PMCID: PMC9736795 DOI: 10.1002/ctm2.1126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Both autophagy and glycolysis are essential for pancreatic ductal adenocarcinoma (PDAC) survival due to desmoplasia. We investigated whether targeting a hub gene which participates in both processes could be an efficient strategy for PDAC treatment. METHODS The expression pattern of glycolysis signatures (GS) and autophagy signatures (AS) and their correlation with cystatin B (CSTB) in PDAC were analysed. It was discovered how CSTB affected the growth, glycolysis, and autophagy of PDAC cells. We assessed competitive binding to cathepsin B (CTSB) between CSTB and cystatin C (CSTC) via immunoprecipitation (IP) and immunofluorescence (IF). Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays were used to unveil the mechanism underlying CSTB upregulation. The expression pattern of CSTB was examined in clinical samples and KrasG12D/+, Trp53R172H/+, Pdx1-Cre (KPC) mice. RESULTS GS and AS were enriched and closely associated in PDAC tissues. CSTB increased autophagic flux and provided substrates for glycolysis. CSTB knockdown attenuated the proliferation of PDAC cells and patient-derived xenografts. The liquid chromatography-tandem mass spectrometry assay indicated CSTB interacted with CTSB and contributed to the proteolytic activity of CTSB in lysosomes. IF and IP assays demonstrated that CSTB competed with CSTC to bind to CTSB. Mutation of the key sites of CSTB abolished the interaction between CSTB and CTSB. CSTB was highly expressed in PDAC due to H3K27acetylation and SP1 expression. High expression of CSTB in PDAC was observed in tissue microarray and patients' serum samples. CONCLUSIONS Our work demonstrated the tumorigenic roles of autophagy and glycolysis in PDAC. CSTB is a key role in orchestrating these processes to ensure energy supply of PDAC cells.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijie Han
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meilin Xue
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Wang
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Xiong
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Minmin Shi
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongzhe Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wangxi Hai
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanmiao Huo
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lingxi Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
166
|
Sarwar A, Zhu M, Su Q, Zhu Z, Yang T, Chen Y, Peng X, Zhang Y. Targeting mitochondrial dysfunctions in pancreatic cancer evokes new therapeutic opportunities. Crit Rev Oncol Hematol 2022; 180:103858. [DOI: 10.1016/j.critrevonc.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
167
|
Liu Y, Wei J, Wang C, Meng Z, Luo D, Zhao X, Hou R. MicroRNA-543 controls pancreatic cancer development by LINC00847-microRNA-543-STK31 axis. J Gastrointest Oncol 2022; 13:3263-3277. [PMID: 36636045 PMCID: PMC9830362 DOI: 10.21037/jgo-22-1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most malignant cancers of the gastrointestinal tract. However, the study of targeted therapy research in PC is not very thorough. Therefore, targeted molecular markers are needed to aid in the diagnosis and treatment of PC. Methods In our research, we investigated the biological functions and molecular mechanism of microRNA-543 in PC. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to analyze the transcription and protein expression of microRNA-543, Serine/threonine kinase 31 (STK31), and LINC00847 in BxPC-3 and PANC-1 cells. Subsequently, Cell Counting Kit-8 (CCK-8), Transwell, colony formation, and flow cytometry (FCM) assays were utilized to evaluate cell growth, migration, invasion, and apoptosis. WB and fluorescence in-situ hybridization (FISH) were used to evaluate the epithelial-mesenchymal transition (EMT) process and subcellular localization. RNA immunoprecipitation (RIP), double luciferase reporter, and RNA-pull down assays were performed to determine the targeting relationship between microRNA-543 and STK31 or microRNA-543 and LINC00847. Results While microRNA-543 expression was discovered to be low in PC, LINC00847 and STK31 were overexpressed at significant levels. MicroRNA-543 knockdown dramatically increased PC cell growth, invasion, metastasis, and EMT, as well as decreased apoptosis in functional studies. Furthermore, microRNA-543 and STK31 were found to be mutual targets. LINC00847 acted as a molecular sponge for microRNA-543 and a competitive endogenous RNA (ceRNA) for STK31, thereby increasing STK-31 transcription. Conclusions Our results suggest that microRNA-543, through the LINC00847/microRNA-543/STK31 axis, plays a role in the development of PC as a tumor suppressor. As a result, microRNA-543 may prove to be an effective diagnostic and therapeutic target for PC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastrointestinal and Colonretal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Wei
- Department of Clinical Research, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zihui Meng
- Department of Hepatic Biliary Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, China
| | - Xiaoling Zhao
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, China
| | - Ruizhi Hou
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
168
|
Laser Capture Microdissection: A Gear for Pancreatic Cancer Research. Int J Mol Sci 2022; 23:ijms232314566. [PMID: 36498893 PMCID: PMC9741023 DOI: 10.3390/ijms232314566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
The advancement in molecular techniques has been attributed to the quality and significance of cancer research. Pancreatic cancer (PC) is one of the rare cancers with aggressive behavior and a high mortality rate. The asymptomatic nature of the disease until its advanced stage has resulted in late diagnosis as well as poor prognosis. The heterogeneous character of PC has complicated cancer development and progression studies. The analysis of bulk tissues of the disease was insufficient to understand the disease, hence, the introduction of the single-cell separating technique aided researchers to decipher more about the specific cell population of tumors. This review gives an overview of the Laser Capture Microdissection (LCM) technique, one of the single-cell separation methods used in PC research.
