151
|
Honma N, Horii R, Iwase T, Saji S, Younes M, Ito Y, Akiyama F. Clinical importance of androgen receptor in breast cancer patients treated with adjuvant tamoxifen monotherapy. Breast Cancer 2012; 20:323-330. [PMID: 22302643 DOI: 10.1007/s12282-012-0337-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/11/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Despite many studies, the clinicopathological importance of the androgen receptor (AR) in breast cancer is not well established, and its significance as an independent predictor of clinical outcome is controversial. A large and systematic study is needed to address these issues. The aim of the present study was to elucidate whether AR has independent clinical value, examining its importance in a large and well-predefined patient group with a long follow-up period and complete clinicopathological data. METHODS: Archival materials of 403 invasive breast cancers from women treated with adjuvant tamoxifen monotherapy (median follow-up period 11.0 years) were subjected to immunohistochemical study using anti-AR monoclonal antibody. AR expression was compared with established clinicopathological factors, estrogen receptor (ER)-β expression, and clinical outcome. RESULTS: AR positivity was correlated with ER-α positivity, progesterone receptor positivity, ER-β positivity, and a lower nuclear grade. Patients with AR-positive carcinomas exhibited a significantly better clinical outcome than those with AR-negative carcinomas (P = 0.0165 for disease-free survival, P = 0.0344 for overall survival). Multivariate analysis did not yield significant differences in clinical outcome according to the AR status, whereas the ER-β status showed significant differences in multivariate analysis. CONCLUSIONS: Although, and in agreement with previous reports, AR positivity correlated with some established favorable prognostic factors and with ER-β positivity, AR was not an independent predictor of clinical outcome. Controversy regarding the value of AR as an independent predictor of clinical outcome may at least partly reflect the relatively limited power of AR in breast cancer.
Collapse
Affiliation(s)
- Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan,
| | | | | | | | | | | | | |
Collapse
|
152
|
Marques YMFS, Giudice FS, Freitas VM, Abreu e Lima MDCC, Hunter KD, Speight PM, Machado de Sousa SCO. Oestrogen receptor β in adenoid cystic carcinoma of salivary glands. Histopathology 2012; 60:609-16. [PMID: 22260414 DOI: 10.1111/j.1365-2559.2011.04095.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS This study aimed to describe the expression of oestrogen receptor (ER)α, ERβ and aromatase in salivary gland adenoid cystic carcinoma (ACC). METHODS AND RESULTS ERα, ERβ and aromatase expression was analysed by immunohistochemistry in tissue microarray blocks from 38 cases of ACC and seven normal salivary glands. The intracellular localization and amount of total protein expression were investigated by immunofluorescence and western blotting in an ACC cell line. Western blotting analysis showed overexpression of ERα, ERβ and aromatase in the ACC cell line; however, with immunofluorescence, only ERβ was shown to be expressed in the nucleus. Immunohistochemistry revealed positive nuclear expression of ERβ, positive cytoplasmic expression of aromatase and a lack of ERα expression as compared with normal salivary glands. CONCLUSIONS The nuclear expression of ERβ indicates that oestrogen may be active in ACC and possibly able to mediate E2-targeted gene transcription. This study strongly suggests that ERβ may be involved in tumour progression, playing a role in tumour development, and thus corroborating the indication for ER antagonists in the clinical control of ACC. This study opens a new perspective on the potential use of anti-oestrogens and aromatase inhibitors as therapeutic agents against ACC.
Collapse
Affiliation(s)
- Yonara M F S Marques
- Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes 2227, São Paulo ⁄ SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
153
|
Shaaban AM, Ball GR, Brannan RA, Cserni G, Di Benedetto A, Dent J, Fulford L, Honarpisheh H, Jordan L, Jones JL, Kanthan R, Maraqa L, Litwiniuk M, Mottolese M, Pollock S, Provenzano E, Quinlan PR, Reall G, Shousha S, Stephens M, Verghese ET, Walker RA, Hanby AM, Speirs V. A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Res Treat 2011; 133:949-58. [PMID: 22094935 DOI: 10.1007/s10549-011-1856-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/25/2011] [Indexed: 02/08/2023]
Abstract
Male breast cancer remains understudied despite evidence of rising incidence. Using a co-ordinated multi-centre approach, we present the first large scale biomarker study to define and compare hormone receptor profiles and survival between male and female invasive breast cancer. We defined and compared hormone receptor profiles and survival between 251 male and 263 female breast cancers matched for grade, age, and lymph node status. Tissue microarrays were immunostained for ERα, ERβ1, -2, -5, PR, PRA, PRB and AR, augmented by HER2, CK5/6, 14, 18 and 19 to assist typing. Hierarchical clustering determined differential nature of influences between genders. Luminal A was the most common phenotype in both sexes. Luminal B and HER2 were not seen in males. Basal phenotype was infrequent in both. No differences in overall survival at 5 or 10 years were observed between genders. Notably, AR-positive luminal A male breast cancer had improved overall survival over female breast cancer at 5 (P = 0.01, HR = 0.39, 95% CI = 0.26-0.87) but not 10 years (P = 0.29, HR = 0.75, 95% CI = 0.46-1.26) and both 5 (P = 0.04, HR = 0.37, 95% CI = 0.07-0.97) and 10 years (P = 0.04, HR = 0.43, 95% CI = 0.12-0.97) in the unselected group. Hierarchical clustering revealed common clusters between genders including total PR-PRA-PRB and ERβ1/2 clusters. A striking feature was the occurrence of ERα on distinct clusters between genders. In female breast cancer, ERα clustered with PR and its isoforms; in male breast cancer, ERα clustered with ERβ isoforms and AR. Our data supports the hypothesis that breast cancer is biologically different in males and females suggesting implications for clinical management. With the incidence of male breast cancer increasing this provides impetus for further study.
