151
|
Yamasaki H, Sada A, Iwata T, Niwa T, Tomizawa M, Xanthopoulos KG, Koike T, Shiojiri N. Suppression of C/EBPalpha expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development 2006; 133:4233-4243. [PMID: 17021047 DOI: 10.1242/dev.02591] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of C/EBPalpha, which may govern transcription of mature hepatocyte marker genes, was suppressed in periportal hepatoblasts in mouse liver development, leading to biliary cell differentiation. This study was undertaken to analyze how inactivation of the Cebpa gene affects biliary cell differentiation and gene expression of the regulatory genes for that differentiation, including Hnf1b and Hnf6. In the knockout mouse liver at midgestation stages, pseudoglandular structures were abundantly induced in the parenchyma with elevated expression of Hnf6 and Hnf1b mRNAs. The wild-type liver parenchyma expressed mRNAs of these transcription factors at low levels, though periportal biliary progenitors had strong expression of them. These results suggest that expression of Hnf6 and Hnf1b is downstream of C/EBPalpha action in fetal liver development, and that the suppression of C/EBPalpha expression in periportal hepatoblasts may lead to expression of Hnf6 and Hnf1b mRNAs. Immunohistochemical studies with biliary cell markers in knockout livers demonstrated that differentiated biliary epithelial cells were confined to around the portal veins. The suppression of C/EBPalpha expression may result in upregulation of Hnf6 and Hnf1b gene expression, but be insufficient for biliary cell differentiation. When liver fragments of Cebpa-knockout fetuses, in which hepatoblasts were contained as an endodermal component, were transplanted in the testis of Scid (Prkdc) male mice, almost all hepatoblasts gave rise to biliary epithelial cells. Wild-type hepatoblasts constructed mature hepatic tissue accompanied by biliary cell differentiation. These results also demonstrate that the suppression of C/EBPalpha expression may stimulate biliary cell differentiation.
Collapse
Affiliation(s)
- Harufumi Yamasaki
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, Surugaku, Shizuoka City, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Zecchin E, Filippi A, Biemar F, Tiso N, Pauls S, Ellertsdottir E, Gnügge L, Bortolussi M, Driever W, Argenton F. Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol 2006; 301:192-204. [PMID: 17059815 DOI: 10.1016/j.ydbio.2006.09.041] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 08/28/2006] [Accepted: 09/20/2006] [Indexed: 12/17/2022]
Abstract
The different cell types of the vertebrate pancreas arise asynchronously during organogenesis. Beta-cells producing insulin, alpha-cells producing glucagon, and exocrine cells secreting digestive enzymes differentiate sequentially from a common primordium. Notch signaling has been shown to be a major mechanism controlling these cell-fate choices. So far, the pleiotropy of Delta and Jagged/Serrate genes has hindered the evaluation of the roles of specific Notch ligands, as the phenotypes of knock-out mice are lethal before complete pancreas differentiation. Analyses of gene expression and experimental manipulations of zebrafish embryos allowed us to determine individual contributions of Notch ligands to pancreas development. We have found that temporally distinct phases of both endocrine and exocrine cell type specification are controlled by different delta and jagged genes. Specifically, deltaA knock-down embryos lack alpha cells, similarly to mib (Delta ubiquitin ligase) mutants and embryos treated with DAPT, a gamma secretase inhibitor able to block Notch signaling. Conversely, jagged1b morphants develop an excess of alpha-cells. Moreover, the pancreas of jagged2 knock-down embryos has a decreased ratio of exocrine-to-endocrine compartments. Finally, overexpression of Notch1a-intracellular-domain in the whole pancreas primordium or specifically in beta-cells helped us to refine a model of pancreas differentiation in which cells exit the precursor state at defined stages to form the pancreatic cell lineages, and, by a feedback mediated by different Notch ligands, limit the number of other cells that can leave the precursor state.
