151
|
Tsuji N, Ninov N, Delawary M, Osman S, Roh AS, Gut P, Stainier DYR. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation. PLoS One 2014; 9:e104112. [PMID: 25117518 PMCID: PMC4130527 DOI: 10.1371/journal.pone.0104112] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022] Open
Abstract
Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.
Collapse
Affiliation(s)
- Naoki Tsuji
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DFG Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| | - Mina Delawary
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Sahar Osman
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Alex S. Roh
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Philipp Gut
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
152
|
Petrovic J, Formosa-Jordan P, Luna-Escalante JC, Abelló G, Ibañes M, Neves J, Giraldez F. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 2014; 141:2313-24. [PMID: 24821984 DOI: 10.1242/dev.108100] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated after Notch activation. In the chicken otocyst, expression of Jag1 and the Notch target Hey1 correlates well with lateral induction, whereas both Jag1 and Dl1 are expressed during lateral inhibition, as are Notch targets Hey1 and Hes5. Here, we show that Jag1 drives lower levels of Notch activity than Dl1, which results in the differential expression of Hey1 and Hes5. In addition, Jag1 interferes with the ability of Dl1 to elicit high levels of Notch activity. Modeling the sensory epithelium when the two ligands are expressed together shows that ligand regulation, differential signaling strength and ligand competition are crucial to allow the two modes of operation and for establishing the alternate pattern of hair cells and supporting cells. Jag1, while driving lateral induction on its own, facilitates patterning by lateral inhibition in the presence of Dl1. This novel behavior emerges from Jag1 acting as a competitive inhibitor of Dl1 for Notch signaling. Both modeling and experiments show that hair cell patterning is very robust. The model suggests that autoactivation of proneural factor Atoh1, upstream of Dl1, is a fundamental component for robustness. The results stress the importance of the levels of Notch signaling and ligand competition for Notch function.
Collapse
Affiliation(s)
- Jelena Petrovic
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Pau Formosa-Jordan
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan C Luna-Escalante
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gina Abelló
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Marta Ibañes
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joana Neves
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology Unit, CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain
| |
Collapse
|
153
|
Patenaude A, Fuller M, Chang L, Wong F, Paliouras G, Shaw R, Kyle AH, Umlandt P, Baker JHE, Diaz E, Tong J, Minchinton AI, Karsan A. Endothelial-specific Notch blockade inhibits vascular function and tumor growth through an eNOS-dependent mechanism. Cancer Res 2014; 74:2402-11. [PMID: 24599126 DOI: 10.1158/0008-5472.can-12-4038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Notch signaling is important for tumor angiogenesis induced by vascular endothelial growth factor A. Blockade of the Notch ligand Dll4 inhibits tumor growth in a paradoxical way. Dll4 inhibition increases endothelial cell sprouting, but vessels show reduced perfusion. The reason for this lack of perfusion is not currently understood. Here we report that inhibition of Notch signaling in endothelial cell using an inducible binary transgenic system limits VEGFA-driven tumor growth and causes endothelial dysfunction. Neither excessive endothelial cell sprouting nor defects of pericyte abundance accompanied the inhibition of tumor growth and functional vasculature. However, biochemical and functional analysis revealed that endothelial nitric oxide production is decreased by Notch inhibition. Treatment with the soluble guanylate cyclase activator BAY41-2272, a vasorelaxing agent that acts downstream of endothelial nitric oxide synthase (eNOS) by directly activating its soluble guanylyl cyclase receptor, rescued blood vessel function and tumor growth. We show that reduction in nitric oxide signaling is an early alteration induced by Notch inhibition and suggest that lack of functional vessels observed with Notch inhibition is secondary to inhibition of nitric oxide signaling. Coculture and tumor growth assays reveal that Notch-mediated nitric oxide production in endothelial cell requires VEGFA signaling. Together, our data support that eNOS inhibition is responsible for the tumor growth and vascular function defects induced by endothelial Notch inhibition. This study uncovers a novel mechanism of nitric oxide production in endothelial cells in tumors, with implications for understanding the peculiar character of tumor blood vessels.