Collapse
Affiliation(s)
- Abeer M Shaaban
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Nilsson S, Koehler KF, Gustafsson JÅ. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov 2011; 10:778-92. [DOI: 10.1038/nrd3551] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
155
|
Shanle EK, Hawse JR, Xu W. Generation of stable reporter breast cancer cell lines for the identification of ER subtype selective ligands. Biochem Pharmacol 2011; 82:1940-9. [PMID: 21924251 DOI: 10.1016/j.bcp.2011.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
Estrogen signaling is mediated by two estrogen receptors (ERs), ERα and ERβ, which have unique roles in the regulation of breast cancer cell proliferation. ERα induces proliferation in response to estrogen and ERβ inhibits proliferation in breast cancer cells, suggesting that ERβ selective ligands may be beneficial for promoting the anti-proliferative action of ERβ. Subtype selective ligands can be identified using transcriptional assays, but cell lines in which ERα or ERβ are independently expressed are required. Of the available reporter cell lines, none have been generated in breast cancer cells to identify subtype selective ligands. Here we describe the generation of two isogenic breast cancer cell lines, Hs578T-ERαLuc and Hs578T-ERβLuc, with stable integration of an estrogen responsive luciferase reporter gene. Hs578T-ERαLuc and Hs578T-ERβLuc cell lines are highly sensitive to estrogenic chemicals and ER subtype selective ligands, providing a tool to characterize the transcriptional potency and subtype selectivity of estrogenic ligands in the context of breast cancer cells. In addition to measuring reporter activity, ERβ target gene expression and growth inhibitory effects of ERβ selective ligands can be determined as biological endpoints. The finding that activation of ERβ by estrogen or ERβ selective natural phytoestrogens inhibits the growth of Hs578T-ERβ cells implies therapeutic potential for ERβ selective ligands in breast cancer cells that express ERβ.
Collapse
Affiliation(s)
- Erin K Shanle
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
156
|
Honma N, Arai T, Takubo K, Younes M, Tanaka N, Mieno MN, Tamura K, Ikeda S, Sawabe M, Muramatsu M. Oestrogen receptor-β CA repeat polymorphism is associated with incidence of colorectal cancer among females. Histopathology 2011; 59:216-24. [DOI: 10.1111/j.1365-2559.2011.03914.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
157
|
Honma N, Saji S, Hirose M, Horiguchi SI, Kuroi K, Hayashi SI, Utsumi T, Harada N. Sex steroid hormones in pairs of tumor and serum from breast cancer patients and pathobiological role of androstene-3β, 17β-diol. Cancer Sci 2011; 102:1848-54. [DOI: 10.1111/j.1349-7006.2011.02018.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
158
|
Raha P, Thomas S, Munster PN. Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics 2011; 3:451-70. [DOI: 10.2217/epi.11.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For more than four decades, modulation of estrogen receptor activity with antiestrogens has been a successful strategy for the treatment of breast cancer. However, therapeutic resistance limits this approach. Patients whose tumors lack estrogen receptors are not candidates for antiestrogens. Furthermore, roughly half that do express estrogen receptors fail to respond. Together, these tumors are considered to be de novo resistant. For those with tumors that do respond, most will eventually acquire resistance. As such, the underlying mechanisms of both de novo and acquired resistance have been the subject of considerable research, so that new therapeutic targets might be discovered and developed. From this work, epigenetic regulation of gene expression has emerged as a major contributor to both forms of resistance. In this article, we present our current understanding of the mechanisms that contribute to antiestrogen resistance, focusing on epigenetic regulation, and examine the approaches being used that target epigenetic machinery to overcome resistance both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Paromita Raha
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | - Scott Thomas
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | | |
Collapse
|
159
|
Abstract
By eliciting distinct transcriptional responses, the oestrogen receptors (ERs) ERα and ERβ exert opposite effects on cellular processes that include proliferation, apoptosis and migration and that differentially influence the development and the progression of cancer. Perturbation of ER subtype-specific expression has been detected in various types of cancer, and the differences in the expression of ERs are correlated with the clinical outcome. The changes in the bioavailability of ERs in tumours, together with their specific biological functions, promote the selective restoration of their activity as one of the major therapeutic approaches for hormone-dependent cancers.