Collapse
|
169
|
Xu R, Qi L, Ren X, Zhang W, Li C, Liu Z, Tu C, Li Z. Integrated Analysis of TME and Hypoxia Identifies a Classifier to Predict Prognosis and Therapeutic Biomarkers in Soft Tissue Sarcomas. Cancers (Basel) 2022; 14:cancers14225675. [PMID: 36428766 PMCID: PMC9688460 DOI: 10.3390/cancers14225675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Soft tissue sarcoma (STS) is one of the rarest but most aggressive cancer. It is important to note that intratumoral hypoxia and tumor microenvironment (TME) infiltration play a significant role in the growth and therapeutic resistance of STS. The goal of this study was therefore to determine whether linking hypoxia-related parameters to TME cells could provide a more accurate prediction of prognosis and therapeutic response. An analysis of 109 hypoxia-related genes and 64 TME cells was conducted in STS. Hypoxia-TME classifier was constructed based on 6 hypoxia prognostic genes and 8 TME cells. As a result, we evaluated the prognosis, tumor, and immune characteristics, as well as the effectiveness of therapies in Hypoxia-TME-defined subgroups. The Lowplus group showed a better prognosis and therapeutic response than any other subgroup. It is possible to unravel these differences based on immune-related molecules and somatic mutations in tumors. Further validation of Hypoxia-TME was done in an additional cohort of 225 STS patients. Additionally, we identified five key genes through differential analysis and RT-qPCR, namely, ACSM5, WNT7B, CA9, MMP13, and RAC3, which could be targeted for therapy. As a whole, the Hypoxia-TME classifier demonstrated a pretreatment predictive value for prognosis and therapeutic outcome, providing new approaches to therapy strategizing for patients.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chenbei Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410010, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha 410010, China
- Correspondence:
| |
Collapse
|
170
|
Cao G, Chang Y, Yang G, Jiang Y, Han K. A novel risk score model based on four angiogenesis long non-coding RNAs for prognosis evaluation of pancreatic adenocarcinoma. Aging (Albany NY) 2022; 14:9090-9102. [PMID: 36384673 PMCID: PMC9740371 DOI: 10.18632/aging.204387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumour angiogenesis which prominently facilitates pancreatic adenocarcinoma (PAAD) progression. METHODS The clinical PAAD data were obtained from TCGA database and clinical specimens of 122 PAAD patients. The Molecular Signatures Database v4.0 was used to identify angiogenesis-related long non-coding RNAs (ARLNRs). Survival-related ARLNRs (sARLNRs) were further validated by univariate and multivariate COX regression analyses. The expressions of CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in PAAD cell lines and tissues were examined by qPCR. The correlations between sARLNRs (CASC8 and AC015660.1) and clinicopathological characteristics of the 122 PAAD patients were analyzed by the chi-square test and Fisher's exact probability method. RESULTS 590 lncRNAs were identified as ARLNRs, of which four sARLNRs were further used to establish an angiogenesis-related risk score model (ARRS), by which patients in the low-risk group have better survival probabilities than those in the high-risk group. The expression levels of CASC8 and AC015660.1 were significantly higher in PAAD cell lines and tumor tissues especially in patients with advanced grades and T-stages, while Z97832.2 and PAN3-AS1 were inverse. In addition, the higher expression of CASC8 and AC015660.1 prominently associated with the larger tumour size, and the more advanced grade and T-stage. However, the relevance between the sARLNRs (CASC8 and AC015660.1) expression and lymph node metastasis status was not significant. CONCLUSIONS In the study, we illuminate the clinical significance, angiogenesis relevance and prognosis-predictive value of four sARLNRs for PAAD. The results build a bridge between sARLNRs and tumour vascularization, and also establish a reliable and accurate risk scoring model for PAAD antiangiogenic strategy.
