151
|
|
152
|
Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization–tandem mass spectrometry. J Chromatogr A 2014; 1364:117-27. [DOI: 10.1016/j.chroma.2014.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
|
153
|
Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 2014; 111:E4006-14. [PMID: 25201972 DOI: 10.1073/pnas.1413561111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.
Collapse
|
154
|
Miyazaki-Anzai S, Masuda M, Demos-Davies KM, Keenan AL, Saunders SJ, Masuda R, Jablonski K, Cavasin MA, Kendrick J, Chonchol M, McKinsey TA, Levi M, Miyazaki M. Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification. J Am Heart Assoc 2014; 3:e000949. [PMID: 24963104 PMCID: PMC4309099 DOI: 10.1161/jaha.114.000949] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Cardiovascular diseases such as atherosclerosis and vascular calcification are a major cause of death in patients with chronic kidney disease (CKD). Recently, the long‐awaited results of the Study of Heart and Renal Protection trial were reported. This large randomized clinical trial found that an extensive cholesterol‐lowering therapy through the combination of simvastatin and ezetimibe significantly reduced cardiovascular diseases in a wide range of patients with CKD. However, the mechanism by which this cholesterol‐lowering therapy reduces CKD‐dependent vascular diseases remains elusive. The objective of the present study was to determine the contribution of the oxysterol‐induced pro‐apoptotic transcription factor CCAAT/enhancer‐binding protein homologous protein (CHOP) on the pathogenesis of CKD‐dependent cardiovascular diseases through endoplasmic reticulum stress signaling. Methods and Results CKD increased levels of serum oxysterols such as 7‐ketocholesterol in human patients and ApoE−/− mice. Treatment with simvastatin plus ezetimibe strongly reduced levels of serum oxysterols and attenuated CKD‐dependent atherosclerosis, vascular cell death, vascular calcification, and cardiac dysfunction. This therapy also reduced aortic endoplasmic reticulum stress induced by CKD. The short hairpin RNA‐mediated knockdown of CHOP and activating transcription factor‐4 in vascular smooth muscle cells attenuated oxysterol‐induced mineralization, osteogenic differentiation, and endoplasmic reticulum stress. In addition, CHOP deficiency protected ApoE−/− mice from CKD‐dependent vascular calcification, cardiac dysfunction, and vascular cell death. Conclusions These data reveal that the cholesterol‐lowering therapy of simvastatin plus ezetimibe attenuates CKD‐dependent vascular diseases through a reduction of oxysterol‐mediated endoplasmic reticulum stress. CHOP plays a crucial role in the pathogenesis of CKD‐dependent vascular calcification.
Collapse
Affiliation(s)
- Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Kimberly M Demos-Davies
- Division of Cardiology, University of Colorado Denver, Aurora, CO (K.M.D.D., M.A.C., T.A.M.K.)
| | - Audrey L Keenan
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Sommer J Saunders
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Rumiko Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Kristen Jablonski
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Maria A Cavasin
- Division of Cardiology, University of Colorado Denver, Aurora, CO (K.M.D.D., M.A.C., T.A.M.K.)
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Timothy A McKinsey
- Division of Cardiology, University of Colorado Denver, Aurora, CO (K.M.D.D., M.A.C., T.A.M.K.)
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.)
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO (S.M.A., M.M., A.L.K., S.J.S., R.M., K.J., J.K., M.C., M.L., M.M.) Division of Endocrinology, Diabetes and Metabolism, University of Colorado Denver, Aurora, CO (M.M.)