Collapse
Affiliation(s)
- E Zecchin
- Dipartimento di Biologia, Universita' di Padova, Via U Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Ho SY, Lorent K, Pack M, Farber SA. Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure. Cell Metab 2006; 3:289-300. [PMID: 16581006 PMCID: PMC2247414 DOI: 10.1016/j.cmet.2006.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 12/15/2005] [Accepted: 03/01/2006] [Indexed: 01/25/2023]
Abstract
The zebrafish fat-free (ffr) mutation was identified in a physiological screen for genes that regulate lipid metabolism. ffr mutant larvae are morphologically indistinguishable from wild-type sibling larvae, but their absorption of fluorescent lipids is severely impaired. Through positional cloning, we have identified a causative mutation in a highly conserved and ubiquitously expressed gene within the ffr locus. The Ffr protein contains a Dor-1 like domain typical of oligomeric Golgi complex (COG) gene, cog8. Golgi complex ultrastructure is disrupted in the ffr digestive tract. Consistent with a possible role in COG-mediated Golgi function, wild-type Ffr-GFP and COG8-mRFP fusion proteins partially colocalize in zebrafish blastomeres. Enterocyte retention of an endosomal lipid marker in ffr larvae support the idea that altered vesicle trafficking contributes to the ffr mutant defect. These data indicate that ffr is required for both Golgi structure and vesicular trafficking, and ultimately lipid transport.
Collapse
Affiliation(s)
- Shiu-Ying Ho
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kristin Lorent
- Department of Medicine, and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael Pack
- Department of Medicine, and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- *Correspondence: (M.P.); (S.A.F.)
| | - Steven A. Farber
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21218
- *Correspondence: (M.P.); (S.A.F.)
| |
Collapse
|
154
|
Abstract
'Idiopathic neonatal hepatitis' is a term that has traditionally been used to denote a clinical syndrome manifest by prolonged jaundice in the neonate. This description is now used much less frequently because recent studies unite well-defined clinical, biochemical and molecular features of intrahepatic cholestasis into specific syndromes. Advances in the understanding of the molecular basis of cholestatic syndromes now enable the classification of syndromes based on biology and offer an opportunity to develop new diagnostic approaches and treatment strategies that take into account the genetic make-up of the child with cholestasis.
Collapse
MESH Headings
- Bile/metabolism
- Cholestasis, Intrahepatic/diagnosis
- Cholestasis, Intrahepatic/genetics
- Cholestasis, Intrahepatic/therapy
- Diagnosis, Differential
- Hepatitis/diagnosis
- Hepatitis/embryology
- Hepatitis/genetics
- Hepatitis/therapy
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/embryology
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/embryology
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- William F Balistreri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
155
|
Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 2006; 19:2900-11. [PMID: 16322560 PMCID: PMC1315396 DOI: 10.1101/gad.1366405] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factor p53 forms a network with associated factors to regulate the cell cycle and apoptosis in response to environmental stresses. However, there is currently no direct genetic evidence to show if or how the p53 pathway functions during organogenesis. Here we present evidence to show that the zebrafish def (digestive-organ expansion factor) gene encodes a novel pan-endoderm-specific factor. A loss-of-function mutation in def confers hypoplastic digestive organs and selectively up-regulates the expression of Delta113p53, counterpart to a newly identified isoform of p53 produced by an alternative internal promoter in intron 4 of the p53 gene in human. The increased Delta113p53 expression is limited to within the mutant digestive organs, and this increase selectively induces the expression of p53-responsive genes to trigger the arrest of the cell cycle but not apoptosis, resulting in compromised organ growth in the mutant. Our data demonstrate that, while induction of expression of p53 and/or its isoforms is crucial to suppress abnormal cell growth, Delta113p53 is tightly regulated by an organ/tissue-specific factor Def, especially during organogenesis, to prevent adverse inhibition of organ/tissue growth.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Functional Genomics, Laboratory of Molecular and Developmental Immunology, Laboratory of Control of p53 Pathway, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F, Pack M. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 2005; 132:5295-306. [PMID: 16284120 DOI: 10.1242/dev.02140] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arthrogryposis-renal dysfunction-cholestasis syndrome (ARC) is a rare cause of cholestasis in infants. Causative mutations in VPS33B, a gene that encodes a Class C vacuolar sorting protein, have recently been reported in individuals with ARC. We have identified a zebrafish vps33b-ortholog that is expressed in developing liver and intestine. Knockdown of vps33b causes bile duct paucity and impairs intestinal lipid absorption, thus phenocopying digestive defects characteristic of ARC. By contrast, neither motor axon nor kidney epithelial defects typically seen in ARC could be identified in vps33b-deficient larvae. Biliary defects in vps33b-deficient zebrafish larvae closely resemble the bile duct paucity associated with knockdown of the onecut transcription factor hnf6. Consistent with this, reduced vps33b expression was evident in hnf6-deficient larvae and in larvae with mutation of vhnf1, a downstream target of hnf6. Zebrafish vhnf1, but not hnf6, increases vps33b expression in zebrafish embryos and in mammalian liver cells. Electrophoretic mobility shift assays suggest that this regulation occurs through direct binding of vHnf1 to the vps33b promoter. These findings identify vps33b as a novel downstream target gene of the hnf6/vhnf1 pathway that regulates bile duct development in zebrafish. Furthermore, they show that tissue-specific roles for genes that regulate trafficking of intracellular proteins have been modified during vertebrate evolution.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, Kvist J, Vainio S, Sariola H. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev 2005; 122:765-80. [PMID: 15905075 DOI: 10.1016/j.mod.2005.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Glial-Cell-Line-Derived Neurotrophic Factor (GDNF) is the major mesenchyme-derived regulator of ureteric budding and branching during nephrogenesis. The ligand activates on the ureteric bud epithelium a receptor complex composed of Ret and GFRalpha1. The upstream regulators of the GDNF receptors are poorly known. A Notch ligand, Jagged1 (Jag1), co-localises with GDNF and its receptors during early kidney morphogenesis. In this study we utilized both in vitro and in vivo models to study the possible regulatory relationship of Ret and Notch pathways. Urogenital blocks were exposed to exogenous GDNF, which promotes supernumerary ureteric budding from the Wolffian duct. GDNF-induced ectopic buds expressed Jag1, which suggests that GDNF can, directly or indirectly, up-regulate Jag1 through Ret/GFRalpha1 signalling. We then studied the role of Jag1 in nephrogenesis by transgenic mice constitutively expressing human Jag1 in Wolffian duct and its derivatives under HoxB7 promoter. Jag1 transgenic mice showed a spectrum of renal defects ranging from aplasia to hypoplasia. Ret and GFRalpha1 are normally downregulated in the Wolffian duct, but they were persistently expressed in the entire transgenic duct. Simultaneously, GDNF expression remained unexpectedly low in the metanephric mesenchyme. In vitro, exogenous GDNF restored the budding and branching defects in transgenic urogenital blocks. Renal differentiation apparently failed because of perturbed stimulation of primary ureteric budding and subsequent branching. Thus, the data provide evidence for a novel crosstalk between Notch and Ret/GFRalpha1 signalling during early nephrogenesis.
Collapse
Affiliation(s)
- Satu Kuure
- Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yee NS, Lorent K, Pack M. Exocrine pancreas development in zebrafish. Dev Biol 2005; 284:84-101. [PMID: 15963491 DOI: 10.1016/j.ydbio.2005.04.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 04/05/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Although many of the genes that regulate development of the endocrine pancreas have been identified, comparatively little is known about how the exocrine pancreas forms. Previous studies have shown that exocrine pancreas development may be modeled in zebrafish. However, the timing and mechanism of acinar and ductal differentiation and morphogenesis have not been described. Here, we characterize zebrafish exocrine pancreas development in wild type and mutant larvae using histological, immunohistochemical and ultrastructural analyses. These data allow us to identify two stages of zebrafish exocrine development. During the first stage, the exocrine anlage forms from rostral endodermal cells. During the second stage, proto-differentiated progenitor cells undergo terminal differentiation followed by acinar gland and duct morphogenesis. Immunohistochemical analyses support a model in which the intrapancreatic ductal system develops from progenitors that join to form a contiguous network rather than by branching morphogenesis of the pancreatic epithelium, as described for mammals. Contemporaneous appearance of acinar glands and ducts in developing larvae and their disruption in pancreatic mutants suggest that common molecular pathways may regulate gland and duct morphogenesis and differentiation of their constituent cells. By contrast, analyses of mind bomb mutants and jagged morpholino-injected larvae suggest that Notch signaling principally regulates ductal differentiation of bipotential exocrine progenitors.