Collapse
Affiliation(s)
- Guangbiao Cao
- Department of Hepatobiliary Surgery, Songshan General Hospital, Chongqing, China
| | - Yihang Chang
- Department of Hepatobiliary Surgery, Songshan General Hospital, Chongqing, China
| | - Guang Yang
- Department of Hepatobiliary Surgery, Songshan General Hospital, Chongqing, China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, Songshan General Hospital, Chongqing, China
| | - Keqiang Han
- Department of Hepatobiliary Surgery, Songshan General Hospital, Chongqing, China
| |
Collapse
|
171
|
Sun H, Mo J, Cheng R, Li F, Li Y, Guo Y, Li Y, Zhang Y, Bai X, Wang Y, Dong X, Zhang D, Hao J. ENO1 expression and Erk phosphorylation in PDAC and their effects on tumor cell apoptosis in a hypoxic microenvironment. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0451. [PMID: 36476328 PMCID: PMC9724225 DOI: 10.20892/j.issn.2095-3941.2022.0451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Hypoxia is an important feature of pancreatic ductal adenocarcinoma (PDAC). Previously, we found that hypoxia promotes ENO1 expression and PDAC invasion. However, the underlying molecular mechanism was remains unclear. METHODS The relationship between ENO1 expression and clinicopathological characteristics was analyzed in 84 patients with PADC. The effects of CoCl2-induced hypoxia and ENO1 downregulation on the apoptosis, invasion, and proliferation of PDAC cells were evaluated in vitro and in vivo. Hypoxia- and ENO1-induced gene expression was analyzed by transcriptomic sequencing. RESULTS The prognosis of PDAC with high ENO1 expression was poor (P < 0.05). High ENO1 expression was closely associated with histological differentiation and tumor invasion in 84 PDAC cases (P < 0.05). Hypoxia increased ENO1 expression in PDAC and promoted its migration and invasion. Apoptotic cells and the apoptosis marker caspase-3 in the CoCl2-treated ENO1-sh group were significantly elevated (P < 0.05). Transcriptomic sequencing indicated that CoCl2-induced PDAC cells initiated MAPK signaling. Under hypoxic conditions, PDAC cells upregulated ENO1 expression, thereby accelerating ERK phosphorylation and inhibiting apoptosis (P < 0.05). Consistent results were also observed in a PDAC-bearing mouse hindlimb ischemia model. CONCLUSIONS Hypoxia-induced ENO1 expression promotes ERK phosphorylation and inhibits apoptosis, thus leading to PDAC survival and invasion. These results suggest that ENO1 is a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yanhui Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yalei Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China,Correspondence to: Jihui Hao and Danfang Zhang, E-mail: and
| | - Jihui Hao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China,Correspondence to: Jihui Hao and Danfang Zhang, E-mail: and
| |
Collapse
|
172
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
173
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
174
|
Zhou B, Lei JH, Wang Q, Qu TF, Cha LC, Zhan HX, Liu SL, Hu X, Sun CD, Guo WD, Qiu FB, Cao JY. Cancer-associated fibroblast-secreted miR-421 promotes pancreatic cancer by regulating the SIRT3/H3K9Ac/HIF-1α axis. Kaohsiung J Med Sci 2022; 38:1080-1092. [PMID: 36200682 DOI: 10.1002/kjm2.12590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
This study was designed to explore the effects of exosomal miR-421 secreted by cancer-associated fibroblasts (CAFs) on pancreatic cancer (PC) progression and the mechanisms involved. CAFs and exosomes (exos) were isolated and identified. PC cells were treated with CAF-derived exos (CAF-exos). Western blotting and quantitative polymerase chain reaction (qPCR) were used to measure miR-421, sirtuin-3 (SIRT3), and hypoxia duciblefactors-1 alpha (HIF-1α) levels. Cell counting kit-8 (CCK-8), wound-healing, and transwell migration assays were used to measure proliferation, migration, and invasion abilities of the cells. Dual-luciferase assay and RNA immunoprecipitation (RIP) experiment analyzed the relationship between miR-421 and SIRT3. Chromatin immunoprecipitation (f)-verified H3K9Ac enrichment in the HIF-1α promoter region. In vivo tumorigenesis experiments were performed to further explore the effects of exosomal miR-421 from CAFs on PC. CAFs and exos were successfully isolated. CAF-exo-treated PC cells highly expressed miR-421 and had increased cell proliferation, migration, and invasion abilities. Knocking down miR-421 increased the expression of SIRT3. SIRT3 is a target of miR-421, and inhibiting the expression of SIRT3 reversed the negative effects of miR-421 knockdown on PC cell. Knocking down miR-421 in CAF-exo inhibited the expression of HIF-1α in PC cells. Moreover, SIRT3-mediated HIF-1α expression by regulating H3K9Ac. HIF-1α overexpression reversed the inhibiting effects of SIRT3 overexpression on PC progression and counteracted the inhibiting effects of miR-421 knockdown on glycolysis. Moreover, in vivo tumorigenesis experiments showed that knocking down miR-421 attenuated CAF-exo induced tumor growth. Exosomal miR-421 from CAFs promoted PC progression by regulating the SIRT3/H3K9Ac/HIF-1α axis. This study provided insights into the molecular mechanism of PC.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Hao Lei
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Teng-Fei Qu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Chao Cha
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Han-Xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shang-Long Liu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chuan-Dong Sun
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wei-Dong Guo
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fa-Bo Qiu
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing-Yu Cao
- Department of Hepatobiliary and Pancreatic Surgery and Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
175
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
176
|
Choi JH, Nam GH, Hong JM, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH. Cytokine-Induced Killer Cell Immunotherapy Combined With Gemcitabine Reduces Systemic Metastasis in Pancreatic Cancer: An Analysis Using Preclinical Adjuvant Therapy-Mimicking Pancreatic Cancer Xenograft Model. Pancreas 2022; 51:1251-1257. [PMID: 37078953 DOI: 10.1097/mpa.0000000000002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To evaluate the efficacy and safety of cytokine-induced killer (CIK) cell therapy in pancreatic cancer. METHODS An orthotopic murine model of pancreatic cancer and adjuvant therapy-mimicking xenograft murine model that underwent splenectomy was created. Eighty mice were randomized into four groups: the control, gemcitabine alone, CIK alone, and CIK with gemcitabine groups. The tumor growth was monitored using bioluminescence imaging once weekly. RESULTS In the orthotopic murine model, the treatment groups showed a significantly longer survival than the control group (median: not reached vs 125.0 days; 95% confidence interval, 119.87-130.13; P = 0.04); however, the overall survival did not differ significantly among the treatment groups (P = 0.779). The metastatic recurrence rate and overall survival were also not significantly different among the groups in the adjuvant therapy-mimicking xenograft murine model (P = 0.497). However, the CIK and gemcitabine combination suppressed the metastatic recurrence effectively, with recurrence-free survival being significantly longer in the CIK with gemcitabine group than in the control group (median, 54 days; 95% confidence interval, 25.00-102.00; P = 0.013). CONCLUSIONS The combination of CIK and gemcitabine suppressed systemic metastatic recurrence, with promising efficacy and good tolerability in an adjuvant setting of pancreatic cancer.