Collapse
Affiliation(s)
- Alexandre Patenaude
- Authors' Affiliations: Genome Sciences Centre; Integrative Oncology Program; Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency; and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Choi TY, Ninov N, Stainier DY, Shin D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 2014; 146:776-88. [PMID: 24148620 PMCID: PMC3943869 DOI: 10.1053/j.gastro.2013.10.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/10/2013] [Accepted: 10/16/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS Biliary epithelial cells (BECs) are considered to be a source of regenerating hepatocytes when hepatocyte proliferation is compromised. However, there is still controversy about the extent to which BECs can contribute to the regenerating hepatocyte population, and thereby to liver recovery. To investigate this issue, we established a zebrafish model of liver regeneration in which the extent of hepatocyte ablation can be controlled. METHODS Hepatocytes were depleted by administration of metronidazole to Tg(fabp10a:CFP-NTR) animals. We traced the origin of regenerating hepatocytes using short-term lineage-tracing experiments, as well as the inducible Cre/loxP system; specifically, we utilized both a BEC tracer line Tg(Tp1:CreER(T2)) and a hepatocyte tracer line Tg(fabp10a:CreER(T2)). We also examined BEC and hepatocyte proliferation and liver marker gene expression during liver regeneration. RESULTS BECs gave rise to most of the regenerating hepatocytes in larval and adult zebrafish after severe hepatocyte depletion. After hepatocyte loss, BECs proliferated as they dedifferentiated into hepatoblast-like cells; they subsequently differentiated into highly proliferative hepatocytes that restored the liver mass. This process was impaired in zebrafish wnt2bb mutants; in these animals, hepatocytes regenerated but their proliferation was greatly reduced. CONCLUSIONS BECs contribute to regenerating hepatocytes after substantial hepatocyte depletion in zebrafish, thereby leading to recovery from severe liver damage.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
155
|
Mirando AJ, Liu Z, Moore T, Lang A, Kohn A, Osinski AM, O'Keefe RJ, Mooney RA, Zuscik MJ, Hilton MJ. RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. ACTA ACUST UNITED AC 2014; 65:2623-33. [PMID: 23839930 DOI: 10.1002/art.38076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative disease resulting in severe joint cartilage destruction and disability. While the mechanisms underlying the development and progression of OA are poorly understood, gene mutations have been identified within cartilage-related signaling molecules, implicating impaired cell signaling in OA and joint disease. The Notch pathway has recently been identified as a crucial regulator of growth plate cartilage development, and components are expressed in joint tissue. This study was undertaken to investigate a novel role for Notch signaling in joint cartilage development, maintenance, and the pathogenesis of joint disease in a mouse model. METHODS We performed the first mouse gene study in which the core Notch signaling component, RBP-Jκ, was tissue specifically deleted within joints. The Prx1Cre transgene removed Rbpjk loxP-flanked alleles in mesenchymal joint precursor cells, while the Col2Cre(ERT2) transgene specifically deleted Rbpjk in postnatal chondrocytes. Murine articular chondrocyte cultures were also used to examine Notch regulation of gene expression. RESULTS Loss of Notch signaling in mesenchymal joint precursor cells did not affect embryonic joint development in mice, but rather, resulted in an early, progressive OA-like pathology. Additionally, partial loss of Notch signaling in murine postnatal cartilage resulted in progressive joint cartilage degeneration and an age-related OA-like pathology. Inhibition of Notch signaling altered the expression of the extracellular matrix (ECM)-related factors type II collagen (COL2A1), proteoglycan 4, COL10A1, matrix metalloproteinase 13, and ADAMTS. CONCLUSION Our findings indicate that the RBP-Jκ-dependent Notch pathway is a novel pathway involved in joint maintenance and articular cartilage homeostasis, a critical regulator of articular cartilage ECM-related molecules, and a potentially important therapeutic target for OA-like joint disease.
