151
|
Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, Park SW, Liu J. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 2010; 51:1486-95. [PMID: 20048381 DOI: 10.1194/jlr.m003566] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the resistance of dyslipidemic hamsters to statin-induced LDL-cholesterol (LDL-C) reduction and the molecular mechanism by which statins modulated PCSK9 gene expression in vivo. We utilized the fructose diet-induced dyslipidemic hamsters as an in vivo model and rosuvastatin to examine its effects on liver PCSK9 and LDL receptor (LDLR) expression and serum lipid levels. We showed that rosuvastatin induced PCSK9 mRNA to a greater extent than LDLR mRNA in the hamster liver. The net result was that hepatic LDLR protein level was reduced. This correlated closely with an increase in serum LDL-C with statin treatment. More importantly, we demonstrated that in addition to an increase in sterol response element binding protein 2 (SREBP2) expression, rosuvastatin treatment increased the liver expression of hepatocyte nuclear factor 1 alpha (HNF1alpha), the newly identified key transactivator for PCSK9 gene expression. Our study suggests that the inducing effect of rosuvastatin on HNF1alpha is likely a underlying mechanism accounting for the higher induction of PCSK9 than LDLR because of the utilization of two transactivators (HNF1alpha and SREBP2) in PCSK9 transcription versus one (SREBP2) in LDLR transcription. Thus, the net balance is in favor of PCSK9-induced degradation of LDLR in the hamster liver, abrogating the effect of rosuvastatin on LDL-C lowering.
Collapse
Affiliation(s)
- Bin Dong
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Mousavi SA, Berge KE, Leren TP. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J Intern Med 2009; 266:507-19. [PMID: 19930098 DOI: 10.1111/j.1365-2796.2009.02167.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The LDL receptor (LDLR) plays an essential role in the regulation of plasma (LDL) cholesterol concentrations by virtue of its ability to clear plasma LDL. Down-regulation of the LDLR by proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a regulatory mechanism that controls plasma LDL cholesterol concentrations. Studies in which PCSK9 is over-expressed in mice, have demonstrated that PCSK9, by enhancing hepatic LDLR degradation, decreases the availability of the LDLR for LDL uptake, resulting in increased plasma LDL cholesterol levels. However, PCSK9 has also recently been shown to mediate down-regulation of surface receptors other than the LDLR, suggesting that it may have much broader roles than initially thought.
Collapse
Affiliation(s)
- S A Mousavi
- Medical Genetics Laboratory, Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | |
Collapse
|
153
|
Geoghegan KF, Hoth LR, Varghese AH, Lin W, Boyd JG, Griffor MC. Binding to the low-density lipoprotein receptor accelerates futile catalytic cycling in PCSK9 and raises the equilibrium level of intramolecular acylenzyme. Biochemistry 2009; 48:2941-9. [PMID: 19222187 DOI: 10.1021/bi802232m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proprotein convertase subtilisin-kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) on target cells and lowers the level of receptor by impeding its recycling. PCSK9 is self-processed to a complex of its prodomain and catalytic domain like a typical protein convertase, but it does not develop normal proteolytic activity. Instead, its propeptide remains complexed with the catalytic domain, and the C-terminal Gln152 of the prodomain occupies the active site like a substrate for peptide synthesis. To probe its latent catalytic activity, PCSK9 and its complex with the soluble LDLR extracellular domain were separately transferred into H218O, and time point samples were analyzed by peptide mapping with mass spectrometry to measure the rate and extent of incorporation of 18O into the Gln152 carboxylate. In free wild-type or D374Y mutant PCSK9, the t1/2 for exchange of 18O for both oxygens was near 5 min. This slow process progressed to completion, with the distribution of oxygen isotopes in the Gln152 carboxylate finally matching that in solvent. In contrast, exchange reached its final state in <30 s in LDLR-complexed D374Y mutant PCSK9, but approximately 40% of the molecules gave data indicating the presence of only one 18O atom in Gln152. With support from further experiments, this was attributed to hydrolysis of acylenzyme in H216O during preparations for digestion and indicated that PCSK9 complexed with LDLR contains approximately 40% intramolecular acylenzyme at equilibrium. The synthetic EGF-A domain of LDLR induced similar effects as the full-length receptor. The data suggest the existence of distinct conformational states in free and receptor-bound PCSK9.
Collapse
|
154
|
Troutt JS, Alborn WE, Cao G, Konrad RJ. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J Lipid Res 2009; 51:345-51. [PMID: 19738285 DOI: 10.1194/jlr.m000620] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past several years, proprotein convertase subtilisin kexin type 9 (PCSK9) has gained significant attention as a key regulator of serum LDL-cholesterol (LDL-C) levels. In humans, gain-of-function mutations in PCSK9 cause a form of familial hypercholesterolemia, whereas loss-of-function mutations result in significantly decreased LDL-C and cardiovascular risk. Our laboratory was the first to demonstrate that atorvastatin increases PCSK9 serum levels, an observation that has since been confirmed by at least two other groups. In light of these observations, we studied the effect of another common lipid-lowering medication, fenofibrate, on circulating PCSK9 protein levels in patients treated with fenofibrate or placebo for 12 weeks. We observed that fenofibrate (200 mg per day) significantly increased circulating PCSK9 levels by 25% compared with baseline. Placebo treatment, in comparison, had no effect on PCSK9 levels. Interestingly, fenofibrate-induced increases in serum PCSK9 levels were highly correlated with fenofibrate-induced changes in HDL-C and triglyceride levels, as well as with fenofibrate-induced changes in LDL-C levels. These results suggest an explanation for why fibrates do not achieve as much LDL-C lowering as might otherwise be expected and indicate that the addition of a PCSK9 inhibitor to fibrate therapy may result in additional beneficial LDL-C lowering.