Collapse
Affiliation(s)
- Jin Ho Choi
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gun He Nam
- GC CELL Corp., Yongin-si, Republic of Korea
| | | | - In Rae Cho
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Hyun Paik
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Kon Ryu
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Tae Kim
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Hyub Lee
- From the Department of Internal Medicine, Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
177
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
178
|
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12:961637. [PMID: 36212414 PMCID: PMC9545774 DOI: 10.3389/fonc.2022.961637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor microenvironment (TME), which is characterized by hypoxia, widely exists in solid tumors. As a current research hotspot in the TME, hypoxia is expected to become a key element to break through the bottleneck of tumor treatment. More and more research results show that a variety of biological behaviors of tumor cells are affected by many factors in TME which are closely related to hypoxia. In order to inhibiting the immune response in TME, hypoxia plays an important role in tumor cell metabolism and anti-apoptosis. Therefore, exploring the molecular mechanism of hypoxia mediated malignant tumor behavior and therapeutic targets is expected to provide new ideas for anti-tumor therapy. In this review, we discussed the effects of hypoxia on tumor behavior and its interaction with TME from the perspectives of immune cells, cell metabolism, oxidative stress and hypoxia inducible factor (HIF), and listed the therapeutic targets or signal pathways found so far. Finally, we summarize the current therapies targeting hypoxia, such as glycolysis inhibitors, anti-angiogenesis drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric medicine.
Collapse
Affiliation(s)
- Gaoqi Chen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hao Li
- Deparment of Neurology, Affiliated Hospital of Jiangsu University, Jiang Su University, Zhenjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| |
Collapse
|
179
|
Liu X, Zeng S, Zhang M, Jiang M, Kafuti YS, Shangguan P, Yu Y, Chen Q, Wang J, Peng X, Yoon J, Li H. Monitoring mitochondrial nitroreductase activity in tumors and a hind-limb model of ischemia in mice using a novel activatable NIR fluorescent probe. Chem Commun (Camb) 2022; 58:11438-11441. [PMID: 36135099 DOI: 10.1039/d2cc04112j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a mitochondria-targeted nitroreductase (NTR)-activated near-infrared fluorescent probe: CS-NO2. Overexpressed NTR in mitochondria was measured with high sensitivity. More importantly, the probe CS-NO2 successfully monitored NTR activity in solid tumors and a hind-limb model of ischemia in mice. This novel finding indicates the promising function of our probe for the diagnosis of solid tumors and hypoxia-associated diseases.
Collapse
Affiliation(s)
- Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Ming Zhang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Maojun Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Pingping Shangguan
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Yichu Yu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China.
| | - Jingyun Wang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China. .,State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Haidong Li
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China. .,State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| |
Collapse
|
180
|
Deng D, Patel R, Chiang CY, Hou P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022; 11:2952. [PMID: 36230914 PMCID: PMC9563251 DOI: 10.3390/cells11192952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer has a notoriously poor prognosis, exhibits persistent drug resistance, and lacks a cure. Unique features of the pancreatic tumor microenvironment exacerbate tumorigenesis, metastasis, and therapy resistance. Recent studies emphasize the importance of exploiting cells in the tumor microenvironment to thwart cancers. In this review, we summarize the hallmarks of the multifaceted pancreatic tumor microenvironment, notably pancreatic stellate cells, tumor-associated fibroblasts, macrophages, and neutrophils, in the regulation of chemo-, radio-, immuno-, and targeted therapy resistance in pancreatic cancer. The molecular insight will facilitate the development of novel therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Daiyong Deng
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Riya Patel
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Cheng-Yao Chiang
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
181
|
Constructing a Novel Prognostic Signature Based on TGF-β Signaling for Personalized Treatment in Pancreatic Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4419119. [PMID: 36157222 PMCID: PMC9507654 DOI: 10.1155/2022/4419119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Background Pancreatic adenocarcinoma (PAAD) shows significantly high mortality. Transforming growth factor-beta (TGF-β) signaling plays an important role in tumorigenesis and development. A prognostic model was conducted using transforming growth factor-beta (TGF-β) signaling for predicting PAAD prognosis and guiding personalized therapies. Methods Datasets were grouped into test and training sets. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) were applied and introduced for identifying prognostic genes associated with TGF-β. Risk score of each sample was calculated by the prognostic model. The difference in survival, clinical information, mutations, pathways, and chemotherapy and immunotherapy sensitivities between high-risk and low-risk groups was analyzed. Results Based on TGF-β signaling, this work built a 7-gene prognostic model showing robustness in sample classification into low-risk and high-risk groups with differential prognoses. Oncogenic pathways like glycolysis, Notch signaling, and hypoxia were noticeably enriched in the group with high risk. Interferon and STAT1 were positively associated with risk score. Importantly, the low-risk group may develop a more favorable response to both chemotherapy and immunotherapy. The current work highlighted the significant function of TGF-β signaling in PAAD development and described the potential cross-links with other oncogenic pathways. Conclusion Notably, the prognostic signature can act as a predictor of prognosis, but as a biomarker for optimizing personalized therapies in clinical practice.