| |
Collapse
|
155
|
Roberg-Larsen H, Lund K, Vehus T, Solberg N, Vesterdal C, Misaghian D, Olsen PA, Krauss S, Wilson SR, Lundanes E. Highly automated nano-LC/MS-based approach for thousand cell-scale quantification of side chain-hydroxylated oxysterols. J Lipid Res 2014; 55:1531-6. [PMID: 24792927 DOI: 10.1194/jlr.d048801] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 12/22/2022] Open
Abstract
Iso-octyl chain-hydroxylated oxysterols were determined in attomoles per 10,000 cells concentrations in 10,000-80,000 cultured pancreatic adenocarcinoma cells, using a sensitive, highly automated nano-LC-ESI-MS-based method. Identified oxysterols included 24S hydroxycholesterol (24S-OHC), 25 hydroxycholesterol (25-OHC), and 27 hydroxycholesterol (27-OHC), while 20S hydroxycholesterol and 22S hydroxycholesterol were not detected. Lower mass limit of quantification was 23 fg (65 amol) for 25-OHC and 27-OHC (100 times lower than our previous method) and 54 fg (135 amol) for 24S-OHC, after derivatization into Girard T hydrazones and online sample cleanup using simplified and robust automatic filtration and filter back flushing solid phase extraction LC/MS/MS. The instrument configuration was easily installed using a commercial nano-LC/MS system. Recoveries in spiked sample were 96, 97, and 77% for 24S-OHC, 25-OHC, and 27-OHC, with within- and between-day repeatabilities of 1-21% and 2-20% relative SD, respectively. The study demonstrates the potential of nano-LC in lipidomics/sterolomics.
Collapse
Affiliation(s)
| | - Kaja Lund
- Unit for Cell Signaling, Cancer Stem Cell Innovation Centre (SFI-CAST), Oslo University Hospital, Rikshospitalet, Oslo, Norway Affitech Research AS, Oslo, Norway
| | - Tore Vehus
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Nina Solberg
- Unit for Cell Signaling, Cancer Stem Cell Innovation Centre (SFI-CAST), Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | - Petter Angell Olsen
- Unit for Cell Signaling, Cancer Stem Cell Innovation Centre (SFI-CAST), Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signaling, Cancer Stem Cell Innovation Centre (SFI-CAST), Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
156
|
Sharpe LJ, Burns V, Brown AJ. A Lipidomic Perspective on Intermediates in Cholesterol Synthesis as Indicators of Disease Status. J Genet Genomics 2014; 41:275-82. [DOI: 10.1016/j.jgg.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022]
|
157
|
Roberg-Larsen H, Strand MF, Krauss S, Wilson SR. Metabolites in vertebrate Hedgehog signaling. Biochem Biophys Res Commun 2014; 446:669-74. [DOI: 10.1016/j.bbrc.2014.01.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/26/2022]
|
158
|
Abstract
PURPOSE OF REVIEW Circulating levels of cholesterol precursors in the body have proven their value over the years as indicators of in-vivo cholesterol synthesis. However, there is growing interest in their potential as markers of various disease states. The purpose of this review is to evaluate current literature on cholesterol precursors as disease markers. RECENT FINDINGS Firstly, we focus on studies linking circulating squalene with the risk of cardiovascular disease. Secondly, we explore the interplay between cholesterol precursors (7-dehydrocholesterol and desmosterol) and the enzymes that act upon them (DHCR7 and DHCR24) in the context of liver disease. For instance, recent findings indicate that circulating desmosterol is elevated in nonalcoholic steatohepatitis. This may be linked to this regulatory cholesterol precursor being produced in and effluxed from hepatocytes, or alternatively from lipid-laden hepatic macrophages (Kupffer cells), which play an important role in the cause of nonalcoholic steatohepatitis. Desmosterol is also implicated in Hepatitis C virus replication, and hence may also be involved in viral fatty liver disease, possibly contributing to virus pathogenicity and/or host defense. Furthermore, there is increasing evidence that the activity of DHCR7 may affect chronic liver diseases by influencing vitamin D levels. SUMMARY Beyond their accepted application as markers of cholesterol synthesis, cholesterol precursors have potential both as disease indicators, and for providing deeper insights into the disease process.
Collapse
Affiliation(s)
- Andrew J Brown
- aSchool of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia bInstitute of Biomedicine, Anatomy, University of Helsinki cMinerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | |
Collapse
|
159
|
Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 2014; 111:3865-70. [PMID: 24613931 DOI: 10.1073/pnas.1324245111] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bitopic integral membrane proteins with a single transmembrane helix play diverse roles in catalysis, cell signaling, and morphogenesis. Complete monospanning protein structures are needed to show how interaction between the transmembrane helix and catalytic domain might influence association with the membrane and function. We report crystal structures of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase, a membrane monospanning cytochrome P450 of the CYP51 family that catalyzes the first postcyclization step in ergosterol biosynthesis and is inhibited by triazole drugs. The structures reveal a well-ordered N-terminal amphipathic helix preceding a putative transmembrane helix that would constrain the catalytic domain orientation to lie partly in the lipid bilayer. The structures locate the substrate lanosterol, identify putative substrate and product channels, and reveal constrained interactions with triazole antifungal drugs that are important for drug design and understanding drug resistance.