Collapse
Affiliation(s)
- Christoforos Thomas
- Center for Nuclear Receptors and Cell Signalling, Department of Biology and Biochemistry, University of Houston, Houston 77204, Texas, USA
| | | |
Collapse
|
160
|
Leygue E, Murphy L. Comparative evaluation of ERα and ERβ significance in breast cancer: state of the art. Expert Rev Endocrinol Metab 2011; 6:333-343. [PMID: 30754114 DOI: 10.1586/eem.11.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 30 years of clinical data have unequivocally established estrogen receptor (ER)-α as a critical clinical biomarker and valid therapeutic target to fight breast cancer. However, ERα remains imperfect with respect to both of these activities, mainly because the mechanisms by which estrogens mediate their activity are far more complex than originally anticipated. The cloning of a second estrogen receptor, ERβ, has led to a full re-evaluation of our original view of the action of estrogen in breast tissues. Important challenges remain with respect to the design, selection and normalization of the most appropriate methods for assaying the expression and functionality of both receptors. Solving these challenges remains a priority in order to decide upon specific endocrine therapies and save patients who are still dying from a potentially curable disease.
Collapse
Affiliation(s)
- Etienne Leygue
- a Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Ave, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Leigh Murphy
- a Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Ave, Winnipeg, Manitoba, R3E 0V9, Canada
- b
| |
Collapse
|
161
|
Wu X, Subramaniam M, Grygo SB, Sun Z, Negron V, Lingle WL, Goetz MP, Ingle JN, Spelsberg TC, Hawse JR. Estrogen receptor-beta sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen. Breast Cancer Res 2011; 13:R27. [PMID: 21392396 PMCID: PMC3219188 DOI: 10.1186/bcr2844] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 02/08/2023] Open
Abstract
Introduction We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha (ERα). However, the relevance of ERβ in mediating endoxifen action has yet to be explored. Here, we characterize the molecular actions of endoxifen in breast cancer cells expressing ERβ and examine its effectiveness as an anti-estrogenic agent in these cell lines. Methods MCF7, Hs578T and U2OS cells were stably transfected with full-length ERβ. ERβ protein stability, dimer formation with ERα and expression of known ER target genes were characterized following endoxifen exposure. The ability of various endoxifen concentrations to block estrogen-induced proliferation of MCF7 parental and ERβ-expressing cells was determined. The global gene expression profiles of these two cell lines was monitored following estrogen and endoxifen exposure and biological pathway analysis of these data sets was conducted to identify altered cellular processes. Results Our data demonstrate that endoxifen stabilizes ERβ protein, unlike its targeted degradation of ERα, and induces ERα/ERβ heterodimerization in a concentration dependent manner. Endoxifen is also shown to be a more potent inhibitor of estrogen target genes when ERβ is expressed. Additionally, low concentrations of endoxifen observed in tamoxifen treated patients with deficient CYP2D6 activity (20 to 40 nM) markedly inhibit estrogen-induced cell proliferation rates in the presence of ERβ, whereas much higher endoxifen concentrations are needed when ERβ is absent. Microarray analyses reveal substantial differences in the global gene expression profiles induced by endoxifen at low concentrations (40 nM) when comparing MCF7 cells which express ERβ to those that do not. These profiles implicate pathways related to cell proliferation and apoptosis in mediating endoxifen effectiveness at these lower concentrations. Conclusions Taken together, these data demonstrate that the presence of ERβ enhances the sensitivity of breast cancer cells to the anti-estrogenic effects of endoxifen likely through the molecular actions of ERα/β heterodimers. These findings underscore the need to further elucidate the role of ERβ in the biology and treatment of breast cancer and suggest that the importance of pharmacologic variation in endoxifen concentrations may differ according to ERβ expression.