Collapse
Affiliation(s)
- Anthony J Mirando
- University of Rochester and University of Rochester Medical Center, Rochester, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Kulpa DA, Brehm JH, Fromentin R, Cooper A, Cooper C, Ahlers J, Chomont N, Sékaly RP. The immunological synapse: the gateway to the HIV reservoir. Immunol Rev 2014; 254:305-25. [PMID: 23772628 PMCID: PMC3707302 DOI: 10.1111/imr.12080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence.
Collapse
Affiliation(s)
- Deanna A Kulpa
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute-Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Wang Y, Ahmad AA, Shah PK, Sims CE, Magness ST, Allbritton NL. Capture and 3D culture of colonic crypts and colonoids in a microarray platform. LAB ON A CHIP 2013; 13:4625-34. [PMID: 24113577 PMCID: PMC3841105 DOI: 10.1039/c3lc50813g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crypts are the basic structural and functional units of colonic epithelium and can be isolated from the colon and cultured in vitro into multi-cell spheroids termed "colonoids". Both crypts and colonoids are ideal building blocks for construction of an in vitro tissue model of the colon. Here we proposed and tested a microengineered platform for capture and in vitro 3D culture of colonic crypts and colonoids. An integrated platform was fabricated from polydimethylsiloxane which contained two fluidic layers separated by an array of cylindrical microwells (150 μm diameter, 150 μm depth) with perforated bottoms (30 μm opening, 10 μm depth) termed "microstrainers". As fluid moved through the array, crypts or colonoids were retained in the microstrainers with a >90% array-filling efficiency. Matrigel as an extracellular matrix was then applied to the microstrainers to generate isolated Matrigel pockets encapsulating the crypts or colonoids. After supplying the essential growth factors, epidermal growth factor, Wnt-3A, R-spondin 2 and noggin, 63 ± 13% of the crypts and 77 ± 8% of the colonoids cultured in the microstrainers over a 48-72 h period formed viable 3D colonoids. Thus colonoid growth on the array was similar to that under standard culture conditions (78 ± 5%). Additionally the colonoids displayed the same morphology and similar numbers of stem and progenitor cells as those under standard culture conditions. Immunofluorescence staining confirmed that the differentiated cell-types of the colon, goblet cells, enteroendocrine cells and absorptive enterocytes, formed on the array. To demonstrating the utility of the array in tracking the colonoid fate, quantitative fluorescence analysis was performed on the arrayed colonoids exposed to reagents such as Wnt-3A and the γ-secretase inhibitor LY-411575. The successful formation of viable, multi-cell type colonic tissue on the microengineered platform represents a first step in the building of a "colon-on-a-chip" with the goal of producing the physiologic structure and organ-level function of the colon for controlled experiments.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
158
|
Ornostay A, Cowie AM, Hindle M, Baker CJ, Martyniuk CJ. Classifying chemical mode of action using gene networks and machine learning: A case study with the herbicide linuron. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:263-74. [DOI: 10.1016/j.cbd.2013.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022]
|
159
|
Opitz R, Antonica F, Costagliola S. New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2013; 2:229-42. [PMID: 24783054 PMCID: PMC3923603 DOI: 10.1159/000357079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Francesco Antonica
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
160
|
Lee GH, An SY, Sohn YB, Jeong SY, Chung YS. An unusual presentation of diabetic ketoacidosis in familial hajdu-cheney syndrome: a case report. J Korean Med Sci 2013; 28:1682-6. [PMID: 24265536 PMCID: PMC3835515 DOI: 10.3346/jkms.2013.28.11.1682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/05/2013] [Indexed: 11/27/2022] Open
Abstract
A 21-year-old man with diabetic ketoacidosis (DKA) displayed short and clubbed fingers and marked eyebrow, which are typical of Hajdu-Cheney Syndrome (HCS). Laboratory findings confirmed type 1 diabetes mellitus (DM). After conservative care with hydration and insulin supply, metabolic impairment was improved. Examinations of bone and metabolism revealed osteoporosis and craniofacial abnormalities. The mutation (c.6443T>G) of the NOTCH2 gene was found. The patient was diagnosed with HCS and DM. There may be a relationship between HCS and DM, with development of pancreatic symptoms related to the NOTCH2 gene mutation.