Collapse
|
160
|
Li M, Yang L, Bai Y, Liu H. Analytical Methods in Lipidomics and Their Applications. Anal Chem 2013; 86:161-75. [DOI: 10.1021/ac403554h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Min Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Yang
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
161
|
Liu W, Xu L, Lamberson C, Haas D, Korade Z, Porter NA. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. J Lipid Res 2013; 55:329-37. [PMID: 24259532 DOI: 10.1194/jlr.d043877] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD "ene" reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | | | | | | | | | | |
Collapse
|
162
|
Son HH, Moon JY, Seo HS, Kim HH, Chung BC, Choi MH. High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina. J Lipid Res 2013; 55:155-62. [PMID: 24220886 PMCID: PMC3927468 DOI: 10.1194/jlr.d040790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations of cholesterol metabolism are responsible for vasospastic angina and atherosclerosis. To comprehensively evaluate cholesterol metabolism, 18 sterols, including cholesterol, 6 cholesteryl esters (CEs), 3 cholesterol precursors, and 8 hydroxycholesterols (OHCs), were simultaneously analyzed using hybrid solid-phase extraction (SPE) purification coupled to high-temperature gas chromatography-mass spectrometry (HTGC-MS). Methanol-based hybrid SPE increased the selective extraction, and HTGC resulted in a good chromatographic resolution for the separation of lipophilic compounds. The limits of quantification of cholesterol and CEs ranged from 0.2 to 10.0 μg/ml, while OHCs and cholesterol precursors ranged from 0.01 to 0.10 μg/ml. Linearity as the correlation coefficient was higher than 0.99 with the exception of cholesteryl laurate, myristate, oleate, and linoleate (r² > 0.98). The precision (% coefficient of variation) and accuracy (% bias) ranged from 1.1 to 9.8% and from 75.9 to 125.1%, respectively. The overall recoveries of CEs ranged from 26.1 to 64.0%, and the recoveries of other sterols ranged from 83.8 to 129.3%. The cholesterol signatures showed sex differences in patients with vasospastic angina and may associate with 24-reductases. This technique can be useful for making clinical diagnoses and for an increased understanding of the pathophysiology of vasospastic angina.
Collapse
Affiliation(s)
- Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | | | | | | | | | | |
Collapse
|
163
|
27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 2013; 5:637-45. [PMID: 24210818 DOI: 10.1016/j.celrep.2013.10.006] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/11/2013] [Accepted: 10/02/2013] [Indexed: 01/10/2023] Open
Abstract
To date, estrogen is the only known endogenous estrogen receptor (ER) ligand that promotes ER+ breast tumor growth. We report that the cholesterol metabolite 27-hydroxycholesterol (27HC) stimulates MCF-7 cell xenograft growth in mice. More importantly, in ER+ breast cancer patients, 27HC content in normal breast tissue is increased compared to that in cancer-free controls, and tumor 27HC content is further elevated. Increased tumor 27HC is correlated with diminished expression of CYP7B1, the 27HC metabolizing enzyme, and reduced expression of CYP7B1 in tumors is associated with poorer patient survival. Moreover, 27HC is produced by MCF-7 cells, and it stimulates cell-autonomous, ER-dependent, and GDNF-RET-dependent cell proliferation. Thus, 27HC is a locally modulated, nonaromatized ER ligand that promotes ER+ breast tumor growth.
Collapse
|
164
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
165
|
Plasma 27-hydroxycholesterol/cholesterol ratio is increased in low high density lipoprotein-cholesterol healthy subjects. Clin Biochem 2013; 46:1619-21. [DOI: 10.1016/j.clinbiochem.2013.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
|
166
|
Merrill AH, Dennis EA, McDonald JG, Fahy E. Lipidomics technologies at the end of the first decade and the beginning of the next. Adv Nutr 2013; 4:565-7. [PMID: 24038259 PMCID: PMC3771151 DOI: 10.3945/an.113.004333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The lipidome is composed of all of the biomolecules defined as lipids, which encompass compounds of amazing structural diversity and complexity. It has been ∼1 decade since the study of "lipidomics" was begun in earnest, and the technologies and tools for data analysis have advanced considerably over this period. This workshop summarized the scope of the lipidome and technologies for its analysis, lipidomics databases and other online tools, and examples of the application of lipidomics to nutritional research. The slides from the workshop, online lipidomics tools, and databases are available at http://www.lipidmaps.org.