Collapse
Affiliation(s)
- Jason S Troutt
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
155
|
Li H, Dong B, Park SW, Lee HS, Chen W, Liu J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem 2009; 284:28885-95. [PMID: 19687008 PMCID: PMC2781434 DOI: 10.1074/jbc.m109.052407] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PCSK9 is a natural inhibitor of LDL receptor (LDLR) that binds the extracellular domain of LDLR and triggers its intracellular degradation. PCSK9 and LDLR are coordinately regulated at the transcriptional level by sterols through their promoter-imbedded sterol response elements (SRE) and co-induced by statins. Identification of regulatory networks modulating PCSK9 transcription is important for developing selective repressors of PCSK9 to improve statin efficacy by prolonging the up-regulation of LDLR. Interestingly, the plant-derived hypocholesterolemic compound berberine (BBR) up-regulates LDLR expression while down-regulating PCSK9. In our investigations to define mechanisms underlying the transcriptional suppression of PCSK9 by BBR in HepG2 cells, we have identified a highly conserved hepatocyte nuclear factor 1 (HNF1) binding site residing 28 bp upstream from SRE as a critical sequence motif for PCSK9 transcription and its regulation by BBR. Mutation of the HNF1 site reduced PCSK9 promoter activity >90%. A battery of functional assays identified HNF1α as the predominant trans-activator for PCSK9 gene working through this sequence motif. We further provide evidence suggesting that HNF1 site works cooperatively with SRE as HNF1 mutation significantly attenuated the activity of nuclear SREBP2 to transactivate PCSK9 promoter. Finally, we show that a coordinate modest reduction of HNF1α and nuclear SREBP2 by BBR led to a strong suppression of PCSK9 transcription through these two critical regulatory sequences. This is the first described example of SREBP pairing with HNF1 to control an important regulatory pathway in cholesterol homeostasis. This work also provides a mechanism for how BBR suppresses PCSK9 transcription.
Collapse
Affiliation(s)
- Hai Li
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
156
|
Poirier S, Mayer G, Poupon V, McPherson PS, Desjardins R, Ly K, Asselin MC, Day R, Duclos FJ, Witmer M, Parker R, Prat A, Seidah NG. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem 2009; 284:28856-64. [PMID: 19635789 DOI: 10.1074/jbc.m109.037085] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia. PCSK9 binds the epidermal growth factor domain A (EGF-A) of the LDLR and directs it to endosomes/lysosomes for destruction. Although the mechanism by which PCSK9 regulates LDLR degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways. Here, we show that clathrin light chain small interfering RNAs that block intracellular trafficking from the trans-Golgi network to lysosomes rapidly increased LDLR levels within HepG2 cells in a PCSK9-dependent fashion without affecting the ability of exogenous PCSK9 to enhance LDLR degradation. In contrast, blocking the extracellular LDLR endocytosis/degradation pathway by a 4-, 6-, or 24-h incubation of cells with Dynasore or an EGF-AB peptide or by knockdown of endogenous autosomal recessive hypercholesterolemia did not significantly affect LDLR levels. The present data from HepG2 cells and mouse primary hepatocytes favor a model whereby depending on the dose and/or incubation period, endogenous PCSK9 enhances the degradation of the LDLR both extra- and intracellularly. Therefore, targeting either pathway, or both, would be an effective method to reduce PCSK9 activity in the treatment of hypercholesterolemia and coronary heart disease.
Collapse
Affiliation(s)
- Steve Poirier
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A 2009; 106:9820-5. [PMID: 19443683 DOI: 10.1073/pnas.0903849106] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels approximately 2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR(-/-) mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.
Collapse
|
158
|
McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 2009; 284:10561-70. [PMID: 19224862 PMCID: PMC2667743 DOI: 10.1074/jbc.m808802200] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/12/2009] [Indexed: 01/07/2023] Open
Abstract
PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.