Collapse
Affiliation(s)
- Gil-Ho Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - So-Yeon An
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
161
|
Aldh1-expressing endocrine progenitor cells regulate secondary islet formation in larval zebrafish pancreas. PLoS One 2013; 8:e74350. [PMID: 24147152 PMCID: PMC3798260 DOI: 10.1371/journal.pone.0074350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/31/2013] [Indexed: 12/03/2022] Open
Abstract
Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
Collapse
|
162
|
Functions of huntingtin in germ layer specification and organogenesis. PLoS One 2013; 8:e72698. [PMID: 23967334 PMCID: PMC3742581 DOI: 10.1371/journal.pone.0072698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disease caused by abnormal polyglutamine expansion in the huntingtin protein (Htt). Although both Htt and the HD pathogenic mutation (mHtt) are implicated in early developmental events, their individual involvement has not been adequately explored. In order to better define the developmental functions and pathological consequences of the normal and mutant proteins, respectively, we employed embryonic stem cell (ESC) expansion, differentiation and induction experiments using huntingtin knock-out (KO) and mutant huntingtin knock-in (Q111) mouse ESC lines. In KO ESCs, we observed impairments in the spontaneous specification and survival of ectodermal and mesodermal lineages during embryoid body formation and under inductive conditions using retinoic acid and Wnt3A, respectively. Ablation of BAX improves cell survival, but failed to correct defects in germ layer specification. In addition, we observed ensuing impairments in the specification and maturation of neural, hepatic, pancreatic and cardiomyocyte lineages. These developmental deficits occurred in concert with alterations in Notch, Hes1 and STAT3 signaling pathways. Moreover, in Q111 ESCs, we observed differential developmental stage-specific alterations in lineage specification and maturation. We also observed changes in Notch/STAT3 expression and activation. Our observations underscore essential roles of Htt in the specification of ectoderm, endoderm and mesoderm, in the specification of neural and non-neural organ-specific lineages, as well as cell survival during early embryogenesis. Remarkably, these developmental events are differentially deregulated by mHtt, raising the possibility that HD-associated early developmental impairments may contribute not only to region-specific neurodegeneration, but also to non-neural co-morbidities.
Collapse
|
163
|
Shigdar S, Li Y, Bhattacharya S, O'Connor M, Pu C, Lin J, Wang T, Xiang D, Kong L, Wei MQ, Zhu Y, Zhou S, Duan W. Inflammation and cancer stem cells. Cancer Lett 2013; 345:271-8. [PMID: 23941828 DOI: 10.1016/j.canlet.2013.07.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
Abstract
Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| | - Yong Li
- Cancer Care Centre, St. George Hospital, and St. George Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Michael O'Connor
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Chunwen Pu
- Dalian Sixth People's Hospital, Dalian 116033, China
| | - Jia Lin
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Tao Wang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Dongxi Xiang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Lingxue Kong
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Ming Q Wei
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yimin Zhu
- Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shufeng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
164
|
Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens CB, Bally-Cuif L. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development 2013; 140:3335-47. [PMID: 23863484 DOI: 10.1242/dev.095018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescence and increased occurrence of symmetric divisions. Expression analyses, morpholino-mediated invalidation and the generation of a notch3-null mutant directly implicate Notch3 in these effects. By contrast, abrogation of notch1b function results in the generation of neurons at the expense of the activated NSC state. Together, our results support a differential involvement of Notch receptors along the successive steps of NSC recruitment. They implicate Notch3 at the top of this hierarchy to gate NSC activation and amplification, protecting the homeostasis of adult NSC reservoirs under physiological conditions.