Collapse
Affiliation(s)
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, University of California, San Diego, CA
| | - Jeffrey G. McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eoin Fahy
- San Diego Supercomputing Center, University of California, San Diego, CA
| |
Collapse
|
167
|
A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet 2013; 45:1013-20. [PMID: 23892605 PMCID: PMC3837522 DOI: 10.1038/ng.2714] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022]
Abstract
Mutations in methyl CpG binding protein 2 (MECP2) cause Rett Syndrome, the most severe autism spectrum disorder. Re-expressing Mecp2 in symptomatic Mecp2 null mice dramatically improves function and longevity, providing hope that therapeutic intervention is possible in humans. To identify pathways in disease pathology for therapeutic intervention, a dominant ENU mutagenesis suppressor screen was carried out in Mecp2 null mice. Five suppressors that ameliorate symptoms of Mecp2 loss were isolated. Here we show that a stop codon mutation in squalene epoxidase (Sqle), a rate-limiting enzyme in cholesterol biosynthesis underlies suppression in one line. Subsequently, we show that lipid metabolism is perturbed in the brain and liver of Mecp2 null males. Consistently, statin drugs improve systemic perturbations of lipid metabolism, alleviate motor symptoms and confer increased longevity in Mecp2 mutant mice. The genetic screen therefore points to cholesterol homeostasis as a potential target for the treatment of Rett patients.
Collapse
|
168
|
Griffiths WJ, Crick PJ, Wang Y, Ogundare M, Tuschl K, Morris AA, Bigger BW, Clayton PT, Wang Y. Analytical strategies for characterization of oxysterol lipidomes: liver X receptor ligands in plasma. Free Radic Biol Med 2013; 59:69-84. [PMID: 22846477 DOI: 10.1016/j.freeradbiomed.2012.07.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/12/2023]
Abstract
Bile acids, bile alcohols, and hormonal steroids represent the ultimate biologically active products of cholesterol metabolism in vertebrates. However, intermediates in their formation, including oxysterols and cholestenoic acids, also possess known, e.g., as ligands to nuclear and G-protein-coupled receptors, and unknown regulatory activities. The potential diversity of molecules originating from the cholesterol structure is very broad and their abundance in biological materials ranges over several orders of magnitude. Here we describe the application of enzyme-assisted derivatization for sterol analysis (EADSA) in combination with liquid chromatography-electrospray ionization-mass spectrometry to define the oxysterol and cholestenoic acid metabolomes of human plasma. Quantitative profiling of adult plasma using EADSA leads to the detection of over 30 metabolites derived from cholesterol, some of which are ligands to the nuclear receptors LXR, FXR, and pregnane X receptor or the G-protein-coupled receptor Epstein-Barr virus-induced gene 2. The potential of the EADSA technique in screening for inborn errors of cholesterol metabolism and biosynthesis is demonstrated by the unique plasma profile of patients suffering from cerebrotendinous xanthomatosis. The analytical methods described are easily adapted to the analysis of other biological fluids, including cerebrospinal fluid, and also tissues, e.g., brain, in which nuclear and G-protein-coupled receptors may have important regulatory roles.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 2013; 288:18707-15. [PMID: 23696639 DOI: 10.1074/jbc.r113.479808] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
170
|
Milne SB, Mathews TP, Myers DS, Ivanova PT, Brown HA. Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 2013; 52:3829-40. [PMID: 23442130 DOI: 10.1021/bi400060e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a rapidly growing field of research used in the identification and quantification of the small molecule metabolites within an organism, thereby providing insights into cell metabolism and bioenergetics as well as processes important in clinical medicine, such as disposition of pharmaceutical compounds. It offers comprehensive information about thousands of low-molecular mass compounds (<1500 Da) that represent a wide range of pathways and intermediary metabolism. Because of its vast expansion in the past two decades, mass spectrometry has become an indispensable tool in "omic" analyses. The use of different ionization techniques such as the more traditional electrospray and matrix-assisted laser desorption, as well as recently popular desorption electrospray ionization, has allowed the analysis of a wide range of biomolecules (e.g., peptides, proteins, lipids, and sugars), and their imaging and analysis in the original sample environment in a workup free fashion. An overview of the current state of the methodology is given, as well as examples of application.