Collapse
Affiliation(s)
- Markey C McNutt
- Departments of Molecular Genetics, Biochemistry, and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
159
|
|
160
|
Persson L, Gälman C, Angelin B, Rudling M. Importance of proprotein convertase subtilisin/kexin type 9 in the hormonal and dietary regulation of rat liver low-density lipoprotein receptors. Endocrinology 2009; 150:1140-6. [PMID: 19008317 DOI: 10.1210/en.2008-1281] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormonal or dietary challenge can stimulate hepatic low-density lipoprotein receptor (LDLR) expression through posttranscriptional mechanisms. We here tested whether such observations may be due to regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). Treatment with glucagon resulted in a 2-fold increase in hepatic LDLR protein expression, whereas its mRNA levels were reduced; this occurred simultaneously with a 70% reduction in PCSK9 expression. Insulin treatment resulted in responses opposite to those seen by treatment with glucagon. Furthermore, high-dose ethinylestradiol treatment reduced PCSK9 expression by half. Finally, feeding of rats with dietary cholesterol reduced PCSK9 expression, resulting in an increased number of hepatic LDLRs despite a reduction of LDLR mRNA levels. Regulation of PCSK9 occurred in part through sterol regulatory element binding protein-2, but changes in this cholesterol-controlled transcription factor could not explain all hormonal effects seen. We conclude that the hormonal and dietary regulation of hepatic LDLRs also involves posttranscriptional regulation by PCSK9. The identification of PCSK9 regulation by these various treatments is important in understanding of the physiological function of this protein and points to new targets for therapeutic treatments to increase hepatic LDLR numbers.
Collapse
Affiliation(s)
- Lena Persson
- Department of Endocrinology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | |
Collapse
|
161
|
Luo Y, Warren L, Xia D, Jensen H, Sand T, Petras S, Qin W, Miller KS, Hawkins J. Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice. J Lipid Res 2008; 50:1581-8. [PMID: 19060325 DOI: 10.1194/jlr.m800542-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is predominantly expressed in liver and regulates cholesterol metabolism by down regulating liver LDL receptor (LDLR) proteins. Here we report transgenic overexpression of human PCSK9 in kidney increased plasma levels of PCSK9 and subsequently led to a dramatic reduction in liver LDLR proteins. The regulation of LDLR by PCSK9 displayed tissue specificity, with liver being the most responsive tissue. Even though the PCSK9 transgene was highly expressed in kidney, LDLR proteins were suppressed to a lower extent in this tissue than in liver. Adrenal LDLR proteins were not regulated by elevated plasma PCSK9. hPCSK9 transgene expression and subsequent reduction of liver LDLR led to increases in plasma total cholesterol, LDL cholesterol, and ApoB, which were further increased by a high-fat, high-cholesterol diet. We also observed that the size distribution of hPCSK9 in transgenic mouse plasma was heterogeneous. In chow-fed mice, the majority of PCSK9 proteins were in free forms; however, feeding a high-fat, high-cholesterol diet resulted in a shift of hPCSK9 distribution toward larger complexes. PCSK9 distribution in human plasma also exhibited heterogeneity and individual variability in the percentage of PCSK9 in free form and in large complexes. We provide strong evidence to support that human PCSK9 proteins secreted from extrahepatic tissue are able to promote LDLR degradation in liver and increase plasma LDL. Our data also suggest that LDLR protein regulation by PCSK9 has tissue specificity, with liver being the most responsive tissue.
Collapse
Affiliation(s)
- Yi Luo
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research and Development, Groton/New London Laboratories, Groton, CT 06340, USA. Yi.Luo@pfi zer.com
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 2008; 50 Suppl:S172-7. [PMID: 19020338 DOI: 10.1194/jlr.r800091-jlr200] [Citation(s) in RCA: 459] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The identification and characterization of proprotein convertase subtilisin-like/kexin type 9 (PCSK9) have provided new insights into LDL metabolism and the causal role of LDL in coronary heart disease (CHD). PCSK9 is a secreted protease that mediates degradation of the LDL receptor by interacting with the extracellular domain and targeting the receptor for degradation. Individuals with loss-of-function mutations in PCSK9 have reduced plasma levels of LDL cholesterol and are protected from CHD; these observations have validated PCSK9 as a therapeutic target and suggested new approaches for the treatment and prevention of CHD.
Collapse
Affiliation(s)
- Jay D Horton
- Department of Internal Medicine, The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | | | | |
Collapse
|
163
|
Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374:341-4. [PMID: 18638454 PMCID: PMC2571081 DOI: 10.1016/j.bbrc.2008.07.023] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 01/06/2023]
Abstract
Inflammation induces marked changes in lipid and lipoprotein metabolism. Proprotein convertase subtilisin kexin 9 (PCSK9) plays an important role in regulating LDL receptor degradation. Here, we demonstrate that LPS decreases hepatic LDL receptor protein but at the same time hepatic LDL receptor mRNA levels are not decreased. We therefore explored the effect of LPS on PCSK9 expression. LPS results in a marked increase in hepatic PCSK9 mRNA levels (4h 2.5-fold increase; 38h 12.5-fold increase). The increase in PCSK9 is a sensitive response with 1microg LPS inducing a (1/2) maximal response. LPS also increased PCSK9 expression in the kidney. Finally, zymosan and turpentine, other treatments that induce inflammation, also stimulated hepatic expression of PCSK9. Thus, inflammation stimulates PCSK9 expression leading to increased LDL receptor degradation and decreasing LDL receptors thereby increasing serum LDL, which could have beneficial effects on host defense.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section (111F), Department of Veterans Affairs Medical Center, 4150 Clement Street, University of California San Francisco, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