Collapse
Affiliation(s)
- Alessandro Alunni
- Institute of Neurobiology A. Fessard, Laboratory of Neurobiology and Development, CNRS UPR3294, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
165
|
Progatzky F, Dallman MJ, Lo Celso C. From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 2013; 3:20130001. [PMID: 23853708 PMCID: PMC3638420 DOI: 10.1098/rsfs.2013.0001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intravital microscopy has become increasingly popular over the past few decades because it provides high-resolution and real-time information about complex biological processes. Technological advances that allow deeper penetration in live tissues, such as the development of confocal and two-photon microscopy, together with the generation of ever-new fluorophores that facilitate bright labelling of cells and tissue components have made imaging of vertebrate model organisms efficient and highly informative. Genetic manipulation leading to expression of fluorescent proteins is undoubtedly the labelling method of choice and has been used to visualize several cell types in vivo. This approach, however, can be technically challenging and time consuming. Over the years, several dyes have been developed to allow rapid, effective and bright ex vivo labelling of cells for subsequent transplantation and imaging. Here, we review and discuss the advantages and limitations of a number of strategies commonly used to label and track cells at high resolution in vivo in mouse and zebrafish, using fluorescence microscopy. While the quest for the perfect label is far from achieved, current reagents are valuable tools enabling the progress of biological discovery, so long as they are selected and used appropriately.
Collapse
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences , Imperial College London , London SW7 2AZ , UK
| | | | | |
Collapse
|
166
|
Flasse LC, Pirson JL, Stern DG, Von Berg V, Manfroid I, Peers B, Voz ML. Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 2013; 11:78. [PMID: 23835295 PMCID: PMC3726459 DOI: 10.1186/1741-7007-11-78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. Results We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. Conclusions This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.
Collapse
Affiliation(s)
- Lydie C Flasse
- Laboratory of zebrafish development and disease models, University of Liege (ULg), Liege 4000, Belgium
| | | | | | | | | | | | | |
Collapse
|
167
|
Ninov N, Hesselson D, Gut P, Zhou A, Fidelin K, Stainier DYR. Metabolic regulation of cellular plasticity in the pancreas. Curr Biol 2013; 23:1242-50. [PMID: 23791726 DOI: 10.1016/j.cub.2013.05.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas.
Collapse
Affiliation(s)
- Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California, San Francisco, 1550 4(th) Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | |
Collapse
|
168
|
In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 2013; 498:497-501. [PMID: 23783515 PMCID: PMC4090927 DOI: 10.1038/nature12322] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischemia-induced infarct1,2. As a result, there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium3. Past studies have shown that lower vertebrate and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles4–6; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration3. Here, we have developed in the zebrafish a combination of fluorescent reporter transgenes, genetic fate-mapping strategies, and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. Importantly, we observed that Notch signaling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signaling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.