Collapse
Affiliation(s)
- Stephen B Milne
- Departments of Pharmacology, Chemistry, and Biochemistry, The Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | | | | | | | | |
Collapse
|
171
|
Abstract
Estradiol (E2) is the principal physiological estrogen in mammals. E2 and its active metabolites, estrone and estriol have a characteristic phenolic A ring, unlike progesterone, testosterone, cortisol and aldosterone, which have an A ring containing a C3-ketone, a Δ(4) bond and a C19 methyl group. Crystal structures of E2 in the estrogen receptor (ER) confirm the importance of the A ring in stabilizing E2 in the ER. However, other steroids, including Δ(5)-androstenediol, 5α-androstanediol and 27-hydroxycholesterol, which have a saturated A ring containing a 3β-hydroxyl and a C19 methyl group, also mediate physiological responses through binding to estrogen receptor-α (ERα) and ERβ. Moreover, selective estrogen response modulators (SERMs) with diverse structures also regulate transcription of ERα and ERβ. Our understanding of the physiological responses mediated by these "alternative" estrogens is in its infancy. Further studies of the role of these steroids and SERMs in regulating responses mediated by ERα and ERβ a variety of tissues, during different stages of development, are likely to uncover additional estrogenic activities.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA.
| |
Collapse
|
172
|
Methods for oxysterol analysis: past, present and future. Biochem Pharmacol 2013; 86:3-14. [PMID: 23395696 DOI: 10.1016/j.bcp.2013.01.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/28/2013] [Indexed: 12/20/2022]
Abstract
Oxysterols are oxidised forms of cholesterol or its precursors. In this article we will concentrate specifically on those formed in mammalian systems. Oxidation may be catalysed by endogenous enzymes or through reactive oxygen species forming a myriad of potential products. A number of these products are biologically active, and oxysterols may have roles in cholesterol homeostasis, neurogenesis, protein prenylation and in the immune system. Oxysterols are also implicated in aetiology of disease states including atherosclerosis, neurodegenerative and inflammatory diseases. Reports indicating the levels of oxysterols in plasma, cerebrospinal fluid and various tissues are in many cases unrealistic owing to a lack of attention to the possibility of autoxidation, a process by which oxysterols are formed from cholesterol by oxygen in air. This article comprises a critical assessment of the technical difficulties of oxysterol analysis, highlights methodologies utilising best practise and discusses newer procedures.
Collapse
|
173
|
Adenosine A(2A) receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:407-16. [PMID: 23168167 DOI: 10.1016/j.bbalip.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/22/2022]
Abstract
The adenosine A(2A) receptor (A(2A)R) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A(2A)R agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A(2A)R on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC). THP-1 human monocytes/macrophages and HAEC exposed to the A(2A)R-specific agonist ATL313 exhibited upregulation of proteins responsible for cholesterol efflux: the ABCA1 and G1 transporters. Further, activation of A(2A)R led to upregulation of the cholesterol metabolizing enzyme P450 27-hydroxylase, accompanied by intracellular changes in level of oxysterols. We demonstrate that anti-atherogenic properties of A(2A)R activation are not limited to the regulation of lipid efflux in vasculature, but include protection from lipid overload in macrophages, particularly via suppression of the CD36 scavenger receptor. The reduced lipid accumulation manifests directly as a diminution in foam cell transformation. In THP-1 macrophages, either A(2A)R pharmacological blockade or gene silencing promote lipid accumulation and enhance foam cell transformation. Our pre-clinical data provides evidence suggesting that A(2A)R stimulation by ATL313 has the potential to be a viable therapeutic strategy for cardiovascular disease prevention, particularly in patients with elevated risk due to immune/inflammatory disorders.