Collapse
Affiliation(s)
- Nelson S Yee
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
159
|
Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 2005; 132:3561-72. [PMID: 16000385 DOI: 10.1242/dev.01918] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatomegaly is a sign of many liver disorders. To identify zebrafish mutants to serve as models for hepatic pathologies, we screened for hepatomegaly at day 5 of embryogenesis in 297 zebrafish lines bearing mutations in genes that are essential for embryonic development. Seven mutants were identified, and three have phenotypes resembling different liver diseases. Mutation of the class C vacuolar protein sorting gene vps18 results in hepatomegaly associated with large, vesicle-filled hepatocytes, which we attribute to the failure of endosomal-lysosomal trafficking. Additionally, these mutants develop defects in the bile canaliculi and have marked biliary paucity, suggesting that vps18 also functions to traffic vesicles to the hepatocyte apical membrane and may play a role in the development of the intrahepatic biliary tree. Similar findings have been reported for individuals with arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, which is due to mutation of another class C vps gene. A second mutant, resulting from disruption of the tumor suppressor gene nf2, develops extrahepatic choledochal cysts in the common bile duct, suggesting that this gene regulates division of biliary cells during development and that nf2 may play a role in the hyperplastic tendencies observed in biliary cells in individuals with choledochal cysts. The third mutant is in the novel gene foie gras, which develops large, lipid-filled hepatocytes, resembling those in individuals with fatty liver disease. These mutants illustrate the utility of zebrafish as a model for studying liver development and disease, and provide valuable tools for investigating the molecular pathogenesis of congenital biliary disorders and fatty liver disease.
Collapse
Affiliation(s)
- Kirsten C Sadler
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA.
| | | | | | | | | |
Collapse
|
160
|
Balistreri WF, Bezerra JA, Jansen P, Karpen SJ, Shneider BL, Suchy FJ. Intrahepatic cholestasis: summary of an American Association for the Study of Liver Diseases single-topic conference. Hepatology 2005; 42:222-35. [PMID: 15898074 DOI: 10.1002/hep.20729] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- William F Balistreri
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 2005; 19:1288-93. [PMID: 15937218 PMCID: PMC1142552 DOI: 10.1101/gad.1310605] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 04/21/2005] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) represent a family of small, regulatory, noncoding RNAs that are found in plants and animals. Here, we describe the miRNA profile of the zebrafish Danio rerio resolved in a developmental and cell-type-specific manner. The profiles were obtained from larger-scale sequencing of small RNA libraries prepared from developmentally staged zebrafish, and two adult fibroblast cell lines derived from the caudal fin (ZFL) and the liver epithelium (SJD). We identified a total of 154 distinct miRNAs expressed from 343 miRNA genes. Other experimental/computational sources support an additional 10 miRNAs encoded by 19 genes. The miRNAs can be classified into 87 distinct families. Cross-species comparison indicates that 81 families are conserved in mammals, 17 of which also have at least one member conserved in an invertebrate. Our analysis reveals that the zygotes are essentially devoid of miRNAs and that their expression begins during the blastula period with a zebrafish-specific family of miRNAs encoded by closely spaced multicopy genes. Computational predictions of zebrafish miRNA targets are provided that take into account the depth of evolutionary conservation. Besides miRNAs, we identified a prominent class of repeat-associated small interfering RNAs (rasiRNAs).
Collapse
Affiliation(s)
- Po Yu Chen
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Affiliation(s)
- Roong Zhao
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|