164
|
Chrétien M, Seidah NG, Basak A, Mbikay M. Proprotein convertases as therapeutic targets. Expert Opin Ther Targets 2008; 12:1289-300. [DOI: 10.1517/14728222.12.10.1289] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
165
|
Costet P, Krempf M, Cariou B. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem Sci 2008; 33:426-34. [DOI: 10.1016/j.tibs.2008.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/15/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
166
|
Zaid A, Roubtsova A, Essalmani R, Marcinkiewicz J, Chamberland A, Hamelin J, Tremblay M, Jacques H, Jin W, Davignon J, Seidah NG, Prat A. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 2008; 48:646-54. [PMID: 18666258 DOI: 10.1002/hep.22354] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED The gene encoding the proprotein convertase subtilisin/kexin type 9 (PCSK9) is linked to familial hypercholesterolemia, as are those of the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 enhances LDLR degradation, resulting in low-density lipoprotein accumulation in plasma. To analyze the role of hepatic PCSK9, total and hepatocyte-specific knockout mice were generated. They exhibit 42% and 27% less circulating cholesterol, respectively, showing that liver PCSK9 was responsible for two thirds of the phenotype. We also demonstrated that, in liver, PCSK9 is exclusively expressed in hepatocytes, representing the main source of circulating PCSK9. The data suggest that local but not circulating PCSK9 regulates cholesterol levels. Although transgenic mice overexpressing high levels of liver and circulating PCSK9 led to the almost complete disappearance of the hepatic LDLR, they did not recapitulate the plasma cholesterol levels observed in LDLR-deficient mice. Single LDLR or double LDLR/PCSK9 knockout mice exhibited similar cholesterol profiles, indicating that PCSK9 regulates cholesterol homeostasis exclusively through the LDLR. Finally, the regenerating liver of PCSK9-deficient mice exhibited necrotic lesions, which were prevented by a high-cholesterol diet. However, lipid accumulation in hepatocytes of these mice was markedly reduced under both chow and high-cholesterol diets, revealing that PCSK9 deficiency confers resistance to liver steatosis. CONCLUSION Although PCSK9 is a target for controlling hypercholesterolemia, our data indicate that upon hepatic damage, patients lacking PCSK9 could be at risk.
Collapse
Affiliation(s)
- Ahmed Zaid
- Laboratorie of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Leren TP, Berge KE. Identification of mutations in the apolipoprotein B-100 gene and in the PCSK9 gene as the cause of hypocholesterolemia. Clin Chim Acta 2008; 397:92-5. [PMID: 18710658 DOI: 10.1016/j.cca.2008.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/09/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Characterization of the normally occurring mutations as the cause of hypocholesterolemia may increase our understanding of the normal lipid metabolism. METHODS DNA from 93 unrelated hypocholesterolemic subjects with a mean (+/-SD) value for total serum cholesterol of 3.3 (+/-0.5) mmol/l) were subjected to DNA sequencing of the individual exons of the apolipoprotein B-100 (apoB-100) gene and of the proprotein convertase subtilisin/kexin 9 (PCSK9) gene. The same analyses were also performed in 23 unrelated subjects with autosomal dominant hypercholesterolemia who had unusually low levels of total serum cholesterol. RESULTS Of the 93 hypocholesterolemic subjects, 9 subjects (9.7%) were heterozygous for a truncating mutation in the apoB-100 gene and six subjects (6.5%) were heterozygous for a loss-of-function mutation in the PCSK9 gene. Of the 23 subjects with autosomal dominant hypercholesterolemia, four subjects (17.4%) were heterozygous for mutations in the apoB-100 gene. CONCLUSION Truncating mutations in the apoB-100 gene are slightly more common as the cause of hypocholesterolemia compared to loss-of-function mutations in the PCSK9 gene. It appears that mutations in the apoB-100 gene may completely normalize the lipid profile in subjects with autosomal dominant hypercholesterolemia, whereas loss-of-function mutations in the PCSK9 gene do not have a sufficient cholesterol-lowering capacity.
Collapse
Affiliation(s)
- Trond P Leren
- Medical Genetics Laboratory, Department of Medical Genetics, Rikshospitalet University Hospital, NO 0027 Oslo, Norway.
| | | |
Collapse
|
168
|
PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep 2008; 9:916-22. [PMID: 18660751 DOI: 10.1038/embor.2008.132] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/21/2008] [Accepted: 06/16/2008] [Indexed: 02/06/2023] Open
Abstract
We have recently identified a new form of post-translational regulation of BACE1 (beta-site amyloid precursor protein (APP)-cleaving enzyme 1), a membrane protein that acts as the rate-limiting enzyme in the generation of the Alzheimer disease amyloid beta-peptide (Abeta). Specifically, BACE1 is transiently acetylated on seven lysine residues in the lumen of the endoplasmic reticulum/endoplasmic reticulum-Golgi intermediate compartment (ER/ERGIC). The acetylated intermediates of the nascent protein are able to reach the Golgi apparatus, whereas the non-acetylated ones are retained and degraded in a post-ER compartment. Here, we report that the serine protease PCSK9 (proprotein convertase subtilisin kexin type 9) contributes to the disposal of non-acetylated BACE1. Both overexpression and small interfering RNA-mediated downregulation of PCSK9 affected the levels of BACE1. The downregulation of PCSK9 affected the levels of the loss-of-acetylation mutants (BACE1(Ala) and BACE1(Arg)) but not those of the gain-of-acetylation mutant (BACE1(Gln)). In addition, Pcsk9(-/-) mice showed increased levels of BACE1 and Abeta in the brain. Finally, we found that nascent low-density lipoprotein receptor, a known substrate of PCSK9, is also acetylated.