Collapse
Affiliation(s)
- Xianglin Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1stStreet SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
CONTEXT A new class of estrogen receptors was discovered in 1996 and named estrogen receptor β (ER-B); the traditional estrogen receptor, which until a little more than 10 years ago was thought of as the only estrogen receptor in existence, is now called estrogen receptor α. Estrogen receptor β has at least 5 isoforms, which may have different functions and have different tissue distribution. The significance of ER-B expression in tumors was first demonstrated in breast cancer, with several studies demonstrating that women with ER-B-positive breast cancers treated with adjuvant tamoxifen have better survival, independent of estrogen receptor α expression. Pathologists need to be more aware of this increasingly important protein, as it will soon find its way into routine clinical practice. OBJECTIVE To provide pathologists with a concise review of ER-B, with special emphasis on current and potential clinical relevance. DATA SOURCES A search of the English literature in PubMed (National Library of Medicine, Bethesda, Maryland) for articles with titles including "estrogen receptor beta," with emphasis on "immunohistochemistry." Abstracts were reviewed, and selected articles were used as the basis for writing this review, mostly based on their relevance to pathology. CONCLUSIONS Estrogen receptor β and its isoforms have wider tissue distribution, including the gastrointestinal tract, lung, and brain, than the traditional estrogen receptor, now called estrogen receptor α. Estrogen receptor β expression in breast cancer is associated with favorable outcome in women treated with adjuvant tamoxifen, even in tumors negative for estrogen receptor α. The clinical significance of ER-B expression in tumors other than breast is currently under investigation.
Collapse
Affiliation(s)
- Mamoun Younes
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
163
|
Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 2010; 129:777-84. [DOI: 10.1007/s10549-010-1273-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/17/2010] [Indexed: 01/18/2023]
|
164
|
Hamilton-Burke W, Coleman L, Cummings M, Green CA, Holliday DL, Horgan K, Maraqa L, Peter MB, Pollock S, Shaaban AM, Smith L, Speirs V. Phosphorylation of estrogen receptor beta at serine 105 is associated with good prognosis in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1079-86. [PMID: 20696772 DOI: 10.2353/ajpath.2010.090886] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Estrogen receptor (ER) action is modulated by posttranslational modifications. Although ERalpha phosphorylation correlates with patient outcome, ERbeta is similarly phosphorylated but its significance in breast cancer has not been addressed. We investigated whether ERbeta that is phosphorylated at serine 105 (S105-ERbeta) is expressed in breast cancer and assessed potential clinical implications of this phosphorylation. Following antibody validation, S105-ERbeta expression was studied in tissue microarrays comprising 108 tamoxifen-resistant and 351 tamoxifen-sensitive cases and analyzed against clinical data. S105-ERbeta regulation in vitro was assessed by Western blot, flow cytometry, and immunofluorescence. Nuclear S105-ERbeta was observed in breast carcinoma and was associated with better survival (Allred score > or =3), even in tamoxifen-resistant cases, and additionally correlated with ERbeta1 and ERbeta2 expression. Distinct S105-ERbeta nuclear speckles were seen in some higher grade tumors. S105-ERbeta levels increased in MCF-7 cells in response to 17beta-estradiol, the ERbeta-specific agonist diarylpropionitrile, and the partial ERbeta-agonist genistein. S105-ERbeta nuclear speckles were also seen in MCF-7 cells and markedly increased in size and number at 24 hours following 17beta-estradiol and, in particular diarylpropionitrile, treatment. These speckles were coexpressed with ERbeta1 and ERbeta2. Presence of S105-ERbeta in breast cancer and association with improved survival, even in endocrine resistant breast tumors suggest S105-ERbeta might be a useful additional prognostic marker in this disease.
Collapse
|
165
|
Marqueurs biologiques de résistance à l'hormonothérapie dans les cancers du sein. Bull Cancer 2010; 97:951-63. [DOI: 10.1684/bdc.2010.1137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
166
|
Expression of oestrogen receptor beta isoforms is regulated by transcriptional and post-transcriptional mechanisms. Biochem J 2010; 429:283-90. [PMID: 20462399 DOI: 10.1042/bj20100373] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although ERs (oestrogen receptors) mediate breast tumour behaviour, the precise role of ERbeta remains unclear. This is mainly because analyses have been complicated by the presence in breast tissue of three ERbeta protein variants (ERbeta1, ERbeta2 and ERbeta5) that derive from differential 3' splicing. We have recently identified the first known mechanisms responsible for the differential control of isoform expression, involving regulation of translation via 5'-UTRs (untranslated regions). In the present study, we have uncovered further complexity involving the influence of multiple promoters and cross-talk between 5'- and 3'-UTRs. We demonstrate that full-length ERbeta mRNAs are transcribed from three separate promoters; two promoters are well-established within the literature, whereas the third represents a novel finding. Each promoter produces transcripts with distinct 5'-UTRs. The differential 3' splicing that produces transcripts coding for the ERbeta isoforms also defines isoform-specific 3'-UTRs. We identified exact 3'-UTR sequences for each isoform, and have shown that alternative polyadenylation sites are used in a cell-type specific manner to produce transcripts with 3'-UTRs of different lengths. Critically, we show that 5'- and 3'-UTRs combine to specify the efficiencies with which individual transcripts are translated, with 3'-UTR length having a key influence. In addition, we demonstrate how 17beta-oestradiol, a key driver of breast cancer development, affects the regulation of ERbeta expression at both transcriptional and translational levels.
