151
|
Kan I, Barhum Y, Melamed E, Offen D. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev Rep 2011; 7:404-12. [PMID: 20830611 DOI: 10.1007/s12015-010-9190-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian neurogenesis has been demonstrated in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. However, the low rate and the restricted long term survival of newborn cells limit the restorative ability of this process. Adult bone marrow derived mesenchymal stem cells (MSCs) have been extensively studied due to their wide therapeutic potential. The aim of this study was to determine if MSC transplantation to the normally restrictive SVZ of mice housed in an enriched environment stimulates endogenous neurogenesis. In the presented study 30 C57BL/6 female mice were divided into 3 groups: standard environment injected with phosphate buffered saline (PBS) and enriched environment injected with either PBS or MSCs. Bromodeoxyuridine was injected for 6 days, and 3 weeks later the mice were sacrificed and the brain tissue analyzed immunohistochemically. PBS-treated mice housed in enriched cages showed augmented neurogenesis in the SGZ but not the SVZ. MSC transplantation was associated with increased proliferation and neuronal differentiation of neural progenitors within the SVZ and an increase in the proportion of the newborn neurons out of the total proliferating cells. Histological analysis confirmed the survival of a significant amount of the transplanted cells at least 3 weeks after transplantation, and the presence of brain-derived neurotrophic factor expression. To our knowledge, this is the first study to show that MSCs might interfere with the tight regulation of the SVZ, independent of the induced brain lesion.
Collapse
Affiliation(s)
- Inna Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Beilinson Campus and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
152
|
Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res Ther 2011; 2:38. [PMID: 21939558 PMCID: PMC3308035 DOI: 10.1186/scrt79] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/22/2011] [Indexed: 12/22/2022] Open
Abstract
Introduction Stem cell transplantation is a promising therapeutic strategy for the treatment of stroke. Mesenchymal stem cells (MSCs) are a potential cell source for clinical application because they can be easily obtained and cultivated with a high proliferative capacity. The safety and efficacy of cell therapy depends on the mode of cell administration. To determine the therapeutic potential of intrathecal administration of MSCs by lumbar puncture (LP), we administrated human umbilical cord blood-derived MSCs (hUCB-MSCs) intrathecally into the lumbar spinal cord or intravenously into the tail vein in a rat model of stroke, and then investigated whether hUCB-MSCs could enter the brain, survive, and improve post-stroke neurological functional recovery. Methods hUCB-MSCs (1.0 × 106) were administrated three days after stroke induced by occlusion of the middle cerebral artery. The presence of hUCB-MSCs and their survival and differentiation in the brain tissue of the rats was examined by immunohistochemistry. Recovery of coordination of movement after administration of hUCB-MSCs was examined using a Rotarod test and adhesive-removal test on the 7th, 14th, 21st, and 28th days after ischemia. The volume of ischemic lesions seven days after the experimental procedure was evaluated using 2-3-5-triphenyltetrazolium (TTC) staining. Results Rats receiving hUCB-MSCs intrathecally by LP had a significantly higher number of migrated cells within the ischemic area when compared with animals receiving cells intravenously. In addition, many of the cells administered intrathecally survived and a subset of them expressed mature neural-lineage markers, including the mature neuron marker NeuN and glial fibrillary acidic protein, typical of astrocytes. Animals that received hUCB-MSCs had significantly improved motor function and reduced ischemic damage when compared with untreated control animals. Regardless of the administration route, the group treated with 1 × 106 hUCB-MSCs showed better neurological recovery, without significant differences between the two treatment groups. Importantly, intrathecal administration of 5 × 105 hUCB-MSCs significantly reduced ischemic damage, but not in the intravenously treated group. Furthermore, the cells administered intrathecally survived and migrated into the ischemic area more extensively, and differentiated significantly into neurons and astrocytes. Conclusions Together, these results indicate that intrathecal administration of MSCs by LP may be useful and feasible for MSCs treatment of brain injuries, such as stroke, or neurodegenerative disorders.
Collapse
|
153
|
Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, O'Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD. Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma 2011; 28:359-69. [PMID: 21190398 DOI: 10.1089/neu.2010.1427] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Neurological dysfunction after traumatic brain injury (TBI) is caused by both the primary injury and a secondary cascade of biochemical and metabolic events. Since TBI can be caused by a variety of mechanisms, numerous models have been developed to facilitate its study. The most prevalent models are controlled cortical impact and fluid percussion injury. Both typically use "sham" (craniotomy alone) animals as controls. However, the sham operation is objectively damaging, and we hypothesized that the craniotomy itself may cause a unique brain injury distinct from the impact injury. To test this hypothesis, 38 adult female rats were assigned to one of three groups: control (anesthesia only); craniotomy performed by manual trephine; or craniotomy performed by electric dental drill. The rats were then subjected to behavioral testing, imaging analysis, and quantification of cortical concentrations of cytokines. Both craniotomy methods generate visible MRI lesions that persist for 14 days. The initial lesion generated by the drill technique is significantly larger than that generated by the trephine. Behavioral data mirrored lesion volume. For example, drill rats have significantly impaired sensory and motor responses compared to trephine or naïve rats. Finally, of the seven tested cytokines, KC-GRO and IFN-γ showed significant increases in both craniotomy models compared to naïve rats. We conclude that the traditional sham operation as a control confers profound proinflammatory, morphological, and behavioral damage, which confounds interpretation of conventional experimental brain injury models. Any experimental design incorporating "sham" procedures should distinguish among sham, experimentally injured, and healthy/naïve animals, to help reduce confounding factors.
Collapse
Affiliation(s)
- Jeffrey T Cole
- Department of Neurology, Uniformed Services University of the Health Sciences, Silver Spring, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Azari MF, Mathias L, Ozturk E, Cram DS, Boyd RL, Petratos S. Mesenchymal stem cells for treatment of CNS injury. Curr Neuropharmacol 2011; 8:316-23. [PMID: 21629440 PMCID: PMC3080589 DOI: 10.2174/157015910793358204] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/15/2010] [Accepted: 05/25/2010] [Indexed: 02/06/2023] Open
Abstract
Brain and spinal cord injuries present significant therapeutic challenges. The treatments available for these conditions are largely ineffective, partly due to limitations in directly targeting the therapeutic agents to sites of pathology within the central nervous system (CNS). The use of stem cells to treat these conditions presents a novel therapeutic strategy. A variety of stem cell treatments have been examined in animal models of CNS trauma. Many of these studies have used stem cells as a cell-replacement strategy. These investigations have also highlighted the significant limitations of this approach. Another potential strategy for stem cell therapy utilises stem cells as a delivery mechanism for therapeutic molecules. This review surveys the literature relevant to the potential of mesenchymal stem cells for delivery of therapeutic agents in CNS trauma in humans.