Collapse
|
169
|
Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, Lahaye SA, Mbikay M, Ooi TC, Chrétien M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 2008; 7:22. [PMID: 18547436 PMCID: PMC2432057 DOI: 10.1186/1476-511x-7-22] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/11/2008] [Indexed: 12/15/2022] Open
Abstract
Background Proprotein convertase subtilisin kexin-like 9 (PCSK9) is a secreted glycoprotein that is transcriptionally regulated by cholesterol status. It modulates levels of circulating low density lipoprotein cholesterol (LDLC) by negatively regulating low density lipoprotein receptor (LDLR) levels. PCSK9 variants that result in 'gain of function' have been linked to autosomal dominant hypercholesterolemia, while significant protection from coronary artery disease has been documented in individuals who carry 'loss of function' PCSK9 variants. PCSK9 circulates in human plasma, and we previously reported that plasma PCSK9 is positively correlated with total cholesterol and LDLC in men. Results Herein, we report the effects of two lipid-modulating therapies, namely statins and fibrates, on PCSK9 plasma levels in human subjects. We also document their effects on endogenous PCSK9 and LDLR expression in a human hepatocyte cell line, HepG2, using immunoprecipitation and immunoblot analyses. Changes in plasma PCSK9 following fenofibrate or gemfibrozil treatments (fibric acid derivatives) were inversely correlated with changes in LDLC levels (r = -0.558, p = 0.013). Atorvastatin administration (HMGCoA reductase inhibitor) significantly increased plasma PCSK9 (7.40%, p = 0.033) and these changes were inversely correlated with changes in LDLC levels (r = -0.393, p = 0.012). Immunoblot analyses of endogenous PCSK9 and LDLR expression by HepG2 cells in response to statins and fibrates showed that LDLR is more upregulated than PCSK9 by simvastatin (2.6× vs 1.5×, respectively at 10 μM), while fenofibrate did not induce changes in either. Conclusion These results suggest that in vivo (1) statins directly increase PCSK9 expression while (2) fibrates affect PCSK9 expression indirectly through its modulation of cholesterol levels and (3) that these therapies could be improved by combination with a PCSK9 inhibitor, constituting a novel hypercholesterolemic therapy, since PCSK9 was significantly upregulated by both treatments.
Collapse
Affiliation(s)
- Janice Mayne
- Chronic Disease Program, Ottawa Health Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liyanage KE, Hooper AJ, Defesche JC, Burnett JR, van Bockxmeer FM. High-resolution melting analysis for detection of familial ligand-defective apolipoprotein B-100 mutations. Ann Clin Biochem 2008; 45:170-6. [PMID: 18325181 DOI: 10.1258/acb.2007.007077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Familial ligand-defective apolipoprotein B-100 (FDB) is characterized by elevated plasma concentrations of LDL-cholesterol and apolipoprotein (apo) B, normal triglyceride and HDL-cholesterol levels, the presence of tendon xanthomas, and premature coronary artery disease. FDB cannot be clinically distinguished from heterozygous LDL-receptor-defective familial hypercholesterolaemia (FH) without genetic testing. METHODS Amplicons in exon 26 and exon 29 of the APOB gene were screened for established genetic variants including mutations and polymorphisms using high-resolution melting analysis. Six novel variants associated with FDB in hypercholesterolaemic Dutch patients (S3476L, S3488G, Y3533C, T3540M, I4350T, G4368D) were also studied. RESULTS All positive controls, a total of 10 mutations in exon 26 and four mutations in exon 29, were readily detectable by melting curve analysis. In addition, a patient previously not known to be heterozygous for the H3543Y mutation was identified in a screen of hypercholesterolaemic subjects. The method was validated by comparison of high-resolution melting analysis with DNA sequence data in a 'blinded' manner in 35 consecutive patients attending a lipid disorders clinic. These patients were classified as 'definite FH' by the Dutch Lipid Clinic Network criteria. Five patients were found to be heterozygous for the R3500Q and one for H3543Y. CONCLUSIONS We have established a novel, robust method of FDB mutation detection using high-resolution melting analysis in conjunction with DNA sequencing. Compared with existing methods it is not only more cost-effective, but is also capable of detecting new sequence changes and will have importance in cascade screening of affected subjects.
Collapse
|
171
|
Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Keech A, Patel S, Sullivan DR, Cohn JS, Rye KA, Barter PJ. Plasma PCSK9 Concentrations Correlate with LDL and Total Cholesterol in Diabetic Patients and Are Decreased by Fenofibrate Treatment. Clin Chem 2008; 54:1038-45. [DOI: 10.1373/clinchem.2007.099747] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the LDL receptor (LDLr) in hepatocytes, and its expression in mouse liver has been shown to decrease with fenofibrate treatment.
Methods: We developed a sandwich ELISA using recombinant human PCSK9 protein and 2 affinity-purified polyclonal antibodies directed against human PCSK9. We measured circulating PCSK9 concentrations in 115 diabetic patients from the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes) study before and after fenofibrate treatment.