Collapse
|
167
|
Warner M, Gustafsson JA. The role of estrogen receptor beta (ERbeta) in malignant diseases--a new potential target for antiproliferative drugs in prevention and treatment of cancer. Biochem Biophys Res Commun 2010; 396:63-6. [PMID: 20494112 DOI: 10.1016/j.bbrc.2010.02.144] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/21/2010] [Indexed: 12/13/2022]
Abstract
The discovery of ERbeta in the middle of the 1990s represents a paradigm shift in our understanding of estrogen signaling. It has turned out that estrogen action is not mediated by one receptor, ERalpha, but by two balancing factors, ERalpha and ERbeta, which are often antagonistic to one another. Excitingly, ERbeta has been shown to be widespread in the body and to be involved in a multitude of physiological and pathophysiological events. This has led to a strong interest of the pharmaceutical industry to target ERbeta by drugs against various diseases. In this review, focus is on the role of ERbeta in malignant diseases where the anti proliferative activity of ERbeta gives hope of new therapeutic approaches.
Collapse
Affiliation(s)
- Margaret Warner
- Center for BioSciences, Department of BioSciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
168
|
Yan M, Rayoo M, Takano EA, Fox SB. Nuclear and cytoplasmic expressions of ERβ1 and ERβ2 are predictive of response to therapy and alters prognosis in familial breast cancers. Breast Cancer Res Treat 2010; 126:395-405. [PMID: 20490651 DOI: 10.1007/s10549-010-0941-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/06/2010] [Indexed: 01/10/2023]
Abstract
Estrogen receptor (ER) α has been studied extensively in familial breast cancers but there are limited data on ERβ and its isoforms. This is an important issue since many BRCA1-associated tumours are "triple negative" and are resistant to conventional and targeted therapies. We performed an immunohistochemical study of pan-ERβ, ERβ1 and ERβ2 in a cohort of 123 familial breast carcinomas (35 BRCA1, 33 BRCA2 and 55 BRCAX) using a cut-off for positivity at 20% (Shaaban et al. in Clin Cancer Res 14:5228-5235, 2008). BRCA1 cancers were more likely to be nuclear ERα negative and nuclear pan-ERβ positive (21/32, 66%) when compared with BRCA2 (2/29, 7%) and BRCAX cancers (11/49, 22%) (both P < 0.001). For survival analysis, expression was also stratified using cut-offs defined by Bates et al. (Breast Cancer Res Treat 111:453-459, 2008) (score out of 7). Cytoplasmic ERβ2 expression correlated with shorter overall survival at 15 years regardless of cut-off used (both P < 0.046) At a cut-off score of 6 out of 7, cytoplasmic ERβ2 expression correlated with a poorer response to chemotherapy in both univariate (P = 0.011) and multivariate analyses including grade, lymph node status and chemotherapy as an interaction variable (P = 0.045, Hazard ratio 1.22, 95% CI 1.004-9.87). A similar trend was seen in a univariate analysis with a cut-off of 20% although this did not reach statistical significance (P = 0.057). Expression of nuclear ERβ1 was associated with a favourable response to endocrine therapy at 15 years regardless of cut-offs employed (both P < 0.025). However, this did not reach statistical significance in a multivariate analysis (P > 0.05). Since a significant proportion of ERα negative familial breast carcinomas are positive for nuclear ERβ1 and cytoplasmic ERβ2, the different ERβ isoforms and their intracellular location may need to be assessed, to identify patients that may benefit from hormonal and chemotherapy.
Collapse
Affiliation(s)
- Max Yan
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | | | | | | |
Collapse
|
169
|
Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:15-34. [PMID: 20567632 PMCID: PMC2883240 DOI: 10.4137/cmo.s4773] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is controversial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is required to determine whether their measurement or monitoring offer significant clinical benefits.
Collapse
|
170
|
Lønning PE. Evolution of endocrine adjuvant therapy for early breast cancer. Expert Opin Investig Drugs 2010; 19 Suppl 1:S19-30. [DOI: 10.1517/13543781003714865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
171
|
Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat Rev Cancer 2010; 10:205-12. [PMID: 20147902 DOI: 10.1038/nrc2795] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer and prostate cancer are the two most common invasive cancers in women and men, respectively. Although these cancers arise in organs that are different in terms of anatomy and physiological function both organs require gonadal steroids for their development, and tumours that arise from them are typically hormone-dependent and have remarkable underlying biological similarities. Many of the recent advances in understanding the pathophysiology of breast and prostate cancers have paved the way for new treatment strategies. In this Opinion article we discuss some key issues common to breast and prostate cancer and how new insights into these cancers could improve patient outcomes.