Collapse
Affiliation(s)
- Michael F Azari
- Monash Immunology and Stem Cell Laboratories, School of Biomedical Sciences, Faculty of Medicine, Monash University, Clayton, Vic. Australia
| | | | | | | | | | | |
Collapse
|
155
|
Mahmood A, Qu C, Ning R, Wu H, Goussev A, Xiong Y, Irtenkauf S, Li Y, Chopp M. Treatment of TBI with collagen scaffolds and human marrow stromal cells increases the expression of tissue plasminogen activator. J Neurotrauma 2011; 28:1199-207. [PMID: 21355820 DOI: 10.1089/neu.2010.1694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study examines the effects of combination therapy of collagen scaffolds and human marrow stromal cells (hMSCs) on the expression of tissue plasminogen activator (tPA) after traumatic brain injury (TBI) in rats. Adult male Wistar rats (n=48) were injured with controlled cortical impact and treated either with scaffolds suffused with hMSCs (3×10(6)) or hMSCs (3×10(6)) alone transplanted into the lesion cavity 1 week after TBI. A control group was treated with saline. Neurological function was assessed using the Morris Water Maze test (MWM) and modified Neurological Severity Scores (mNSS). The rats were sacrificed 14 days after TBI and brain samples were processed for immunohistochemical analysis and quantitative Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) studies. Enhanced functional improvement was observed on both the mNSS and MWM tests in the scaffold+hMSC-treated group compared to the other two groups. Immunostaining with anti-human mitochondrial antibody (E5204) showed more hMSCs in the injury zone of the scaffold+hMSC group compared to the hMSC-alone group. Triple staining showed that more neurons were tPA-positive in the scaffold+hMSC group compared to the other two groups (p<0.05). Western blot analysis and qRT-PCR showed that scaffold+hMSC and hMSC-alone treatment enhanced the expression of tPA compared to controls (p<0.05), but tPA expression was significantly greater in the scaffold+hMSC group. The induction of tPA by hMSCs after TBI may be one of the mechanisms involved in promoting functional improvement after TBI.
Collapse
Affiliation(s)
- Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, Young H. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma 2011; 28:961-72. [PMID: 21332258 DOI: 10.1089/neu.2010.1697] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multipotent neural stem/progenitor cells (NS/NPCs) that are capable of generating neurons and glia offer enormous potential for treating neurological diseases. Adult NS/NPCs that reside in the mature mammalian brain can be isolated and expanded in vitro, and could be a potential source for autologous transplantation to replace cells lost to brain injury or disease. When these cells are transplanted into the normal brain, they can survive and become region-specific cells. However, it has not been reported whether these cells can survive for an extended period and become functional cells in an injured heterotypic environment. In this study, we tested survival, maturation fate, and electrophysiological properties of adult NS/NPCs after transplantation into the injured rat brain. NS/NPCs were isolated from the subventricular zone of adult Fisher 344 rats and cultured as a monolayer. Recipient adult Fisher 344 rats were first subjected to a moderate fluid percussive injury. Two days later, cultured NS/NPCs were injected into the injured brain in an area between the white matter tracts and peri-cortical region directly underneath the injury impact. The animals were sacrificed 2 or 4 weeks after transplantation for immunohistochemical staining or patch-clamp recording. We found that transplanted cells survived well at 2 and 4 weeks. Many cells migrated out of the injection site into surrounding areas expressing astrocyte or oligodendrocyte markers. Whole cell patch-clamp recording at 4 weeks showed that transplanted cells possessed typical mature glial cell properties. These data demonstrate that adult NS/NPCs can survive in an injured heterotypic environment for an extended period and become functional cells.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0631, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol 2011; 37:166-78. [PMID: 20819172 PMCID: PMC4150530 DOI: 10.1111/j.1365-2990.2010.01122.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS we explored whether cellular fusion and heterokaryon formation between human and rodent cells in the cerebellum of mice occurs after intravenous injection of human bone marrow-derived mesenchymal stem cells (MSCs). The influence of central nervous system inflammation on this process was also assessed. In addition, we examined whether tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, factors associated with inflammation, increase cellular fusion between human MSCs and rodent cerebellar neurons in vitro. METHODS AND RESULTS human MSCs were intravenously injected into mice with experimental autoimmune encephalomyelitis (EAE) and control mice. After 22 days, mouse Purkinje cells expressing human Golgi Zone were found within the Purkinje cell layer of the cerebellum, indicating that fusion and heterokaryon formation had occurred. The numbers of heterokaryons in the cerebellum were markedly increased in mice with EAE compared with control mice. Rodent cerebellar neuronal cells labelled with enhanced green fluorescent proteinin vitro were co-cultured with human bone marrow-derived MSCs in the presence of TNF-alpha and/or IFN-gamma to determine their influence on fusion events. We found that fusion between MSCs and cerebellar neurons did occur in vitro and that the frequency of cellular fusion increased in the presence of TNF-alpha and/or IFN-gamma. CONCLUSIONS we believe that this is the first paper to define fusion and heterokaryon formation between human MSCs and rodent cerebellar neurons in vivo. We have also demonstrated that fusion between these cell populations occurs in vitro. These findings indicate that MSCs may be potential therapeutic agents for cerebellar diseases, and other neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- K Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, UK.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Edalat H, Hajebrahimi Z, Movahedin M, Tavallaei M, Amiri S, Mowla SJ. p75NTR suppression in rat bone marrow stromal stem cells significantly reduced their rate of apoptosis during neural differentiation. Neurosci Lett 2011; 498:15-9. [PMID: 21539892 DOI: 10.1016/j.neulet.2011.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022]
Abstract
Most of the transplanted cells within central nervous system (CNS) undergo extensive cell death. Preventing the death of stem cell-derived neuron-like cells within adult CNS would enhance the efficiency of transplantation in clinics. We have employed an interfering RNA (RNAi) approach to elevate the survival rate of neurally differentiated bone marrow stromal stem cells (BMSCs), by means of suppressing p75NTR expression. Our data revealed that stably overexpressing a specific shRNA against p75NTR transcript could effectively reduce the expression of endogenous p75NTR in neurally differentiated BMSCs. As p75NTR can induce neuronal death in target cells, its suppression is followed by a significant reduction of apoptosis in neural-like cells derived from BMSCs. Thus, our data provides a method to increase the survival of stem cells being employed in transplantation within CNS and hence increase the success rate of cell-based therapies in damaged area of brain and spinal cord.
Collapse
Affiliation(s)
- Houri Edalat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
159
|
Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, Yu WM, Feltri ML, Strickland S. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 2011; 59:267-77. [PMID: 21125647 DOI: 10.1002/glia.21099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peripheral nerve function depends on a regulated process of axon and Schwann cell development. Schwann cells interact with peripheral neurons to sort and ensheath individual axons. Ablation of laminin γ1 in the peripheral nervous system (PNS) arrests Schwann cell development prior to radial sorting of axons. Peripheral nerves of laminin-deficient animals are disorganized and hypomyelinated. In this study, sciatic nerves of laminin-deficient mice were treated with syngenic murine adipose-derived stem cells (ADSCs). ADSCs expressed laminin in vitro and in vivo following transplant into mutant sciatic nerves. ADSC-treatment of mutant nerves caused endogenous Schwann cells to differentiate past the point of developmental arrest to sort and myelinate axons. This was shown by (1) functional, (2) ultrastructural, and (3) immunohistochemical analysis. Treatment of laminin-deficient nerves with either soluble laminin or the immortalized laminin-expressing cell line 3T3/L1 did not overcome endogenous Schwann cell developmental arrest. In summary, these results indicate that (1) laminin-deficient Schwann cells can be rescued, (2) a cell-based approach is beneficial in comparison with soluble protein treatment, and (3) mesenchymal stem cells modify sciatic nerve function via trophic effects rather than transdifferentiation in this system.
Collapse
Affiliation(s)
- Karen B Carlson
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS. Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. J Cell Mol Med 2011; 15:747-755. [PMID: 20406327 PMCID: PMC2998585 DOI: 10.1111/j.1582-4934.2010.01068.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 03/15/2010] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons. Adult human endometrial derived stem cells (HEDSC), a readily obtainable type of mesenchymal stem-like cell, were used to generate dopaminergic cells and for transplantation. Cells expressing CD90, platelet derived growth factor (PDGF)-Rβ and CD146 but not CD45 or CD31 were differentiated in vitro into dopaminergic neurons that exhibited axon projections, pyramidal cell bodies and dendritic projections that recapitulate synapse formation; these cells also expressed the neural marker nestin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Whole cell patch clamp recording identified G-protein coupled inwardly rectifying potassium current 2 channels characteristic of central neurons. A 1-methyl 4-phenyl 1,2,3,6-tetrahydro pyridine induced animal model of PD was used to demonstrate the ability of labelled HEDSC to engraft, migrate to the site of lesion, differentiate in vivo and significantly increase striatal dopamine and dopamine metabolite concentrations. HEDSC are a highly inducible source of allogenic stem cells that rescue dopamine concentrations in an immunocompetent PD mouse model.