Collapse
|
169
|
Liu Z, Liu Z, Walters BJ, Owen T, Kopan R, Zuo J. In vivo visualization of Notch1 proteolysis reveals the heterogeneity of Notch1 signaling activity in the mouse cochlea. PLoS One 2013; 8:e64903. [PMID: 23741415 PMCID: PMC3669271 DOI: 10.1371/journal.pone.0064903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Mechanosensory hair cells (HCs) and surrounding supporting cells (SCs) in the mouse cochlea are important for hearing and are derived from the same prosensory progenitors. Notch1 signaling plays dual but contrasting and age-dependent roles in mouse cochlear development: early lateral induction and subsequent lateral inhibition. However, it has been difficult to directly visualize mouse cochlear cells experiencing various levels of Notch1 activity at single cell resolution. Here, we characterized two knock-in mouse lines, Notch1Cre (Low)/+ and Notch1Cre (High)/+, with different Cre recombinase activities, that can detect Notch1 receptor proteolysis or Notch1 activity at high and low thresholds, respectively. Using both lines together with a highly sensitive Cre reporter line, we showed that Notch1 activity is nearly undetectable during lateral induction but increases to medium and high levels during lateral inhibition. Furthermore, we found that within the neonatal organ of Corti, the vast majority of cells that experience Notch1 activity were SCs not HCs, suggesting that HCs kept undetectable Notch1 activity during the entire lineage development. Furthermore, among SC subtypes, ∼85–99% of Deiters’ and outer pillar cells but only ∼19–38% of inner pillar cells experience medium and high levels of Notch1 activity. Our results demonstrate that Notch1 activity is highly heterogeneous: 1) between lateral induction and inhibition; 2) between HC and SC lineages; 3) among different SC subtypes; 4) among different cells within each SC subtype. Such heterogeneity should elucidate how the development of the cochclear sensory epithelium is precisely controlled and how HC regeneration can be best achieved in postnatal cochleae.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zhenyi Liu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bradley J. Walters
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Raphael Kopan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
170
|
Perineurial glia require Notch signaling during motor nerve development but not regeneration. J Neurosci 2013; 33:4241-52. [PMID: 23467342 DOI: 10.1523/jneurosci.4893-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor nerves play the critical role of shunting information out of the CNS to targets in the periphery. Their formation requires the coordinated development of distinct cellular components, including motor axons and the Schwann cells and perineurial glia that ensheath them. During nervous system assembly, these glial cells must migrate long distances and terminally differentiate, ensuring the efficient propagation of action potentials. Although we know quite a bit about the mechanisms that control Schwann cell development during this process, nothing is known about the mechanisms that mediate the migration and differentiation of perineurial glia. Using in vivo imaging in zebrafish, we demonstrate that Notch signaling is required for both perineurial migration and differentiation during nerve formation, but not regeneration. Interestingly, loss of Notch signaling in perineurial cells also causes a failure of Schwann cell differentiation, demonstrating that Schwann cells require perineurial glia for aspects of their own development. These studies describe a novel mechanism that mediates multiple aspects of perineurial development and reveal the critical importance of perineurial glia for Schwann cell maturation and nerve formation.
Collapse
|
171
|
Nowotschin S, Xenopoulos P, Schrode N, Hadjantonakis AK. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC DEVELOPMENTAL BIOLOGY 2013; 13:15. [PMID: 23617465 PMCID: PMC3663770 DOI: 10.1186/1471-213x-13-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 04/11/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Live imaging provides an essential methodology for understanding complex and dynamic cell behaviors and their underlying molecular mechanisms. Genetically-encoded reporter expressing mouse strains are an important tool for use in live imaging experiments. Such reporter strains can be engineered by placing cis-regulatory elements of interest to direct the expression of desired reporter genes. If these cis-regulatory elements are downstream targets, and thus activated as a consequence of signaling pathway activation, such reporters can provide read-outs of the signaling status of a cell. The Notch signaling pathway is an evolutionary conserved pathway operating in multiple developmental processes as well as being the basis for several congenital diseases. The transcription factor CBF1 is a central evolutionarily conserved component of the Notch signaling pathway. It binds the active form of the Notch receptor (NICD) and subsequently binds to cis-regulatory regions (CBF1 binding sites) in the promoters of Notch responsive genes. In this way, CBF1 binding sites represent a good target for the design of a Notch signaling reporter. RESULTS