Collapse
Affiliation(s)
- Gail P Risbridger
- Department of Anatomy & Developmental Biology, Monash University Clayton Campus, Melbourne 3800, Victoria, Australia.
| | | | | | | |
Collapse
|
172
|
Estrogen receptor-beta expression in invasive breast cancer in relation to molecular phenotype: results from the Nurses' Health Study. Mod Pathol 2010; 23:197-204. [PMID: 19898422 PMCID: PMC3055924 DOI: 10.1038/modpathol.2009.158] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression of estrogen receptor-alpha (ER-alpha) and related genes has emerged as one of the major determinants of molecular classification of invasive breast cancers. Expression of a second ER, estrogen receptor-beta (ER-beta), has not been previously evaluated in a large population-based study. Therefore, we examined ER-beta expression in a large population of women with breast cancer to assess its relationship to molecular categories of invasive breast cancer. We constructed tissue microarrays from paraffin blocks of 3093 breast cancers that developed in women enrolled in the Nurses' Health Study. Tissue microarray sections were immunostained for ER-alpha, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6, epidermal growth factor receptor (EGFR) and with a monoclonal antibody to ER-beta. Cancers were categorized as luminal A (ER-alpha+ and/or PR+ and HER2-); luminal B (ER-alpha+ and/or PR+ and HER2+); HER2 (ER-alpha- and PR- and HER2+); and basal-like (ER-alpha-, PR-, HER2- and EGFR or cytokeratin 5/6+). The relationship between expression of ER-beta and molecular class of invasive breast cancer was analyzed. Overall, 68% of breast carcinomas were ER-beta+. Expression of ER-beta was significantly associated with expression of ER-alpha (P<0.0001) and PR (P<0.0001), and was inversely related to expression of HER2 (P=0.004), CK5/6 (P=0.02) and EGFR (P=0.006). Among 2170 invasive cancers with complete immunophenotypic data, 73% were luminal A, 5% luminal B, 6 % HER2 and 11% basal-like. ER-beta expression was significantly related to molecular category (P<0.0001) and was more common in luminal A (72% of cases) and B (68% of cases) than in HER2 or basal-like types. However, despite their being defined by the absence of ER-alpha expression, 55% of HER2-type and 60% of basal-like cancers showed expression of ER-beta. The role of ER-beta in the development and progression of breast cancers defined by lack of expression of ER-alpha merits further investigation.
Collapse
|
173
|
Sanchez M, Picard N, Sauvé K, Tremblay A. Challenging estrogen receptor beta with phosphorylation. Trends Endocrinol Metab 2010; 21:104-110. [PMID: 19837602 DOI: 10.1016/j.tem.2009.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 02/07/2023]
Abstract
From classical gland-based endocrinology to nuclear hormone receptor biology, tremendous progress has been made in our understanding of hormone responses underlying cellular communication. Estrogen elicits a myriad of biological processes in reproductive and peripheral target tissues through its interaction with the estrogen receptors ERalpha and ERbeta. However, our knowledge of estrogen-dependent and independent action has mainly focused on ERalpha, leaving the role of ERbeta obscure. This review discusses our current understanding of ERbeta function and the emerging role of intracellular signals that act upon and achieve estrogen-like effects through phosphorylation of ERbeta protein. Improving our understanding of how cellular determinants impact estrogen receptor actions will likely lead to treatment strategies for related endocrine diseases affecting women's health.
Collapse
Affiliation(s)
- Mélanie Sanchez
- Department of Biochemistry, Ste-Justine Hospital Research Center, University of Montreal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
174
|
Smith L, Brannan RA, Hanby AM, Shaaban AM, Verghese ET, Peter MB, Pollock S, Satheesha S, Szynkiewicz M, Speirs V, Hughes TA. Differential regulation of oestrogen receptor β isoforms by 5' untranslated regions in cancer. J Cell Mol Med 2010; 14:2172-84. [PMID: 20920096 PMCID: PMC3823008 DOI: 10.1111/j.1582-4934.2009.00867.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.
Collapse
Affiliation(s)
- Laura Smith
- Leeds Institute of Molecular Medicine, Leeds University, Leeds, UK Department of Histopathology, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Akiyama F, Iwase H. Triple negative breast cancer: clinicopathological characteristics and treatment strategies. Breast Cancer 2009; 16:252-3. [PMID: 19506994 DOI: 10.1007/s12282-009-0140-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Triple negative breast cancer (TNBC) is defined as a subtype that is negative for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. We introduce the theme of the special issue concerning clinicopathological characteristics and prospective treatment strategies of TNBC. This special issue consists of five conference papers that have been agreed on by the speakers and the commentator of the symposium of the 16th Annual Meeting of the Japanese Breast Cancer Society in September 2008 in Osaka.