Collapse
Affiliation(s)
- Erin F Wolff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
| | - Xiao-Bing Gao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
| | - Katherine V Yao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
| | - Zane B Andrews
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
| | - Hongling Du
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of MedicineNew Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
161
|
Li L, Jiang Q, Qu CS, Ding GL, Li QJ, Wang SY, Lee JH, Lu M, Mahmood A, Chopp M. Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study. J Neurotrauma 2011; 28:535-45. [PMID: 21275806 DOI: 10.1089/neu.2010.1619] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell therapy promotes brain remodeling and improves functional recovery after various central nervous system disorders, including traumatic brain injury (TBI). We tested the hypothesis that treatment of TBI with intravenous administration of human marrow stromal cells (hMSCs) provides therapeutic benefit in modifying hemodynamic and structural abnormalities, which are detectable by in vivo MRI. hMSCs were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Male Wistar rats (300-350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, approximately 3 × 10(6) SPIO-labeled hMSCs) 5 days post-TBI. In vivo MRI measurements consisting of cerebral blood flow (CBF), T2-weighted imaging, and 3D gradient echo imaging were performed for all animals 2 days post-TBI and weekly for 6 weeks. Functional outcome was evaluated with modified neurological severity score and Morris water maze test. Cell engraftment was detected in vivo by 3D MRI and confirmed by double staining. Ventricle and lesion volumetric alterations were measured using T2 maps, and hemodynamic abnormality was tracked by MRI CBF measurements. Our data demonstrate that treatment with hMSCs following TBI diminishes hemodynamic abnormalities by early restoration and preservation of CBF in the brain regions adjacent to and remote from the impact site, and reduces generalized cerebral atrophy, all of which may contribute to the observed improvement of functional outcome.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 2011; 7:431-42. [PMID: 20887949 DOI: 10.1016/j.stem.2010.09.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/01/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) possess immunomodulatory and reparative properties. Through specific interactions with immune cells that participate in both innate and adaptive responses, MSCs exposed to an inflammatory microenvironment can downregulate many immune effector functions. Clinical trials focusing on MSCs to treat graft-versus-host disease (GvHD) and autoimmune diseases are underway. Current analyses suggest that MSCs will improve cell and solid organ transplantation by ameliorating rejection and possibly eliminating the requirement for prolonged regimens of conventional immunosuppressive drugs. This review examines the in vitro and in vivo evidence for the clinical use of bone marrow derived MSCs.
Collapse
|
163
|
McGinley L, McMahon J, Strappe P, Barry F, Murphy M, O'Toole D, O'Brien T. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther 2011; 2:12. [PMID: 21385372 PMCID: PMC3226283 DOI: 10.1186/scrt53] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/07/2011] [Indexed: 01/14/2023] Open
Abstract
Introduction A combination of gene and cell therapies has the potential to significantly enhance the therapeutic value of mesenchymal stem cells (MSCs). The development of efficient gene delivery methods is essential if MSCs are to be of benefit using such an approach. Achieving high levels of transgene expression for the required period of time, without adversely affecting cell viability and differentiation capacity, is crucial. In the present study, we investigate lentiviral vector-mediated genetic modification of rat bone-marrow derived MSCs and examine any functional effect of such genetic modification in an in vitro model of ischaemia. Methods Transduction efficiency and transgene persistence of second and third generation rHIV-1 based lentiviral vectors were tested using reporter gene constructs. Use of the rHIV-pWPT-EF1-α-GFP-W vector was optimised in terms of dose, toxicity, cell species, and storage. The in vivo condition of ischaemia was modelled in vitro by separation into its associated constituent parts i.e. hypoxia, serum and glucose deprivation, in which the effect of therapeutic gene over-expression on MSC survival was investigated. Results The second generation lentiviral vector rHIV-pWPT-EF1-α-GFP-W, was the most efficient and provided the most durable transgene expression of the vectors tested. Transduction with this vector did not adversely affect MSC morphology, viability or differentiation potential, and transgene expression levels were unaffected by cryopreservation of transduced cells. Over-expression of HSP70 resulted in enhanced MSC survival and increased resistance to apoptosis in conditions of hypoxia and ischaemia. MSC differentiation capacity was significantly reduced after oxygen deprivation, but was preserved with HSP70 over-expression. Conclusions Collectively, these data validate the use of lentiviral vectors for efficient in vitro gene delivery to MSCs and suggest that lentiviral vector transduction can facilitate sustained therapeutic gene expression, providing an efficient tool for ex vivo MSC modification. Furthermore, lentiviral mediated over-expression of therapeutic genes in MSCs may provide protection in an ischaemic environment and enable MSCs to function in a regenerative manner, in part through maintaining the ability to differentiate. This finding may have considerable significance in improving the efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Lisa McGinley
- Regenerative Medicine Institute and Department of Medicine, National University of Ireland, Galway and Galway University Hospital, University Road, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus, immune cells can be exploited as Trojan horses for drug delivery. AREAS COVERED This paper reviews how immunocytes laden with drugs can cross the blood-brain or blood-tumor barriers to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a new disease-combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms in drug delivery may open new perspectives for the active delivery of drugs.
Collapse
Affiliation(s)
- Elena V Batrakova
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | | | |
Collapse
|
165
|
Walker PA, Jimenez F, Gerber MH, Aroom KR, Shah SK, Harting MT, Gill BS, Savitz SI, Cox CS. Effect of needle diameter and flow rate on rat and human mesenchymal stromal cell characterization and viability. Tissue Eng Part C Methods 2011; 16:989-97. [PMID: 20001789 DOI: 10.1089/ten.tec.2009.0423] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Current mesenchymal stromal cell (MSC) delivery methods require infusion/implantation through needles and/or catheters. Little investigation into the effect of delivery via catheter injection has been completed. We hypothesize that injection of rat and human MSCs through various clinically relevant-sized catheters and flow rates will not affect cell viability, characterization, or function. METHODS Both rat and human MSCs were injected through 20-, 25-, and 30-gauge needles, as well through an SL-10 microcatheter at rates of 60, 120, 240, and 500 mL/h. MSC viability and apoptotic fraction was measured. MSCs were characterized 24 h after injection with flow cytometric immunophenotyping, and multilineage differentiation was completed. RESULTS Catheter diameter or flow rate did not affect rat MSC viability. No clinically significant decrease in human MSC viability was observed immediately after injection; however, a delayed decrease in viability was observed at 24 h. No difference in the surface markers CD11b, CD45, CD29, CD49e, CD73, CD90, CD105, and Stro-1 or the capacity for multilineage differentiation (adipogenesis, osteogenesis, and chondrogenesis) was observed for either rat or human MSCs. CONCLUSION The injection of human and rat MSCs through various clinically relevant catheters and flow rates did not have a clinically significant effect on viability immediately after injection, indicating compliance with recently published Food and Drug Administration guidelines (viability >70%). Further, no changes in cell characterization or function were observed via measurement of cell surface markers and the capacity for multilineage differentiation, respectively. These results ensure the biocompatibility of MSCs with commonly used delivery methods.