Collapse
|
182
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
183
|
Regulating the Expression of HIF-1α or lncRNA: Potential Directions for Cancer Therapy. Cells 2022; 11:cells11182811. [PMID: 36139386 PMCID: PMC9496732 DOI: 10.3390/cells11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Previous studies have shown that tumors under a hypoxic environment can induce an important hypoxia-responsive element, hypoxia-induced factor-1α (HIF-1α), which can increase tumor migration, invasion, and metastatic ability by promoting epithelial-to-mesenchymal transition (EMT) in tumor cells. Currently, with the deeper knowledge of long noncoding RNAs (lncRNAs), more and more functions of lncRNAs have been discovered. HIF-1α can regulate hypoxia-responsive lncRNAs under hypoxic conditions, and changes in the expression level of lncRNAs can regulate the production of EMT transcription factors and signaling pathway transduction, thus promoting EMT progress. In conclusion, this review summarizes the regulation of the EMT process by HIF-1α and lncRNAs and discusses their relationship with tumorigenesis. Since HIF-1α plays an important role in tumor progression, we also summarize the current drugs that inhibit tumor progression by modulating HIF-1α.
Collapse
|
184
|
Zhao F, Yang G, Qiu J, Liu Y, Tao J, Chen G, Su D, You L, Zheng L, Zhang T, Zhao Y. HIF-1α-regulated stanniocalcin-1 mediates gemcitabine resistance in pancreatic ductal adenocarcinoma via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:839-850. [PMID: 35785493 DOI: 10.1002/mc.23420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor response to the first-line chemotherapy drug gemcitabine. We previously identified stanniocalcin-1 as a gemcitabine-resistant-related gene, but its specific role and function in pancreatic cancer remain unclear. RT-qPCR and Western blot were used to evaluate differential protein and mRNA expressions. The biological functions of genes were determined using proliferation and drug-resistance experiments. Subcutaneous tumorigenesis experiment was performed on nude mice. Prognostic analysis was performed using public databases and our clinical data. We found HIF-1α-regulated STC1 expression mediated chemoresistance in pancreatic cancer. Deeper, we explored the action mechanism of STC1 and identified PI3K/AKT as the downstream signaling pathway of STC1. Furthermore, we analyzed clinical data and found that STC1 expression was related to the prognosis of gemcitabine-treated patients after surgery. In general, we proved the HIF-1α/STC1/PI3K-AKT axis participated in PDAC progression and chemoresistance, and STC1 may serve as a potential prognostic factor and therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
185
|
Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers (Basel) 2022; 14:cancers14174257. [PMID: 36077794 PMCID: PMC9454856 DOI: 10.3390/cancers14174257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is a serious ongoing global health burden, with an overall 5-year survival rate of less than 5%. One major hurdle in the treatment of this disease is the predominantly elderly patient population, leading to their ineligibility for curative surgery and a low rate of successful outcomes. Systemic administration introduces chemo-agents throughout the body via the blood, attacking not only tumours but also healthy organs. When localised interventions are employed, chemo-agents are retained specifically at tumour site, minimizing unwanted toxicity. As a result, there is a growing interest in finding novel localised interventions as alternatives to systemic therapy. Here, we present a detailed review of current locoregional therapies used in pancreatic cancer therapy. This work aims to present a thorough guide for researchers and clinicians intended to employ established and novel localised interventions in the treatment of pancreatic cancer. Furthermore, we present our insights and opinions on the potential ideals to improve these tools. Abstract Pancreatic cancer (PC) remains the seventh leading cause of cancer-related deaths worldwide and the third in the United States, making it one of the most lethal solid malignancies. Unfortunately, the symptoms of this disease are not very apparent despite an increasing incidence rate. Therefore, at the time of diagnosis, 45% of patients have already developed metastatic tumours. Due to the aggressive nature of the pancreatic tumours, local interventions are required in addition to first-line treatments. Locoregional interventions affect a specific area of the pancreas to minimize local tumour recurrence and reduce the side effects on surrounding healthy tissues. However, compared to the number of new studies on systemic therapy, very little research has been conducted on localised interventions for PC. To address this unbalanced focus and to shed light on the tremendous potentials of locoregional therapies, this work will provide a detailed discussion of various localised treatment strategies. Most importantly, to the best of our knowledge, the aspect of localised drug delivery systems used in PC was unprecedentedly discussed in this work. This review is meant for researchers and clinicians considering utilizing local therapy for the effective treatment of PC, providing a thorough guide on recent advancements in research and clinical trials toward locoregional interventions, together with the authors’ insight into their potential improvements.