Collapse
Affiliation(s)
- Futoshi Akiyama
- Department of Pathology, Cancer Institute, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | | |
Collapse
|
176
|
Lindberg K, Ström A, Lock JG, Gustafsson JA, Haldosén LA, Helguero LA. Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells. J Cell Physiol 2009; 222:156-67. [PMID: 19780039 DOI: 10.1002/jcp.21932] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERalpha and ERbeta). Estrogen-bound ERalpha induces proliferation of mammary epithelial and cancer cells, while ERbeta is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERbeta levels compared to the early stage breast cancers, suggesting that loss of ERbeta could be important in cancer development. Analysis of ERbeta-/- mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERbeta is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERalpha and ERbeta. As ERbeta is widely found in breast cancer but not in cell lines, we used ERalpha positive T47-D and MCF-7 human breast cancer cells to generate cells with inducible ERbeta expression. Furthermore, the colon cancer cell lines SW480 and HT-29 were also used. Integrin alpha1 mRNA and protein levels increased following ERbeta expression. Integrin beta1-the unique partner for integrin alpha1-increased only at the protein level. ERbeta expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERbeta increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERbeta expression was associated to less cell migration. These results indicate that ERbeta affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Karolina Lindberg
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.
Collapse
Affiliation(s)
- Elizabeth A Musgrove
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
178
|
Hartman J, Ström A, Gustafsson JA. Estrogen receptor beta in breast cancer--diagnostic and therapeutic implications. Steroids 2009; 74:635-41. [PMID: 19463683 DOI: 10.1016/j.steroids.2009.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 02/07/2023]
Abstract
More than 10 years have passed since the discovery of the second estrogen receptor, estrogen receptor beta (ERbeta). It is now evident that ERalpha is not the only ER in breast cancer cells; in fact, ERbeta is expressed in the majority of breast cancers although at lower levels than in the normal breast. In addition, ERbeta is expressed in breast cancer infiltrating lymphocytes, fibroblasts and endothelial cells, all known to influence tumor growth. By overexpressing or knocking-out ERbeta in breast cancer cell lines, several researchers have investigated its function with respect to proliferation and tumor growth. It appears that ERbeta is anti-proliferative, in many ways antagonising the function of ERalpha. Furthermore, phytoestrogens have a binding-preference for ERbeta and several epidemiological studies indicate a breast cancer preventing effect of this class of compounds. Tamoxifen is one of the standard, adjuvant treatments for ERalpha positive breast cancer, classically thought to mediate its effect through ERalpha. However, in several recent studies, ERbeta has been described as a potential marker for tamoxifen response. In summary, experimental, epidemiological as well as diagnostic studies point towards ERbeta as an important factor in breast cancer, opening up the possibility for novel ERbeta-selective therapies in the treatment of breast cancer.
Collapse
Affiliation(s)
- Johan Hartman
- Department of Biosciences and Nutrition, Novum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
179
|
Chen JQ, Russo J. ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta Rev Cancer 2009; 1796:162-75. [PMID: 19527773 DOI: 10.1016/j.bbcan.2009.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E(2)/ERbeta-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERbeta with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERalpha expression/ERalpha-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
180
|
Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res Treat 2009; 120:557-65. [PMID: 19434490 DOI: 10.1007/s10549-009-0413-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Estrogen receptor beta (ERbeta) is widely expressed in mammary epithelium. ERbeta expression is reported to decline during carcinogenesis of the breast and other tissues. In this study, we examined the consequences of a loss of ERbeta expression in mammary epithelial cells. We knocked down ERbeta transcript levels in human mammary epithelial MCF-10A cells and in MCF-7 breast cancer cells by means of stable transfection with a specific shRNA plasmid. ERbeta knockdown resulted in a significant growth increase of both cell types in a ligand-independent manner. This effect was accompanied by elevated cyclin A2 expression in MCF-10A cells and by decreased expression of growth-inhibitory p21/WAF and epithelial cell marker cytokeratine 8 in both cell lines. Transfection of ERbeta shRNA did not alter the absent proliferative estrogen response of MCF-10A cells, but conferred sensitivity to selective estrogen receptor modulator tamoxifen to this cell line. In contrast, ERbeta knockdown diminished estrogen responsiveness of MCF-7 breast cancer cells and also weakened the effect of tamoxifen on this cell line. These ligand-dependent effects only observed in MCF-7 cells exhibiting a high ERalpha/beta ratio were accompanied by smaller estrogenic repression of p21/WAF expression, an impaired tamoxifen-triggered induction of this gene and by relative downregulation of ERalpha and cyclin A2 transcript levels. Our data suggest that ERbeta exerts antiproliferative effects both on MCF-10A and MCF-7 cells in a ligand- and ERalpha-independent manner by regulation of p21/WAF or cyclin A2 gene expression. Knockdown of ERbeta in both cell types was sufficient to significantly decrease transcript levels of epithelial cell marker cytokeratin 8. The results of this study support the hypothesis that ERbeta acts as a tumor suppressor in mammary epithelium.