Collapse
Affiliation(s)
- Peter A Walker
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Rev Rep 2011; 6:548-59. [PMID: 20683679 DOI: 10.1007/s12015-010-9178-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggests that bone marrow derived-mesenchymal stem cells (MSCs) have neuroprotective properties and a major mechanism of action is through their capacity to secrete a diverse range of potentially neurotrophic or anti-oxidant factors. The recent discovery that MSCs secrete superoxide dismutase 3 (SOD3) may help explain studies in which MSCs have a direct anti-oxidant activity that is conducive to neuroprotection in both in vivo and in vitro. SOD3 attenuates tissue damage and reduces inflammation and may confer neuroprotective effects against nitric oxide-mediated stress to cerebellar neurons; but, its role in relation to central nervous system inflammation and neurodegeneration has not been extensively investigated. Here we have performed a series of experiments showing that SOD3 secretion by human bone marrow-derived MSCs is regulated synergistically by the inflammatory cytokines TNF-alpha and IFN-gamma, rather than through direct exposure to reactive oxygen species. Furthermore, we have shown SOD3 secretion by MSCs is increased by activated microglial cells. We have also shown that MSCs and recombinant SOD are able to increase both neuronal and axonal survival in vitro against nitric oxide or microglial induced damage, with an increased MSC-induced neuroprotective effect evident in the presence of inflammatory cytokines TNF-alpha and IFN-gamma. We have shown MSCs are able to convey these neuroprotective effects through secretion of soluble factors alone and furthermore demonstrated that SOD3 secretion by MSCs is, at least, partially responsible for this phenomenon. SOD3 secretion by MSCs maybe of relevance to treatment strategies for inflammatory disease of the central nervous system.
Collapse
|
167
|
McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:563-601. [PMID: 22093229 DOI: 10.1016/b978-0-12-416020-0.00014-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanomedicine seeks to manufacture drugs and other biologically relevant molecules that are packaged into nanoscale systems for improved delivery. This includes known drugs, proteins, enzymes, and antibodies that have limited clinical efficacy based on delivery, circulating half-lives, or toxicity profiles. The <100 nm nanoscale physical properties afford them a unique biologic potential for biomedical applications. Hence they are attractive systems for treatment of cancer, heart and lung, blood, inflammatory, and infectious diseases. Proposed clinical applications include tissue regeneration, cochlear and retinal implants, cartilage and joint repair, skin regeneration, antimicrobial therapy, correction of metabolic disorders, and targeted drug delivery to diseased sites including the central nervous system. The potential for cell and immune side effects has necessitated new methods for determining formulation toxicities. To realize the potential of nanomedicine from the bench to the patient bedside, our laboratories have embarked on developing cell-based carriage of drug nanoparticles to improve clinical outcomes in infectious and degenerative diseases. The past half decade has seen the development and use of cells of mononuclear phagocyte lineage, including dendritic cells, monocytes, and macrophages, as Trojan horses for carriage of anti-inflammatory and anti-infective medicines. The promise of this new technology and the perils in translating it for clinical use are developed and discussed in this chapter.
Collapse
Affiliation(s)
- JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
168
|
Xuqian W, Kanghua L, WeiHong Y, Xi Y, Rongping D, Qin H, Fangtian D, Chunhua Zhao R. Intraocular Transplantation of Human Adipose-Derived Mesenchymal Stem Cells in a Rabbit Model of Experimental Retinal Holes. Ophthalmic Res 2011; 46:199-207. [DOI: 10.1159/000323910] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 12/22/2010] [Indexed: 12/13/2022]
|
169
|
Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis 2010; 2011:164608. [PMID: 21197107 PMCID: PMC3010615 DOI: 10.4061/2011/164608] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/10/2010] [Indexed: 12/14/2022] Open
Abstract
Although significant advances have recently been made in the understanding and treatment of multiple sclerosis, reduction of long-term disability remains a key goal. Evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage in the disease. Invading inflammatory cells, as well as resident central nervous system cells, release a number of reactive oxygen and nitrogen species which cause demyelination and axonal destruction, the pathological hallmarks of multiple sclerosis. Reduction in oxidative damage is an important therapeutic strategy to slow or halt disease processes. Many drugs in clinical practice or currently in trial target this mechanism. Cell-based therapies offer an alternative source of antioxidant capability. Classically thought of as being important for myelin or cell replacement in multiple sclerosis, stem cells may, however, have a more important role as providers of supporting factors or direct attenuators of the disease. In this paper we focus on the antioxidant properties of mesenchymal stem cells and discuss their potential importance as a cell-based therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Jonathan Witherick
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Neil Scolding
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| |
Collapse
|
170
|
Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. BONE MARROW RESEARCH 2010; 2011:207326. [PMID: 22046556 PMCID: PMC3195349 DOI: 10.1155/2011/207326] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.
Collapse
|
171
|
The treatment of TBI with human marrow stromal cells impregnated into collagen scaffold: functional outcome and gene expression profile. Brain Res 2010; 1371:129-39. [PMID: 21062621 DOI: 10.1016/j.brainres.2010.10.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/17/2023]
Abstract
We have previously demonstrated that human marrow stromal cells (hMSCs) embedded in collagen I scaffolds significantly enhance the restorative therapeutic effect of hMSCs after traumatic brain injury (TBI). In this study, we test the hypothesis that the collagen scaffold alters gene expression in hMSCs and that hMSCs impregnated into scaffolds increase the astrocytic expression of vascular endothelial growth factor (VEGF) in the injured brain. Following TBI induced by controlled cortical impact injury, scaffold with hMSCs (3.0×10(6)), hMSCs-only and saline were implanted into the lesion cavity one week after brain injury (n=8/each group). Morris water maze and modified neurological severity scores were performed to evaluate the spatial learning and sensorimotor functions, respectively. Lesion volume and expression of VEGF were measured one week after different treatments. In vitro, total RNA from hMSCs was extracted one week after culture with or without collagen I scaffold for evaluation of gene microarrays. Furthermore, an RT-PCR study on a select subgroup of genes was performed to identify the changes of expression between the culturing hMSCs with collagen scaffolds and hMSCs only. The treatment of TBI with collagen scaffold impregnated with hMSCs significantly decreases the functional deficits from TBI within 7days after treatment, and significantly enhances the VEGF expression of astrocytes in the injured brain compared to the hMSCs-only group. In vitro data indicate that collagen scaffolds stimulate hMSCs to express multiple factors which may contribute to hMSC survival, tissue repair and functional recovery after TBI.
Collapse
|
172
|
Abstract
The regenerative potential of injured adult tissue suggests the physiological existence of cells capable of participating in the reparative process. Recent studies indicate that stem-like cells residing in tissues contribute to tissue repair and are replenished by precursor bone marrow-derived cells. Mesenchymal stromal cells (MSC) are among the candidates for reparative cells. These cells can potentially be mobilized into the circulation in response to injury signals and exert their reparative effects at the site of injury. Current therapies for musculoskeletal injuries pose unavoidable risks which can impede full recovery. Trafficking of MSC to the injury site and their subsequent participation in the regenerative process is thought to be a natural healing response that can be imitated or augmented by enhancing the endogenous MSC pool with exogenously administered MSC. Therefore, a promising alternative to the existing strategies employed in the treatment of musculoskeletal injuries is to reinforce the inherent reparative capacity of the body by delivering MSC harvested from the patient's own tissues to the site of injury. The aim of this review is to inform the reader of studies that have evaluated the intrinsic homing and regenerative abilities of MSC, with particular emphasis on the repair of musculoskeletal injuries. Research that supports the direct use of MSC (without in vitro differentiation into tissue-specific cells) will also be reported. Based on accruing evidence that the natural healing mechanism involves the recruitment of MSC and their subsequent reparative actions at the site of injury, as well as documented therapeutic response after the exogenous administration of MSC, the feasibility of the emerging strategy of instant stem-cell therapy will be proposed.