Results: We found that plasma PCSK9 concentrations correlate with total (r = 0.45, P = 0.006) and LDL (r = 0.54, P = 0.001) cholesterol but not with triglycerides or HDL cholesterol concentrations in that cohort. After 6 weeks of treatment with comicronized fenofibrate (200 mg/day), plasma PCSK9 concentrations decreased by 8.5% (P = 0.041 vs pretreatment). This decrease correlated with the efficacy of fenofibrate, as judged by a parallel reduction in plasma triglycerides (r = 0.31, P = 0.015) and LDL cholesterol concentrations (r = 0.27, P = 0.048).
Conclusions: We conclude that this decrease in PCSK9 explains at least in part the LDL cholesterol–lowering effects of fenofibrate. Fenofibrate might be of interest to further reduce cardiovascular risk in patients already treated with a statin.
Collapse
Affiliation(s)
- Gilles Lambert
- The Heart Research Institute, Sydney, Australia
- Université de Nantes, INSERM U539, Nantes, France
| | | | | | | | | | | | | | | | | | - Kerry-Anne Rye
- The Heart Research Institute, Sydney, Australia
- The University of Sydney, Sydney, Australia
| | - Philip J Barter
- The Heart Research Institute, Sydney, Australia
- The University of Sydney, Sydney, Australia
| |
Collapse
|
172
|
Dewpura T, Raymond A, Hamelin J, Seidah NG, Mbikay M, Chrétien M, Mayne J. PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans. FEBS J 2008; 275:3480-93. [PMID: 18498363 DOI: 10.1111/j.1742-4658.2008.06495.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is a secreted glycoprotein that regulates the degradation of the low-density lipoprotein receptor. Single nucleotide polymorphisms in its gene associate with both hypercholesterolemia and hypocholesterolemia, and studies have shown a significant reduction in the risk of coronary heart disease for 'loss-of-function' PCSK9 carriers. Previously, we reported that proPCSK9 undergoes autocatalytic processing of its prodomain in the endoplasmic reticulum and that its inhibitory prosegment remains associated with it following secretion. Herein, we used a combination of mass spectrometry and radiolabeling to report that PCSK9 is phosphorylated at two sites: Ser47 in its propeptide and Ser688 in its C-terminal domain. Site-directed mutagenesis suggested that a Golgi casein kinase-like kinase is responsible for PCSK9 phosphorylation, based on the consensus site, SXE/S(p). PCSK9 phosphorylation was cell-type specific and occurs physiologically because human plasma PCSK9 is phosphorylated. Interestingly, we show that the naturally occurring 'loss-of-function' variant PCSK9(R46L) exhibits significantly decreased propeptide phosphorylation in the Huh7 liver cell line by 34% (P < 0.0001). PCSK9(R46L) and the engineered, unphosphorylated variant PCSK9(E49A) are cleaved following Ser47, suggesting that phosphorylation protects the propeptide against proteolysis. Phosphorylation may therefore play an important regulatory role in PCSK9 function. These findings will be important for the future design of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Thilina Dewpura
- Chronic Disease Program, Ottawa Health Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
173
|
Schmidt RJ, Zhang Y, Zhao Y, Qian YW, Wang H, Lin A, Ehsani ME, Yu X, Wang G, Singh J, Su EW, Li S, Konrad RJ, Cao G. A Novel Splicing Variant of Proprotein Convertase Subtilisin/Kexin Type 9. DNA Cell Biol 2008; 27:183-9. [DOI: 10.1089/dna.2007.0667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert J. Schmidt
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Youyan Zhang
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Yang Zhao
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - He Wang
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Aimin Lin
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Maria E. Ehsani
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Xiaohong Yu
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Guoming Wang
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Jaipal Singh
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Eric W. Su
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Shuyu Li
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| | - Guoqing Cao
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana
| |
Collapse
|
174
|
Cameron J, Holla OL, Laerdahl JK, Kulseth MA, Ranheim T, Rognes T, Berge KE, Leren TP. Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med 2008; 263:420-31. [PMID: 18266662 DOI: 10.1111/j.1365-2796.2007.01915.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To expand our understanding of the structure and function of proprotein convertase subtilisin/kexin type 9 (PCSK9) by studying how naturally occurring mutations in PCSK9 disrupt the function of PCSK9. DESIGN Mutations in PCSK9 were identified by sequencing of DNA from subjects with hypo- or hypercholesterolemia. The effect of the identified mutations on the autocatalytic cleavage and secretion of PCSK9, as well as the effect on PCSK9-mediated degradation of the low density lipoprotein receptors, were determined in HepG2 or HEK293 cells transiently transfected with mutant PCSK9-containing plasmids. The findings were collated to the clinical characteristics of the subjects possessing these mutations, and the phenotypic effects were analysed in terms of available structural data for PCSK9. RESULTS Five novel mutations in PCSK9 were identified. Mutation R215H was a gain-of-function mutation which causes hypercholesterolemia. Mutation G236S and N354I were loss-of-function mutations due to failure to exit the endoplasmic reticulum or failure to undergo autocatalytic cleavage, respectively. Mutations A245T and R272Q were most likely normal genetic variants. By comparing the number of patients with gain-of-function mutations in PCSK9 with the number of familial hypercholesterolemia heterozygotes among subjects with hypercholesterolemia, the prevalence of subjects with gain-of-function mutations in PCSK9 in Norway can be estimated to one in 15,000. CONCLUSION This study has provided novel information about the structural requirements for the normal function of PCSK9. However, more studies are needed to determine the mechanisms by which gain-of-function mutations in PCSK9 cause hypercholesterolemia.