Collapse
|
186
|
Liu T, Liu Q, Wang Y, Yang R, Tian F. Cuproptosis scoring model predicts overall survival and assists in immunotherapeutic decision making in pancreatic carcinoma. Front Genet 2022; 13:938488. [PMID: 36118866 PMCID: PMC9472214 DOI: 10.3389/fgene.2022.938488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cuproptosis is a newly identified form of non-apoptotic cell death that is associated with the progression and treatment responses in pancreatic adenocarcinoma (PAAD). However, its impact on oncology and tumor microenvironment (TME) remains unclear. Methods: Hub genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression for 25 newly reported cuproptosis-related regulators and subjected to stepwise regression to obtain cuproptosis-related score (CuRS). Additionally, the clinical significance, functional status, role on TME, and genomic variation of CuRS were further examined systematically. Results: A CuRS model incorporating TRAF2, TRADD, USP21, FAS, MLKL, TNFRSF10B, MAPK8, TRAF5, and RIPK3 was developed. The stability and accuracy of this risk model as an independent prognostic factor for PAAD were confirmed in the training and external validation cohorts. Patients in the high-CuRS group had “cold” tumors with active tumor proliferation and immunosuppression, whereas those in the low-CuRS group comprised “hot” tumors with active immune function and cell killing capacity. Additionally, patients in the high-CuRS group carried fewer genomic copy number variations (CNVs) and greater somatic mutations. Furthermore, patients in the low- and high-CuRS groups exhibited increased sensitivity to immunotherapy and chemotherapy, respectively. Conclusion: We developed and validated a robust CuRS model based on cuproptosis to assess patients’ prognoses and guide clinical decision-making. Overall, the findings of this study are expected to contribute to the comprehensive understanding of cuproptosis and facilitate precise treatment of PAAD.
Collapse
Affiliation(s)
- Tijun Liu
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Qing Liu
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yongju Wang
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Rong Yang
- Department of Oncology, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
| | - Fang Tian
- Department of Rehabilitation Medicine, Xiantao First People’s Hospital Affiliated to Yangtze University, Xiantao, China
- *Correspondence: Fang Tian,
| |
Collapse
|
187
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
188
|
Yang X, Gao M, Xu R, Tao Y, Luo W, Wang B, Zhong W, He L, He Y. Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors. Front Immunol 2022; 13:969447. [PMID: 36032103 PMCID: PMC9412234 DOI: 10.3389/fimmu.2022.969447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
According to the difference in temperature, thermotherapy can be divided into thermal ablation and mild hyperthermia. The main advantage of thermal ablation is that it can efficiently target tumors in situ, while mild hyperthermia has a good inhibitory effect on distant metastasis. There are some similarities and differences between the two therapies with respect to inducing anti-tumor immune responses, but neither of them results in sustained systemic immunity. Malignant tumors (such as breast cancer, pancreatic cancer, nasopharyngeal carcinoma, and brain cancer) are recurrent, highly metastatic, and highly invasive even after treatment, hence a single therapy rarely resolves the clinical issues. A more effective and comprehensive treatment strategy using a combination of hyperthermia and immune checkpoint inhibitor (ICI) therapies has gained attention. This paper summarizes the relevant preclinical and clinical studies on hyperthermia combined with ICI therapies and compares the efficacy of two types of hyperthermia combined with ICIs, in order to provide a better treatment for the recurrence and metastasis of clinically malignant tumors.
Collapse
Affiliation(s)
- Ximing Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Miaozhi Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yangyang Tao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Luo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binya Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenliang Zhong
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
| | - Lan He
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- *Correspondence: Yingchun He,
| |
Collapse
|
189
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
190
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
191
|
Yao C, Wang F. Inhibition of hypoxia-induced HIF-1α-mediated autophagy enhances the in vitro anti-tumor activity of rhein in pancreatic cancer cells. J Appl Toxicol 2022; 42:1937-1947. [PMID: 35853845 DOI: 10.1002/jat.4365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
A hypoxic microenvironment results in significantly elevated hypoxia-inducible factor-1 (HIF-1) level in pancreatic cancer. HIF-1 functions to maintain the survival of cancer cells. The present study was performed to investigate whether inhibition of HIF-1α expression was involved in the in vitro anti-tumor effect of rhein in pancreatic cancer cells and to explore the underlying mechanism. sh-RNA knockout technique and western blotting were used to investigate the role of HIF-1α in autophagy activation in MiaPaCa-2 and PANC-1 cells. The survival and glycolysis were assessed using MTT assay and colorimetric kits, respectively. Apoptosis was evaluated by detecting the levels of apoptosis-related proteins using western blotting. Among the five pancreatic cancer cell lines, MiaPaCa-2 and PANC-1 cells were more sensitive to hypoxia-induced autophagy. HIF-1α regulated hypoxia-induced autophagy in MiaPaCa-2 and PANC-1 cells. Treatment with rhein inhibited the survival and suppressed glycolysis in MiaPaCa-2 and PANC-1 cells exposed to hypoxia. Bafilomycin A1 enhanced the suppressive effects of rhein on cell survival and glycolysis under hypoxia. Treatment with rhein, but not bafilomycin A1, significantly reduced HIF-1α expression. In conclusion, inhibition of HIF-1α-mediated autophagy enhances the in vitro anti-tumor activity of rhein in pancreatic cancer cells under hypoxia.
Collapse
Affiliation(s)
- Chuanshan Yao
- The Medical School, Nankai University, Tianjin, China.,Department of Oncology, Nanyang First People's Hospital, Henan, China
| | - Feng Wang
- The Medical School, Nankai University, Tianjin, China.,The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin, China
| |
Collapse
|
192
|
Yan Y, Li H, Yao H, Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.932976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF), which plays a crucial role in oxygen homeostasis, contributes to immunosuppression, tumor angiogenesis, multidrug resistance, photodynamic therapy resistance, and metastasis. HIF as a therapeutic target has attracted scientists’ strong academic research interests. Short interfering RNA (siRNA) and antisense oligonucleotide (ASO) are the more promising and broadly utilized methods for oligonucleotide-based therapy. Their physicochemical characteristics such as hydrophilicity, negative charge, and high molecular weight make them impossible to cross the cell membrane. Moreover, siRNA and ASO are subjected to a rapid deterioration in circulation and cannot translocate into nuclear. Delivery of siRNA and ASO to specific gene targets should be realized without off-target gene silencing and affecting the healthy cells. Nanoparticles as vectors for delivery of siRNA and ASO possess great advantages and flourish in academic research. In this review, we summarized and analyzed regulation mechanisms of HIF under hypoxia, the significant role of HIF in promoting tumor progression, and recent academic research on nanoparticle-based delivery of HIF siRNA and ASO for cancer immunotherapy, antiangiogenesis, reversal of multidrug resistance and radioresistance, potentiating photodynamic therapy, inhibiting tumor metastasis and proliferation, and enhancing apoptosis are reviewed in this thesis. Furthermore, we hope to provide some rewarding suggestions and enlightenments for targeting HIF gene therapy.