Collapse
|
173
|
Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 2010; 62:1156-66. [PMID: 20828588 DOI: 10.1016/j.addr.2010.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells.
Collapse
|
174
|
Caplan AI. New era of cell-based orthopedic therapies. TISSUE ENGINEERING PART B-REVIEWS 2010. [PMID: 19228082 DOI: 10.1089/ten.ted.2008.0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has long been a described relationship between mesenchymal stem cells (MSCs) and blood vessels in aspects of bone and other skeletal tissues with regard to their embryonic formation and their adult repair and regeneration dynamics. The use of exogenously added MSCs to supplement the naturally available progenitor cell stock has been a standard practice in several orthopedic surgeries by adding bone marrow to the repair constructs. This, coupled with the well-established need for vasculature to orient and drive bone formation, firmly established the functional relationship between MSCs, osteoprogenitors, and blood vessels. It is now apparent that MSCs are pericytes (cells that surround blood vessels) throughout the body. In addition, MSCs can function to secrete bioactive factors that are immunomodulatory, thus allowing allogeneic MSCs to be infused into patients requiring clinically relevant treatments. Such infused MSCs trophically establish microenvironments that support the regeneration of the injured tissue. These new functions usher in a new era of cell-based therapies.
Collapse
Affiliation(s)
- Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
175
|
Caplan AI. New era of cell-based orthopedic therapies. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:195-200. [PMID: 19228082 DOI: 10.1089/ten.teb.2008.0515] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There has long been a described relationship between mesenchymal stem cells (MSCs) and blood vessels in aspects of bone and other skeletal tissues with regard to their embryonic formation and their adult repair and regeneration dynamics. The use of exogenously added MSCs to supplement the naturally available progenitor cell stock has been a standard practice in several orthopedic surgeries by adding bone marrow to the repair constructs. This, coupled with the well-established need for vasculature to orient and drive bone formation, firmly established the functional relationship between MSCs, osteoprogenitors, and blood vessels. It is now apparent that MSCs are pericytes (cells that surround blood vessels) throughout the body. In addition, MSCs can function to secrete bioactive factors that are immunomodulatory, thus allowing allogeneic MSCs to be infused into patients requiring clinically relevant treatments. Such infused MSCs trophically establish microenvironments that support the regeneration of the injured tissue. These new functions usher in a new era of cell-based therapies.
Collapse
Affiliation(s)
- Arnold I Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
176
|
Lee T. Host tissue response in stem cell therapy. World J Stem Cells 2010; 2:61-6. [PMID: 21031156 PMCID: PMC2964154 DOI: 10.4252/wjsc.v2.i4.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023] Open
Abstract
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.
Collapse
Affiliation(s)
- Techung Lee
- Techung Lee, Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
177
|
cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cell Mol Life Sci 2010; 68:863-76. [PMID: 20725762 DOI: 10.1007/s00018-010-0497-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/22/2010] [Accepted: 08/04/2010] [Indexed: 12/17/2022]
Abstract
The intracellular second messenger cAMP is frequently used in induction media to induce mesenchymal stem cells (MSCs) into neural lineage cells. To date, an understanding of the role cAMP exerts on MSCs and whether cAMP can induce MSCs into functional neurons is still lacking. We found cAMP initiated neuron-like morphology changes early and neural differentiation much later. The early phase changes in morphology were due to cell shrinkage, which subsequently rendered some cells apoptotic. While the morphology changes occurred prior to the expression of neural markers, it is not required for neural marker expression and the two processes are differentially regulated downstream of cAMP-activated protein kinase A. cAMP enabled MSCs to gain neural marker expressions with neuronal function, such as, calcium rise in response to neuronal activators, dopamine, glutamate, and potassium chloride. However, only some of the cells induced by cAMP responded to the three neuronal activators and further lack the neuronal morphology, suggesting that although cAMP is able to direct MSCs towards neural differentiation, they do not achieve terminal differentiation.
Collapse
|
178
|
Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 2010; 114:1569-80. [PMID: 20028455 DOI: 10.1111/j.1471-4159.2009.06553.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been postulated that bone marrow-derived mesenchymal stem cells (MSCs) might be effective treatments for neurodegenerative disorders either by replacement of lost cells by differentiation into functional neural tissue; modulation of the immune system to prevent further neurodegeneration; and/or provision of trophic support for the diseased nervous system. Here we have performed a series of experiments showing that human bone marrow-derived MSCs are able to protect cultured rodent cerebellar neurons, and specifically cells expressing Purkinje cell markers, against either nitric oxide exposure or withdrawal of trophic support via cell-cell contact and/or secretion of soluble factors, or through secretion of soluble factors alone. We have demonstrated that MSCs protect cerebellar neurons against toxic insults via modulation of both the phosphatidylinositol 3-kinase/Akt and MAPK pathways and defined superoxide dismutase 3 as a secreted active antioxidant biomolecule by which MSCs modulate, at least in part, their neuroprotective effect on cerebellar cells in vitro. Together, the results demonstrate new and specific mechanisms by which MSCs promote cerebellar neuronal survival and add further evidence to the concept that MSCs may be potential therapeutic agents for neurological disorders involving the cerebellum.
Collapse
Affiliation(s)
- Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, Clinical Sciences North Bristol, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
179
|
Salgado AJ, Fraga JS, Mesquita AR, Neves NM, Reis RL, Sousa N. Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability, and Proliferation. Stem Cells Dev 2010; 19:1067-74. [DOI: 10.1089/scd.2009.0279] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Antonio J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Joana S. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana R. Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering, PT Government Associated Lab, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering, PT Government Associated Lab, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| |
Collapse
|
180
|
The potential utility of bone marrow or umbilical cord blood transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow Transplant 2010; 17:455-64. [PMID: 20541025 DOI: 10.1016/j.bbmt.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/01/2010] [Indexed: 12/11/2022]
Abstract
The pathology of type 1 diabetes mellitus (T1D) involves the autoimmune destruction or malfunction of pancreatic β cells, leading to a lack of insulin. The absence of insulin is life-threatening, necessitating daily hormone injections from an exogenous source. Insulin injections do not adequately mimic the precise regulation of β cells on glucose homeostasis, however, eventually leading to complications in diabetic patients. There currently is no definitive cure for T1D. Pancreas transplantation, although quite successful, is an invasive intervention that is restricted to patients with advanced complications, requires constant immunosuppression, and is severely limited by donor availability. Recent progress in human islet cell isolation and immunosuppressive protocols has restored euglycemia in patients who received islet cells from 2 or 3 pancreas donors. However, because of the scarcity of cadaver pancreata and the low yield of islet cells obtained by the procedure, not all patients have access to this surgical intervention. Thus, other therapeutic approaches are needed to arrest immune aggression, preserve β cell mass, and provide efficient replacement. In this sense, bone marrow and umbilical cord blood transplantation are promising possibilities that merit exploration. In this review, we summarize multiple strategies that have been proposed and tested for potential therapeutic benefit in patients with T1D.
Collapse
|
181
|
Kemp K, Mallam E, Scolding N, Wilkins A. Stem cells in genetic myelin disorders. Regen Med 2010; 5:425-39. [DOI: 10.2217/rme.10.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic myelin disorders are a range of diseases that manifest with severe neurological problems, often from infancy. It has been postulated for some time that stem cells might be an effective treatment for these disorders, primarily as agents to restore dysfunctional or lost myelin. Stem cells, however, may offer a wider range of therapeutic potential, for instance as vehicles to replace abnormal enzymes or genes, or to provide trophic support for residual CNS tissue. This article will review several of the more common genetic myelin disorders and currently available therapies, including bone marrow transplantation for adrenoleukodystrophy. Specific stem cell subtypes and their relevance to potential therapeutic use will be discussed and stem cell transplantation in animal model studies will also be reviewed.