Collapse
Affiliation(s)
- J Cameron
- Department of Medical Genetics, Medical Genetics Laboratory, Rigshospitalet-Radiumhospitalet Medical Centre, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Calandra S, Tarugi P. Genetics and molecular biology: proprotein convertase subtilisin/kexin type 9 and LDL receptor--an intriguing story. Curr Opin Lipidol 2008; 19:208-11. [PMID: 18388699 DOI: 10.1097/mol.0b013e3282f6a465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
176
|
Pandit S, Wisniewski D, Santoro JC, Ha S, Ramakrishnan V, Cubbon RM, Cummings RT, Wright SD, Sparrow CP, Sitlani A, Fisher TS. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res 2008; 49:1333-43. [PMID: 18354137 DOI: 10.1194/jlr.m800049-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations within proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with dominant forms of familial hypercholesterolemia. PCSK9 binds the LDL receptor (LDLR), and addition of PCSK9 to cells promotes degradation of LDLR. PCSK9 mutant proteins associated with hypercholesterolemia (S127R and D374Y) are more potent in decreasing LDL uptake than is wild-type PCSK9. To better understand the mechanism by which mutations at the Ser127 and Asp374 residues of PCSK9 influence PCSK9 function, a limited vertical scanning mutagenesis was performed at both sites. S127R and S127K proteins were more potent in decreasing LDL uptake than was wild-type PCSK9, and each D374 mutant tested was more potent in reducing LDL uptake when the proteins were added exogenously to cells. The potencies of D374 mutants in lowering LDL uptake correlated with their ability to interact with LDLR in vitro. Combining S127R and D374Y was also found to have an additive effect in enhancing PCSK9's ability to reduce LDL uptake. Modeling of PCSK9 S127 and D374 mutations indicates that mutations that enhance PCSK9 function stabilize or destabilize the protein, respectively. In conclusion, these results suggest a model in which mutations at Ser127 and Asp374 residues modulate PCSK9's ability to regulate LDLR function through distinct mechanisms.
Collapse
Affiliation(s)
- Shilpa Pandit
- Division of Cardiovascular Diseases, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Fan D, Yancey PG, Qiu S, Ding L, Weeber EJ, Linton MF, Fazio S. Self-association of human PCSK9 correlates with its LDLR-degrading activity. Biochemistry 2008; 47:1631-9. [PMID: 18197702 PMCID: PMC2732112 DOI: 10.1021/bi7016359] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic studies have demonstrated an important role for proprotein convertase subtilisin/kexin type 9 (PCSK9) as a determinant of plasma cholesterol levels. However, the underlying molecular mechanism is not completely understood. To this end, we have generated a mammalian cell expression system for human PCSK9 and its mutants and produced transgenic mice expressing human PCSK9. HEK293T cells transfected with the human PCSK9 DNA construct expressed and secreted PCSK9 and displayed decreased LDLR levels; functional PCSK9 protein was purified from the conditioned medium. In vitro studies showed that PCSK9 self-associated in a concentration-, temperature-, and pH-dependent manner. A mixture of PCSK9 monomers, dimers, and trimers displayed an enhanced LDLR degrading activity compared to monomeric PCSK9. A gain-of-function mutant, D374Y, displayed greatly increased self-association compared to wild-type PCSK9. Moreover, we demonstrated that the catalytic domain of PCSK9 is responsible for the self-association. Self-association of PCSK9 was enhanced by incubation with mouse apoE-/- VLDL and inhibited by incubation with both human and mouse HDL. When PCSK9 protein was incubated with total serum, it partially associated with LDL and HDL but not with VLDL. In transgenic mice, PCSK9 also associated with LDL and HDL but not with VLDL. We conclude that self-association is an intrinsic property of PCSK9, correlated to its LDLR-degrading activity and affected by plasma lipoproteins. These results provide a basis for developing strategies to manipulate PCSK9 activity in the circulation for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
| | | | | | | | | | - MacRae F. Linton
- To whom correspondence should be addressed: 2220 Pierce, Avenue, 383 PRB, Vanderbilt University, Nashville, TN 37232. Phone (615)936-1450, Fax.(615)936-3486. E-mail: or
| | - Sergio Fazio
- To whom correspondence should be addressed: 2220 Pierce, Avenue, 383 PRB, Vanderbilt University, Nashville, TN 37232. Phone (615)936-1450, Fax.(615)936-3486. E-mail: or
| |
Collapse
|
178
|
Kourimate S, Le May C, Langhi C, Jarnoux AL, Ouguerram K, Zaïr Y, Nguyen P, Krempf M, Cariou B, Costet P. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem 2008; 283:9666-73. [PMID: 18245819 DOI: 10.1074/jbc.m705831200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with familial autosomal dominant hypercholesterolemia and is a natural inhibitor of the LDL receptor (LDLr). PCSK9 is degraded by other proprotein convertases: PC5/6A and furin. Both PCSK9 and the LDLr are up-regulated by the hypocholesterolemic statins. Thus, inhibitors or repressors of PCSK9 should amplify their beneficial effects. In the present study, we showed that PPARalpha activation counteracts PCSK9 induction by statins by repressing PCSK9 promoter activity and by increasing PC5/6A and furin expression. Quantification of mRNA and protein levels showed that various fibrates decreased PCSK9 and increased PC5/6A and furin expression. Fenofibric acid (FA) reduced PCSK9 protein content in immortalized human hepatocytes (IHH) as well as its cellular secretion. FA suppressed PCSK9 induction by statins or by the liver X receptor agonist TO901317. PCSK9 repression is occurring at the promoter level. We showed that PC5/6A and furin fibrate-mediated up-regulation is PPARalpha-dependent. As a functional test, we observed that FA increased by 30% the effect of pravastatin on the LDLr activity in vitro. In conclusion, fibrates simultaneously decreased PCSK9 expression while increasing PC5/6A and furin expression, indicating a broad action of PPARalpha activation in proprotein convertase-mediated lipid homeostasis. Moreover, this study validates the functional relevance of a combined therapy associating PCSK9 repressors and statins.