Collapse
|
193
|
Cytochrome B5 type A alleviates HCC metastasis via regulating STOML2 related autophagy and promoting sensitivity to ruxolitinib. Cell Death Dis 2022; 13:623. [PMID: 35851063 PMCID: PMC9293983 DOI: 10.1038/s41419-022-05053-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in the world. However, its role and underlying molecular mechanism in HCC progression remain unclear. We found that CYB5A plays a key role in HCC metastasis by inhibiting the JAK1/STAT3 pathway through binding to STOML2. CYB5A combined with STOML2 can predict the outcome of patients. To demonstrate the effect of CYB5A on JAK1 inhibitor function, we applied Ruxolitinib in metastatic tumors with high CYB5A expression and found that it slowed disease progression and prolonged survival in mice. To the best of our knowledge, this study is the first to report the Ruxolitinib effect on the metastatic ability of HCC cells in vivo and in vitro.
Collapse
|
194
|
Rahman MA, Ahmed KR, Rahman MDH, Parvez MAK, Lee IS, Kim B. Therapeutic Aspects and Molecular Targets of Autophagy to Control Pancreatic Cancer Management. Biomedicines 2022; 10:1459. [PMID: 35740481 PMCID: PMC9220066 DOI: 10.3390/biomedicines10061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy's dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
| | | | - In-Seon Lee
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea; (K.R.A.); (M.H.R.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
195
|
Liu L, Zhu H, Wang P, Wu S. Construction of a Six-Gene Prognostic Risk Model Related to Hypoxia and Angiogenesis for Cervical Cancer. Front Genet 2022; 13:923263. [PMID: 35769999 PMCID: PMC9234147 DOI: 10.3389/fgene.2022.923263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The prognosis of cervical cancer (CC) is poor and not accurately reflected by the primary tumor node metastasis staging system. Our study aimed to develop a novel survival-prediction model. Methods: Hallmarks of CC were quantified using single-sample gene set enrichment analysis and univariate Cox proportional hazards analysis. We linked gene expression, hypoxia, and angiogenesis using weighted gene co-expression network analysis (WGCNA). Univariate and multivariate Cox regression was combined with the random forest algorithm to construct a prognostic model. We further evaluated the survival predictive power of the gene signature using Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. Results: Hypoxia and angiogenesis were the leading risk factors contributing to poor overall survival (OS) of patients with CC. We identified 109 candidate genes using WGCNA and univariate Cox regression. Our established prognostic model contained six genes (MOCSI, PPP1R14A, ESM1, DES, ITGA5, and SERPINF1). Kaplan-Meier analysis indicated that high-risk patients had worse OS (hazard ratio = 4.63, p < 0.001). Our model had high predictive power according to the ROC curve. The C-index indicated that the risk score was a better predictor of survival than other clinicopathological variables. Additionally, univariate and multivariate Cox regressions indicated that the risk score was the only independent risk factor for poor OS. The risk score was also an independent predictor in the validation set (GSE52903). Bivariate survival prediction suggested that patients exhibited poor prognosis if they had high z-scores for hypoxia or angiogenesis and high risk scores. Conclusions: We established a six-gene survival prediction model associated with hypoxia and angiogenesis. This novel model accurately predicts survival and also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Lili Liu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Hongcang Zhu
- Foshan Retirement Center for Retired Cadres, Guangdong Military Region of the PLA, Foshan, China
| | - Pei Wang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Suzhen Wu
- TCM Gynecology Department, Foshan Fosun Chancheng Hospital, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Suzhen Wu,
| |
Collapse
|
196
|
Nisar M, Paracha RZ, Adil S, Qureshi SN, Janjua HA. An Extensive Review on Preclinical and Clinical Trials of Oncolytic Viruses Therapy for Pancreatic Cancer. Front Oncol 2022; 12:875188. [PMID: 35686109 PMCID: PMC9171400 DOI: 10.3389/fonc.2022.875188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance and peculiar tumor microenvironment, which diminish or mitigate the effects of therapies, make pancreatic cancer one of the deadliest malignancies to manage and treat. Advanced immunotherapies are under consideration intending to ameliorate the overall patient survival rate in pancreatic cancer. Oncolytic viruses therapy is a new type of immunotherapy in which a virus after infecting and lysis the cancer cell induces/activates patients’ immune response by releasing tumor antigen in the blood. The current review covers the pathways and molecular ablation that take place in pancreatic cancer cells. It also unfolds the extensive preclinical and clinical trial studies of oncolytic viruses performed and/or undergoing to design an efficacious therapy against pancreatic cancer.