Collapse
Affiliation(s)
- Kevin Kemp
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Elizabeth Mallam
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Neil Scolding
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
182
|
Stem/Precursor Cell-Based CNS Therapy: The Importance of Circumventing Immune Suppression by Transplanting Autologous Cells. Stem Cell Rev Rep 2010; 6:405-10. [DOI: 10.1007/s12015-010-9141-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
183
|
Seyfried DM, Han Y, Yang D, Ding J, Shen LH, Savant-Bhonsale S, Chopp M. Localization of bone marrow stromal cells to the injury site after intracerebral hemorrhage in rats. J Neurosurg 2010; 112:329-35. [PMID: 19284233 DOI: 10.3171/2009.2.jns08907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECT Previous studies demonstrated that intravascular injection of bone marrow stromal cells (BMSCs) significantly improved neurological functional recovery in a rat model of intracerebral hemorrhage (ICH). To further investigate the fate of transplanted cells, we examined the effect of male rat BMSCs administered to female rats after ICH. METHODS Twenty-seven female Wistar rats were subjected to ICH surgery. At 24 hours after ICH, these rats were randomly divided into 3 groups and injected intravenously with 1 ml phosphate-buffered saline or 0.5 million or 1 million male rat BMSCs in phosphate-buffered saline. To evaluate the neurological functional outcome, each rat was subjected to a series of behavioral tests (modified neurological severity score and corner turn test) at 1, 7, and 14 days after ICH. The rats were anesthetized intraperitoneally and killed, and the brain tissues were processed at Day 14 after ICH. Immunohistochemistry and in situ hybridization were used to identify cell-specific markers. RESULTS The male rat BMSCs significantly improved the neurological functional outcome and also significantly diminished tissue loss when intravenously transplanted into the rats after ICH. Immunoassay for bromodeoxyuridine (BrdU) and neuronal markers demonstrated a significant increase in the number of BrdU-positive cells, which indicated endogenous neurogenesis, and a significant increase in the number of cells positive for immature neuronal markers. In situ hybridization showed that more BMSCs resided around the hematoma of the rats treated with the 1-million-cell dose compared with the 0.5-million-cell-dose group. In addition, a subfraction of Y chromosome-positive cells were co-immunostained with the neuronal marker microtubule-associated protein-2 or the astrocytic marker glial fibrillary acidic protein. CONCLUSIONS Male rat BMSCs improve neurological outcome and increase histochemical parameters of neurogenesis when administered to female rats after ICH. This study has shown that the intravenously administered male rat BMSCs enter the brain, migrate to the perihematomal area, and express parenchymal markers.
Collapse
Affiliation(s)
- Donald M Seyfried
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Yasuda H, Kuroda S, Shichinohe H, Kamei S, Kawamura R, Iwasaki Y. Effect of biodegradable fibrin scaffold on survival, migration, and differentiation of transplanted bone marrow stromal cells after cortical injury in rats. J Neurosurg 2010; 112:336-44. [DOI: 10.3171/2009.2.jns08495] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
In this study the authors' aim was to assess whether fibrin matrix could act as an injectable, valuable scaffold in bone marrow stromal cell (BMSC) transplantation for injured CNS tissue.
Methods
Both clotting time and 3D structure of fibrin matrix were analyzed with various concentrations of fibrinogen and CaCl2. The BMSCs were harvested from green fluorescent protein–transgenic mice and cultured. A cortical lesion was produced in rats by application of a very cold rod to the right cerebral hemisphere. The BMSCs, fibrin matrix, or BMSC–fibrin matrix complex was transplanted into the lesion though a small bur hole 7 days after the insult. Using immunohistochemical analysis, the authors evaluated the survival, migration, and differentiation of the transplanted cells 4 weeks after transplantation.
Results
Based on in vitro observations, the concentrations of fibrinogen and CaCl2 were fixed at 2.5 mg/ml and 2 μM in animal experiments, respectively. Fibrin matrix almost completely disappeared 4 weeks after transplantation. However, immunohistochemical analysis revealed that fibrin matrix exclusively enhanced the retention of the transplanted cells within the lesion, migration toward the lesion boundary zone, and differentiation into the neurons and perivascular cells.
Conclusions
Injectable fibrin matrix enhanced the survival, migration, and differentiation of the BMSCs transplanted into the cortical lesion in rats. The authors believe that it is one of the promising candidates for a potential, minimally invasive scaffold for CNS disorders. The present findings strongly suggest that such a strategy of tissue engineering could be a therapeutic option for CNS regeneration in patients with CNS injuries.
Collapse
Affiliation(s)
- Hiroshi Yasuda
- 1Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo; and
| | - Satoshi Kuroda
- 1Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo; and
| | - Hideo Shichinohe
- 1Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo; and
| | - Shintaro Kamei
- 2The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | | | - Yoshinobu Iwasaki
- 1Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo; and
| |
Collapse
|
185
|
Zhang HT, Luo J, Sui LS, Ma X, Yan ZJ, Lin JH, Wang YS, Chen YZ, Jiang XD, Xu RX. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol Neurobiol 2009; 29:1283-92. [PMID: 19533335 PMCID: PMC11505793 DOI: 10.1007/s10571-009-9424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/03/2009] [Indexed: 02/06/2023]
Abstract
Controversies exist concerning the need for mesenchymal stromal cells (MSCs) to be transdifferentiated prior to their transplantation. In the present study, we compared the results of grafting into the rat contused spinal cord undifferentiated, adipose tissue-derived stromal cells (uADSCs) versus ADSCs induced by two different protocols to form differentiated nervous tissue. Using Basso, Beattie, and Bresnahan scores and grid tests, we found that three cell-treated groups, including uADSCs-treated, dADSCs induced by Protocol 1 (dADSC-P1)-treated, and dADSCs induced by Protocol 2 (dADSC-P2)-treated groups, significantly improved locomotor functional recovery in SCI rats, compared with the saline-treated group. Furthermore, functional recovery was better in the uADSC-treated and dADSC-P2-treated groups than in the dADSC-P1-treated group at week 12 postinjury (P < 0.05 for dADSC-P1 group vs. uADSCs or dADSC-P2 groups). Although both protocols could induce high percentages of cells expressing neural markers in vitro, few BrdU-labeled cells survived at the injury sites in the three cell-treated groups, and only a small percentage of BrdU-positive cells expressed neural markers. On the other hand, the number of NF200-positive axons in the uADSC-treated and dADSC-P2-treated groups was significantly larger than those in the dADSC-P1-treated and saline-treated control groups. Our results indicate that ADSCs are able to differentiate into neural-like cells in vitro and in vivo. However, neural differentiated ADSCs did not result in better functional recovery than undifferentiated ones, following SCI. In vitro neural transdifferentiation of ADSCs might therefore not be a necessary pretransplantation step. Furthermore, cellular replacement or integration might not contribute to the functional recovery of the injured spinal cord.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Jie Luo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Li-Sen Sui
- Department of Neurosurgery, Guangdong Hospital of Traditional Chinese Medicine, 510120 Guangzhou, China
| | - Xu Ma
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Zhong-Jie Yan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Jian-Hao Lin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Yu-Sheng Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Yi-Zhao Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Xiao-Dan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 510282 Guangzhou, China
- Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, 510282 Guangzhou, China
- Department of Neurosurgery, The Military General Hospital of Beijing PLA, 100700 Beijing, China
| |
Collapse
|
186
|
Gu Y, Wang J, Ding F, Hu N, Wang Y, Gu X. Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. J Mol Neurosci 2009; 40:332-41. [PMID: 19894026 DOI: 10.1007/s12031-009-9304-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/09/2009] [Indexed: 01/01/2023]
Abstract