Collapse
|
174
|
Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol 2012; 698:299-309. [PMID: 23041272 DOI: 10.1016/j.ejphar.2012.08.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/23/2022]
Abstract
Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Known cardioprotective and anti-inflammatory properties of resveratrol have spurred investigation of the mechanisms involved. The present study explored potential atheroprotective actions of resveratrol on cholesterol metabolism in cells of the arterial wall, including human macrophages and arterial endothelium. Using QRT-PCR and Western blotting techniques, we measured expression of the proteins involved in reverse cholesterol transport (ABCA1, ABCG1 and SR-B1) and the scavenger receptors responsible for uptake of modified cholesterol (CD36, SR-A1 and LOX-1). We analyzed the effect of resveratrol on apoA-1-and HDL-mediated cholesterol efflux in human THP-1 macrophages. The effect of resveratrol on oxLDL internalization and foam cell formation were evaluated using confocal and light microscopy. Our data indicate that resveratrol regulates expression of major proteins involved in cholesterol transport, promotes apoA-1 and HDL-mediated efflux, downregulates oxLDL uptake and diminishes foam cell formation. Mechanistically, resveratrol effects were dependent upon PPAR-γ and adenosine 2A receptor pathways. For the first time we demonstrate that resveratrol regulates expression of the cholesterol metabolizing enzyme cytochrome P450 27-hydroxylase, providing efficient cholesterol elimination via formation of oxysterols. This study establishes that resveratrol attenuates lipid accumulation in cultured human macrophages via effects on cholesterol transport. Further in vivo studies are needed to determine whether resveratrol may be an additional resource available to reduce lipid deposition and atherosclerosis in humans.
Collapse
Affiliation(s)
- Iryna Voloshyna
- Winthrop Research Institute, Department of Medicine, Winthrop University Hospital, 222 Station Plaza, North, Suite 511B, Mineola, NY 11501, USA.
| | | | | | | | | |
Collapse
|
175
|
Kuver R. Mechanisms of oxysterol-induced disease: insights from the biliary system. CLINICAL LIPIDOLOGY 2012; 7:537-548. [PMID: 23630545 PMCID: PMC3636558 DOI: 10.2217/clp.12.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxysterols are oxidized species of cholesterol that are derived from exogenous (e.g. dietary) and endogenous (in vivo) sources. Oxysterols play critical roles in normal physiologic functions as well as in pathophysiologic processes in a variety of organ systems. This review provides an overview of oxysterol biology from the vantage point of the biliary system. Several oxysterols have been identified in human bile in the context of biliary tract infection and inflammation. This finding has led to investigations regarding the potential pathophysiologic significance of biliary oxysterols in diseases affecting the biliary system, with an emphasis on cholangiocarcinoma. Emerging evidence implicates specific oxysterols in the development and progression of this malignancy. This review will summarize the literature on oxysterols in the biliary system and discuss how the accumulated evidence contributes to a hypothesis describing the molecular basis of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, Box 356424, Department of Medicine, University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA, Tel.: +1 206 543 1305, ,
| |
Collapse
|
176
|
Meljon A, Theofilopoulos S, Shackleton CHL, Watson GL, Javitt NB, Knölker HJ, Saini R, Arenas E, Wang Y, Griffiths WJ. Analysis of bioactive oxysterols in newborn mouse brain by LC/MS. J Lipid Res 2012; 53:2469-83. [PMID: 22891291 DOI: 10.1194/jlr.d028233] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unesterified cholesterol is a major component of plasma membranes. In the brain of the adult, it is mostly found in myelin sheaths, where it plays a major architectural role. In the newborn mouse, little myelination of neurons has occurred, and much of this sterol comprises a metabolically active pool. In the current study, we have accessed this metabolically active pool and, using LC/MS, have identified cholesterol precursors and metabolites. Although desmosterol and 24S-hydroxycholesterol represent the major precursor and metabolite, respectively, other steroids, including the oxysterols 22-oxocholesterol, 22R-hydroxycholesterol, 20R,22R-dihydroxycholesterol, and the C(21)-neurosteroid progesterone, were identified. 24S,25-epoxycholesterol formed in parallel to cholesterol was also found to be a major sterol in newborn brain. Like 24S- and 22R-hydroxycholesterols, and also desmosterol, 24S,25-epoxycholesterol is a ligand to the liver X receptors, which are expressed in brain. The desmosterol metabolites (24Z),26-, (24E),26-, and 7α-hydroxydesmosterol were identified in brain for the first time.
Collapse
Affiliation(s)
- Anna Meljon
- Institute of Mass Spectrometry, College of Medicine, Swansea, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|