Collapse
|
181
|
Sakamoto G, Honma N. Estrogen receptor-beta status influences clinical outcome of triple-negative breast cancer. Breast Cancer 2009; 16:281-2. [PMID: 19387776 DOI: 10.1007/s12282-009-0110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
In this conference paper, we show that estrogen receptor-beta status influences clinical outcome of triple-negative breast cancer referring two of our recent research articles.
Collapse
Affiliation(s)
- Goi Sakamoto
- Sakamoto Memorial Clinic, Academy of Breast Pathology, 2-1-3 Ichigaya Tamachi, Shinjuku-ku, Tokyo 162-0843, Japan
| | | |
Collapse
|
182
|
Nagasaki S, Suzuki T, Miki Y, Akahira JI, Shibata H, Ishida T, Ohuchi N, Sasano H. Chicken ovalbumin upstream promoter transcription factor II in human breast carcinoma: possible regulator of lymphangiogenesis via vascular endothelial growth factor-C expression. Cancer Sci 2009; 100:639-45. [PMID: 19154418 PMCID: PMC11158707 DOI: 10.1111/j.1349-7006.2008.01078.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/06/2008] [Accepted: 12/08/2008] [Indexed: 12/16/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TF) are orphan members of the nuclear receptor superfamily and consist of COUP-TFI and COUP-TFII. COUP-TFI was reported to be overexpressed in human breast cancer and to promote estrogen-independent transcriptional activity of estrogen receptor alpha. COUP-TFII, however, has not been examined in the breast. Therefore, we carried out immunohistochemical analysis of COUP-TFII in human breast cancer in order to clarify its biological and clinical significance. We immunolocalized COUP-TFII in 119 human breast cancers and correlated the findings with various clinicopathological parameters. Fifty-nine percent of the cases were immunohistochemically positive for COUP-TFII. COUP-TFII positivity was correlated with poor clinical outcome, and a statistically significant correlation was detected between COUP-TFII and the following clinicopathological parameters: clinical stage, lymph node status, histological grade, and estrogen receptor alpha status. In addition, short interfering RNA-mediated knockdown of COUP-TFII in the breast carcinoma cell line MCF-7 decreased the level of vascular endothelial growth factor-C mRNA expression, which is a known inducer of lymphangiogenesis and lymph node metastasis. These results suggest that COUP-TFII is involved in the development of advanced human breast cancer.
Collapse
Affiliation(s)
- Shuji Nagasaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Speirs V, Shaaban AM. Role of ERβ in Clinical Breast Cancer. Cancer Treat Res 2009; 147:1-20. [PMID: 21461830 DOI: 10.1007/978-0-387-09463-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Valerie Speirs
- Section of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK,
| | | |
Collapse
|
184
|
Palmieri C, Gojis O, Rudraraju B, Cleator S. Does ER-βcx Really Have No Clinical Importance in Tamoxifen-Treated Breast Cancer Patients? J Clin Oncol 2008; 26:5824; author reply 5825-6. [DOI: 10.1200/jco.2008.19.5529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Carlo Palmieri
- Department of Cancer Medicine, Imperial College London, Cancer Research UK Laboratories, London, United Kingdom
| | - Ondrej Gojis
- Department of Pathology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Bharath Rudraraju
- Department of Cancer Medicine, Imperial College London, Cancer Research UK Laboratories, London, United Kingdom
| | - Susan Cleator
- Department of Cancer Medicine, Imperial College London, Cancer Research UK Laboratories, London, United Kingdom
| |
Collapse
|
185
|
Honma N, Saji S, Younes M. In Reply. J Clin Oncol 2008. [DOI: 10.1200/jco.2008.19.6212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naoko Honma
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan and Department of Breast Pathology, Cancer Institute, Tokyo, Japan
| | - Shigehira Saji
- Division of Clinical Trials and Research, Department of Breast Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Mamoun Younes
- Department of Pathology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
186
|
Speirs V, Green AR, Hughes TA, Ellis IO, Saunders PTK, Shaaban AM. Clinical importance of estrogen receptor beta isoforms in breast cancer. J Clin Oncol 2008; 26:5825; author reply 5825-6. [PMID: 19001343 DOI: 10.1200/jco.2008.19.5909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
187
|
Abstract
Controversy surrounds the potential clinical importance of oestrogen receptor (ER)β in breast cancer, and three recent papers have sought to resolve this. In the present issue of Breast Cancer Research Novelli and colleagues explored the significance of ERβ1 expression in 936 breast cancer patients, and they showed diverse relationships according to lymph node status. A second paper examined 442 breast cancers in which ERβ1 was an independent predictor of recurrence, disease-free survival and overall survival. Finally a third paper showed that ERβ2 was a powerful prognostic indicator in 757 breast cancers but this was dependent on cellular location, with nuclear ERβ2 expression predicting good survival whilst cytoplasmic expression predicted worse outcome. These papers point to a clinical role for ERβ in breast cancer and shall be discussed.
Collapse
|