Collapse
Affiliation(s)
- Sanae Kourimate
- INSERM U915, CHU Hotel Dieu, 9 Quai Moncousu, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
PCSK9: an enigmatic protease. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:184-91. [PMID: 18280815 DOI: 10.1016/j.bbalip.2008.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/11/2007] [Accepted: 01/15/2008] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol metabolism by controlling the levels of low density lipoprotein (LDL) particles that circulate in the bloodstream. Several gain-of-function and loss-of-function mutations in the PCSK9 gene, that occur naturally, have been identified and linked to hypercholesterolemia and hypocholesterolemia, respectively. PCSK9 expression has been shown to be regulated by sterol regulatory element binding proteins (SREBPs) and statins similar to other genes involved in cholesterol homeostasis. The most critical finding concerning PCSK9 is that this protease is able to influence the number of LDL receptor molecules expressed on the cell surface. Studies have demonstrated that PCSK9 acts mainly by enhancing degradation of LDL receptor protein in the liver. Inactivation of PCSK9 in mice reduces plasma cholesterol levels primarily by increasing hepatic expression of LDL receptor protein and thereby accelerating clearance of circulating LDL cholesterol. The objective of this review is to summarize the current information related to the regulation and function of PCSK9 and to identify gaps in our present knowledge.
Collapse
|
180
|
Abstract
PURPOSE OF REVIEW Effective therapies for lowering LDL-cholesterol reduce the incidence of cardiovascular disease and provide associated decreases in morbidity and mortality. Progress in our understanding of metabolism and innovations in drug design have jointly identified promising new drug targets and alternative approaches to old targets. This review focuses on the mechanism, safety and efficacy of emerging LDL-cholesterol lowering therapies. RECENT FINDINGS Decreasing apolipoprotein B expression or preventing the formation of a stable lipoprotein structure by inhibiting microsomal triglyceride transfer protein attenuates the secretion of atherogenic lipoproteins containing apolipoprotein B into the plasma. Increases in LDL receptor-mediated cholesterol clearance occur when hepatic cholesterol stores are reduced secondary to inhibition of squalene synthase or LDL receptor degradation is disrupted by reduced activity of proprotein convertase subtilisin kexin type 9. Each of these developing therapies demonstrably reduces LDL-cholesterol levels. SUMMARY The emergence of modalities that act in series and in parallel with available agents may allow more effective LDL-cholesterol lowering in those patients intolerant of current therapy, and may permit decremental reductions in LDL-cholesterol for those unable to achieve aggressive LDL-cholesterol goals using existing agents.
Collapse
Affiliation(s)
- Scott M Lilly
- Department of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
181
|
Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res 2007; 49:394-8. [PMID: 18033751 DOI: 10.1194/jlr.m700437-jlr200] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has gained attention as a key regulator of serum low density lipoprotein cholesterol (LDL-C) levels. This novel protease causes the degradation of hepatic low density lipoprotein receptors. In humans, gain-of-function mutations in PCSK9 cause a form of familial hypercholesterolemia, whereas loss-of-function mutations result in significantly decreased LDL-C levels and cardiovascular risk. Previous studies have demonstrated that statins upregulate PCSK9 mRNA expression in cultured cells and animal models. In light of these observations, we studied the effect of atorvastatin on circulating PCSK9 protein levels in humans using a sandwich ELISA to quantitate serum PCSK9 levels in patients treated with atorvastatin or placebo for 16 weeks. We observed that atorvastatin (40 mg/day) significantly increased circulating PCSK9 levels by 34% compared with baseline and placebo and decreased LDL-C levels by 42%. These results suggest that the addition of a PCSK9 inhibitor to statin therapy may result in even further LDL-C decreases.
Collapse
Affiliation(s)
- Holly E Careskey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|