Collapse
Affiliation(s)
- Maryum Nisar
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Adil
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
197
|
Fang K, Tang DS, Yan CS, Ma J, Cheng L, Li Y, Wang G. Comprehensive Analysis of Necroptosis in Pancreatic Cancer for Appealing its Implications in Prognosis, Immunotherapy, and Chemotherapy Responses. Front Pharmacol 2022; 13:862502. [PMID: 35662734 PMCID: PMC9157651 DOI: 10.3389/fphar.2022.862502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Necroptosis represents a new target for cancer immunotherapy and is considered a form of cell death that overcomes apoptosis resistance and enhances tumor immunogenicity. Herein, we aimed to determine necroptosis subtypes and investigate the roles of necroptosis in pancreatic cancer therapy. Methods: Based on the expression of prognostic necroptosis genes in pancreatic cancer samples from TCGA and ICGC cohorts, a consensus clustering approach was implemented for robustly identifying necroptosis subtypes. Immunogenic features were evaluated according to immune cell infiltrations, immune checkpoints, HLA molecules, and cancer-immunity cycle. The sensitivity to chemotherapy agents was estimated using the pRRophetic package. A necroptosis-relevant risk model was developed with a multivariate Cox regression analysis. Results: Five necroptosis subtypes were determined for pancreatic cancer (C1∼C5) with diverse prognosis, immunogenic features, and chemosensitivity. In particular, C4 and C5 presented favorable prognosis and weakened immunogenicity; C2 had high immunogenicity; C1 had undesirable prognosis and high genetic mutations. C5 was the most sensitive to known chemotherapy agents (cisplatin, gemcitabine, docetaxel, and paclitaxel), while C4 displayed resistance to aforementioned agents. The necroptosis-relevant risk model could accurately predict prognosis, immunogenicity, and chemosensitivity. Conclusion: Our findings provided a conceptual framework for comprehending necroptosis in pancreatic cancer biology. Future work is required for evaluating its relevance in the design of combined therapeutic regimens and guiding the best choice for immuno- and chemotherapy.
Collapse
Affiliation(s)
- Kun Fang
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - De-Sheng Tang
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang-Sheng Yan
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Ma
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
198
|
Yang CB, Lu SN, Lu C, Xu MM, Duan JA, Che CT, Zhou J, Zhao M. A New C22-Quassinoid with Anti-Pancreatic Adenocarcinoma Activity from Seeds of Brucea javanica. Chem Biodivers 2022; 19:e202101004. [PMID: 35514039 DOI: 10.1002/cbdv.202101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
An undescribed C22-quassinoid named sergeolide A (1) and fifteen known quassinoids (2-16) were obtained from the seeds of Brucea javanica (Simaroubaceae). All chemical structures were established based on spectroscopic data and X-ray diffraction analysis. Sergeolide A (1) is the first example of a naturally occurring C22-quassinoid bearing a butenolide group fused the A ring of the bruceolide skeleton from Brucea genus. And this is the first report of the NMR data for desmethyl-bruceines B (2) and C (3) and the crystal structure for bruceolide (11). In addition, all isolates were evaluated for their anti-pancreatic adenocarcinoma activity by measuring the growth inhibitory of the MIA PaCa-2 cell lines. Consequently, compounds 1, 7-10, and 12-16 exhibited potent anti-pancreatic cancer activity in vitro (IC50 =0.054∼0.357 μM).
Collapse
Affiliation(s)
- Cheng-Bin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Si-Nan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ming-Ming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
199
|
Wang X, Ye N, Xu C, Xiao C, Zhang Z, Deng Q, Li S, Li J, Li Z, Yang X. Hyperbaric oxygen regulates tumor mechanics and augments Abraxane and gemcitabine antitumor effects against pancreatic ductal adenocarcinoma by inhibiting cancer-associated fibroblasts. NANO TODAY 2022; 44:101458. [DOI: 10.1016/j.nantod.2022.101458] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
|
200
|
Wang L, Ye G, Wang Y, Wang C. Stearoyl-CoA desaturase 1 regulates malignant progression of cervical cancer cells. Bioengineered 2022; 13:12941-12954. [PMID: 35609330 PMCID: PMC9275951 DOI: 10.1080/21655979.2022.2079253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primary regulatory gene for fatty acid synthesis, stearoyl-CoA desaturase 1 (SCD1), has been linked to the progression of several malignancies. Its role in cervical cancer remains unclear till now. This paper aimed to explore the role and mechanism of SCD1 in cervical cancer. The GEPIA database was used to perform a bioinformatics analysis of the role of SCD1 in cervical cancer staging and prognosis. The influences of SCD1 knockdown on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progress were then investigated. Following transcription factor Kruppel like factor 9 (KLF9) was discovered to be negatively correlated with SCD1, the regulatory role of KLF9 in the effects of SCD1 on cervical cancer cells and the signaling pathway was evaluated. According to the GEPIA database, SCD1 level was associated with the cervical cancer stage, the overall survival level, and the disease-free survival level. Cell proliferation, migration, invasion, and EMT progress were all hindered when its expression was knocked down. Novelty, KLF9 reversed the effects of SCD1 on cells, as well as the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway. Together, SCD1 was negatively regulated by KLF9 and it activated the Akt/GSK3β signaling pathway to promote the malignant progression of cervical cancer cells. Developing SCD1 inhibitors offers novel ideas for the biological treatment of cervical cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Guoliu Ye
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Caizhi Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|