Application of adult bone marrow stromal cells (BMSCs) provides therapeutic benefits to the treatment of neurological insults. The aim of this study was to explore the potential of nonhematopoietic BMSCs to produce soluble factors and stimulate signaling pathways in neurons that mediate trophic effects. A combination of enzyme-linked immunosorbent assay and two-dimensional gel electrophoresis coupled with mass spectrometry showed that the BMSCs released into the culture medium an array of soluble factors such as nerve growth factor, brain-derived neurotrophic factor, basic fibroblast growth factor, and ciliary neurotrophic factor, which have been shown to exhibit potent neurotrophic effects on neural cells. Immunochemistry, cell viability assay, and quantitative real-time RT-PCR collectively showed that neurite outgrowth and neurogenesis in cultured rat dorsal root ganglion (DRG) explants and neurons were enhanced after they were cocultured with rat BMSCs. Western blot analysis revealed that BMSC-conditioned medium activated phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphoinositide 3-kinase/serine/threonine kinase (PI3K/Akt) in primary culture of rat DRG neurons, which suggested that BMSCs trigger endogenous survival signaling pathways in neurons through their secreted soluble factors. Our data help to elucidate the mechanisms by which BMSCs function as a cell therapy agent in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
187
|
Farin A, Liu CY, Langmoen IA, Apuzzo ML. BIOLOGICAL RESTORATION OF CENTRAL NERVOUS SYSTEM ARCHITECTURE AND FUNCTION. Neurosurgery 2009; 65:831-59; discussion 859. [DOI: 10.1227/01.neu.0000351721.81175.0b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
188
|
Qu C, Xiong Y, Mahmood A, Kaplan DL, Goussev A, Ning R, Chopp M. Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J Neurosurg 2009; 111:658-65. [PMID: 19425888 DOI: 10.3171/2009.4.jns081681] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study was designed to investigate new ways of delivering human marrow stromal cells (hMSCs) to the injured brain by impregnating them into collagen scaffolds in a mouse model of traumatic brain injury (TBI). METHODS Eight C57BL/6 J mice were injured with controlled cortical impact and received transplantation into the lesion cavity of 0.3 x 10(6) hMSCs impregnated into 3D porous collagen scaffolds. Additional experimental groups of 8 mice each received scaffolds implanted alone into the lesion cavity, hMSCs administered alone intracerebrally or intravenously, or saline injected into the lesion core. All treatments were performed 7 days after TBI. Spatial learning was measured using a modified Morris water maze test, and brain tissue samples were processed for histopathological analysis. RESULTS The results showed that hMSC-impregnated scaffolds were more effective than hMSCs administered alone (either intravenously or intracerebrally) in improving spatial learning, reducing lesion volume, and increasing vascular density after TBI. CONCLUSIONS Collagen scaffolds populated with hMSCs may be a new way to reconstruct injured brain tissue and improve neurological function after TBI.
Collapse
Affiliation(s)
- Changsheng Qu
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Markert CD, Atala A, Cann JK, Christ G, Furth M, Ambrosio F, Childers MK. Mesenchymal stem cells: emerging therapy for Duchenne muscular dystrophy. PM R 2009; 1:547-59. [PMID: 19627945 DOI: 10.1016/j.pmrj.2009.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/31/2022]
Abstract
Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, and skeletal and cardiac muscle are termed mesenchymal stem cells. These cells were first identified in the bone marrow, distinct from blood-forming stem cells. Based on the embryologic derivation, availability, and various pro-regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this review, the authors explore the potential for mesenchymal stem cell therapy in the emerging field of regenerative medicine with a focus on treatment for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Chad D Markert
- Department of Neurology, School of Medicine, and Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 2009; 20:646-55. [PMID: 19508851 DOI: 10.1016/j.semcdb.2009.03.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/24/2022]
Abstract
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them toward targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | |
Collapse
|
191
|
Bonilla C, Zurita M, Otero L, Aguayo C, Vaquero J. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Inj 2009; 23:760-9. [DOI: 10.1080/02699050903133970] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
192
|
Kidd S, Spaeth E, Klopp A, Andreeff M, Hall B, Marini FC. The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 2009; 10:657-67. [PMID: 18985472 DOI: 10.1080/14653240802486517] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in the research of mesenchymal stromal cells/multipotent stromal cells (MSC) has revealed numerous beneficial innate characteristics, suggesting potential value in an array of cellular therapies. MSC are easily isolated from bone marrow (BM), fat and other tissues, and are readily propagated in vitro. Transplanted/injected MSC have been shown to migrate to a variety of organs and tissues; however, sites of inflammation and pathology elicit enhanced MSC homing for tissue remodeling and repair. Tumors utilize many of the same inflammatory mediators uncovered in wound healing and likewise provide a site for preferential MSC homing. Although incorporation into the tumor microenvironment is apparent, the role of recruited MSC in the tumor microenvironment remains unclear. Some published studies have shown enhancement of tumor growth and development, perhaps through immunomodulatory and pro-angiogenic properties, while others have shown no apparent effect or have demonstrated inhibition of tumor growth and extended survival. This controversy remains at the forefront as clinical applications of MSC commence in anti-tumor therapies as well as as adjuncts to stem cell transplantation and in ameliorating graft-versus-host disease. Careful analysis of past studies and thoughtful design of future experiments will help to resolve the discrepancies in the field and lead to clinical utility of MSC in disease treatment. This review highlights the current theories of the role of MSC in tumors and explores current controversies.
Collapse
Affiliation(s)
- S Kidd
- Section of Experimental Hematology and Therapy, Department of Stem Cell Transplant and Cellular Therapy, UT-MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
193
|
Maruichi K, Kuroda S, Chiba Y, Hokari M, Shichinohe H, Hida K, Iwasaki Y. Transplanted bone marrow stromal cells improves cognitive dysfunction due to diffuse axonal injury in rats. Neuropathology 2009; 29:422-32. [DOI: 10.1111/j.1440-1789.2008.00995.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
194
|
Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009; 110:1189-97. [PMID: 19301973 DOI: 10.3171/2008.9.jns08158] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECT Cell therapy has shown preclinical promise in the treatment of many diseases, and its application is being translated to the clinical arena. Intravenous mesenchymal stem cell (MSC) therapy has been shown to improve functional recovery after traumatic brain injury (TBI). Herein, the authors report on their attempts to reproduce such observations, including detailed characterizations of the MSC population, non-bromodeoxyuridine-based cell labeling, macroscopic and microscopic cell tracking, quantification of cells traversing the pulmonary microvasculature, and well-validated measurement of motor and cognitive function recovery. METHODS Rat MSCs were isolated, expanded in vitro, immunophenotyped, and labeled. Four million MSCs were intravenously infused into Sprague-Dawley rats 24 hours after receiving a moderate, unilateral controlled cortical impact TBI. Infrared macroscopic cell tracking was used to identify cell distribution. Immunohistochemical analysis of brain and lung tissues 48 hours and 2 weeks postinfusion revealed transplanted cells in these locations, and these cells were quantified. Intraarterial blood sampling and flow cytometry were used to quantify the number of transplanted cells reaching the arterial circulation. Motor and cognitive behavioral testing was performed to evaluate functional recovery. RESULTS At 48 hours post-MSC infusion, the majority of cells were localized to the lungs. Between 1.5 and 3.7% of the infused cells were estimated to traverse the lungs and reach the arterial circulation, 0.295% reached the carotid artery, and a very small percentage reached the cerebral parenchyma (0.0005%) and remained there. Almost no cells were identified in the brain tissue at 2 weeks postinfusion. No motor or cognitive functional improvements in recovery were identified. CONCLUSIONS The intravenous infusion of MSCs appeared neither to result in significant acute or prolonged cerebral engraftment of cells nor to modify the recovery of motor or cognitive function. Less than 4% of the infused cells were likely to traverse the pulmonary microvasculature and reach the arterial circulation, a phenomenon termed the "pulmonary first-pass effect," which may limit the efficacy of this therapeutic approach. The data in this study contradict the findings of previous reports and highlight the potential shortcomings of acute, single-dose, intravenous MSC therapy for TBI.
Collapse
Affiliation(s)
- Matthew T Harting
- Departments of Pediatric Surgery, University of Texas Medical School at Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Systemic neurotransplantation (SNT) was introduced in the laboratory in 2000 and currently it is being widely examined in animal models of neurological disorders. The aim of this systematic review was to evaluate the current state of knowledge in the field of experimental SNT and the premise for the introduction of clinical trials. PubMed was searched and 60 articles utilizing an SNT approach were found and subjected to analysis. The time window for cell transplantation was addressed in only two studies, with contradictory results. Immunosuppression was applied in 25% of studies. No study addressed the justification for immunosuppression. Bone marrow was the most frequent source of grafted cells, followed by cord blood and then by cells of embryonic origin. Studies investigating dose-dependency revealed no satisfactory results with transplantation of less than 10(6) cells/animal; the efficient dose most frequently ranged from 10(6)-10(7) cells/animal (mice and rats). The behavioral effects of cell transplantation were assessed in 75% of all studies; significant improvement was achieved in 95% of them. Morphological effect was evaluated in half of the studies; significant positive effect was achieved in 73% of them. Experimental attempts to elucidate the mechanisms mediating cell-dependent effect were not undertaken in half of the studies. In the other half, the most frequent mechanisms were growth factors, neurogenesis and immunomodulation. SNT still seems to be at the very initial stage of development. Many critical factors have not been sufficiently addressed in laboratory studies and they must be clarified before the introduction of clinical trials.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Department of NeuroRepair, Medical Research Center, Polish Academy of Science, Warsaw, Poland.
| | | |
Collapse
|
196
|
Cho YM, Jang YS, Jang YM, Chung SM, Kim HS, Lee JH, Jeong SW, Kim IK, Kim JJ, Kim KS, Kwon OJ. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med 2009; 41:440-52. [PMID: 19322020 DOI: 10.3858/emm.2009.41.6.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
When we treated rat bone marrow stromal cells (rBMSCs) with neuronal differentiation induction media, typical unfolded protein response (UPR) was observed. BIP/GRP78 protein expression was time-dependently increased, and three branches of UPR were all activated. ATF6 increased the transcription of XBP1 which was successfully spliced by IRE1. PERK was phosphorylated and it was followed by eIF2alpha phosphorylation. Transcription of two downstream targets of eIF2alpha, ATF4 and CHOP/GADD153, were transiently up-regulated with the peak level at 24 h. Immunocytochemical study showed clear coexpression of BIP and ATF4 with NeuN and Map2, respectively. UPR was also observed during the neuronal differentiation of mouse embryonic stem (mES) cells. Finally, chemical endoplasmic reticulum (ER) stress inducers, thapsigargin, tunicamycin, and brefeldin A, dose-dependently increased both mRNA and protein expressions of NF-L, and, its expression was specific to BIP-positive rBMSCs. Our results showing the induction of UPR during neuronal differentiations of rBMSCs and mES cells as well as NF-L expression by ER stress inducers strongly suggest the potential role of UPR in neuronal differentiation.
Collapse
Affiliation(s)
- Yoon Mi Cho
- Department of Biochemistry, 2MRC for Cell Death Disease Research Center, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Sharma M, Sharma P, Tripathi RP, Gurudutta GU. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 2009; 13:4385-402. [PMID: 19602034 PMCID: PMC4515054 DOI: 10.1111/j.1582-4934.2009.00857.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), adherent fibroblastoid cells, present in bone marrow and many other tissues can be easily isolated and expanded in vitro. They are capable of differentiating into different cell types such as osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial cells and neuronal cells. Such immense plasticity coupled with their ability to modulate the activity of immune cells makes them attractive for stem cell-based therapy aimed at treating previously incurable disorders. Preclinical studies have reported successful use of MSCs for delivering therapeutic proteins and repairing defects in a variety of disease models. These studies highlighted the in vivo potential of MSCs and their ability to home to injury sites and modify the microenvironment by secreting paracrine factors to augment tissue repair. Their therapeutic applicability has been widened by genetic modification to enhance differentiation and tissue targeting, and use in tissue engineering. Clinical trials for diseases such as osteogenesis imperfecta, graft-versus-host disease and myocardial infarction have shown some promise, demonstrating the safe use of both allogeneic and autologous cells. However, lack of knowledge of MSC behaviour and responses in vitro and in vivo force the need for basic and animal studies before heading to the clinic. Contrasting reports on immunomodulatory functions and tumorigenicity along with issues such as mode of cell delivery, lack of specific marker, low survival and engraftment require urgent attention to harness the potential of MSC-based therapy in the near future.
Collapse
Affiliation(s)
- Neeraj Kumar Satija
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Mesenchymal stem cells (MSCs) are the stromal component of bone marrow (BM) and, at the moment, the most promising prospect for tissue regeneration and repair. MSCs are easily obtained from BM, have the potential to differentiate into several cell types, and show immunomodulatory properties. The use of MSCs for cell therapies relies on the capacity of these cells to home and engraft long term into the appropriate target tissue. During the past decade, MSC homing capacity to BM and other organs has been reported. Although the mechanisms by which MSCs are recruited to tissues and cross the endothelial cell layer are not yet fully understood, it is probable that chemokines and their receptors are involved, as they are important factors known to control cell migration. The CXCR4-CXCL12 and CX3CR1-CX3CL1 axes, for instance, drive the crosstalk between MSCs and pancreatic islets.
Collapse
|
199
|
Mahmood A, Goussev A, Lu D, Qu C, Xiong Y, Kazmi H, Chopp M. Long-lasting benefits after treatment of traumatic brain injury (TBI) in rats with combination therapy of marrow stromal cells (MSCs) and simvastatin. J Neurotrauma 2009; 25:1441-7. [PMID: 19072586 DOI: 10.1089/neu.2007.0495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to investigate the beneficial effects of combination therapy of simvastatin and marrow stromal cells (MSCs) in improving functional outcome after traumatic brain injury (TBI) in rats. Adult female Wistar rats (n=72 and 8, per group) were injured with controlled cortical impact and treated either with monotherapy of MSCs or simvastatin or a combination therapy of these two agents. Different combination doses were tested, and nine groups of animals were studied. Neurological function was evaluated using Modified Neurological Severity Score (MNSS), and animals were sacrificed 3 months after injury. Coronal brain sections were stained with standard hematoxylin and eosin immunohistochemistry. Our results showed that, though functional improvement was seen with monotherapies of MSCs and simvastatin, the combination therapy when used in optimal doses was significantly better in improving functional outcome. This improvement was long lasting and persisted until the end of the trial (3 months). The optimum combination dose was 0.5mg of simvastatin combined with 2 x 10(6) MSCs. Post mortem analysis showed the presence of donor MSCs within the injured cortex. Endogenous cellular proliferation induced by the neurorestorative treatments was also observed in the lesion boundary zone. Our data show that MSCs and simvastatin have a synergistic effect in improving functional outcome after TBI.
Collapse
Affiliation(s)
- Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
200
|
Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS. Human Bone Marrow-Derived Mesenchymal Stromal Cells Expressing S-TRAIL as a Cellular Delivery Vehicle for Human Glioma Therapy. Stem Cells 2009; 27:2320-30. [DOI: 10.1002/stem.136] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|