To generate a single-cell resolution Notch signaling reporter, we used a CBF responsive element to direct the expression of a nuclear-localized fluorescent protein. To do this, we linked 4 copies of a consensus CBF1 binding site to the basal simian virus 40 (SV40) promoter, placed this cassette in front of a fluorescent protein fusion comprising human histone H2B linked to the yellow fluorescent protein (YFP) Venus, one of the brightest available YFPs. We used the CBF:H2B-Venus construct to generate both transgenic embryonic mouse stem (ES) cell lines and a strain of transgenic mice that would report Notch signaling activity. CONCLUSION By using multiple CBF1 binding sites together with a subcellular-localized, genetically-encoded fluorescent protein, H2B-Venus, we have generated a transgenic strain of mice that faithfully recapitulates Notch signaling at single-cell resolution. This is the first mouse reporter strain in which individual cells transducing a Notch signal can be visualized. The improved resolution of this reporter makes it ideal for live imaging developmental processes regulated by the Notch signaling pathway as well as a short-term lineage tracer of Notch expressing cells due to the perdurance of the fluorescent reporter. Taken together, the CBF:H2B-Venus mouse strain is a unique tool to study and understand the morphogenetic events regulated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | - Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | |
Collapse
|
172
|
Li Y, Zhang J, Zhang L, Si M, Yin H, Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis 2013; 34:1601-10. [PMID: 23430952 DOI: 10.1093/carcin/bgt065] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Notch signaling pathway plays critical roles in human cancers, including osteosarcoma, suggesting that the discovery of specific agents targeting Notch would be extremely valuable for osteosarcoma. Our previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of osteosarcoma cells by triggering cell cycle arrest and apoptosis in vitro. However, the underlying mechanism is still unclear. In this study, we found that DATS suppressed cell survival, wound-healing capacity, invasion and angiogenesis in osteosarcoma cells. These effects were associated with decreased expression of Notch-1 and its downstream genes, such as vascular endothelial growth factor and matrix metalloproteinases, as well as increased expression of a panel of tumor-suppressive microRNAs (miRNAs), including miR-34a, miR-143, miR-145 and miR-200b/c that are typically lost in osteosarcoma. We also found that reexpression of miR-34a and miR-200b by transfection led to reduced expression of Notch-1, resulting in the inhibition of osteosarcoma cell proliferation, invasion and angiogenesis. These results clearly suggest that DATS inhibited osteosarcoma growth and aggressiveness via a novel mechanism targeting a Notch-miRNA regulatory circuit. Our data provide the first evidence that the downregulation of Notch-1 and reexpression of miRNAs by DATS may be an effective approach for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yonggang Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
173
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
174
|
Privette Vinnedge LM, Kappes F, Nassar N, Wells SI. Stacking the DEK: from chromatin topology to cancer stem cells. Cell Cycle 2013; 12:51-66. [PMID: 23255114 PMCID: PMC3570517 DOI: 10.4161/cc.23121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.
Collapse
Affiliation(s)
- Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
175
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
176
|
You N, Liu W, Zhong X, Dou K, Tao K. Possibility of the enhanced progression of fetal liver stem/progenitor cells therapy for treating end-stage liver diseases by regulating the notch signaling pathway. Arch Med Res 2012; 43:585-587. [PMID: 23069628 DOI: 10.1016/j.arcmed.2012.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023]
Abstract
Cell therapy is the most promising therapy for end-stage liver diseases (ESLDs). Fetal liver stem/progenitor cells (FLSPCs) have the advantages of a high survival rate, high proliferation, small volume, and high safety, which make them one of the ideal cells for stem cell therapy for liver diseases. During the early phase of our study, we applied a three-step separation method to enrich FLSPCs and obtained a separation efficiency that was similar to the flow cell-sorting method. Additionally, using a fulminant hepatic failure rat model, we demonstrated that FLSPCs can contribute to the recovery of hepatic morphogenesis and function. However, two problems remain to be resolved to explore the therapeutic potential of FLSPCs. First, how can FLSPCs be induced to accurately differentiate into hepatocytes and cholangiocytes? Second, how do FLSPCs maintain self-renewal? The Notch signaling plays a critical role in regulating the differentiation and self-renewal of many types of stem cells. Additionally, our previous findings have shown that the Notch signaling plays an important role in FLSPC differentiation into hepatocytes. Therefore, we hypothesized that the Notch signaling may be involved in the differentiation and self-renewal of FLSPCs. We began a study on the regulatory effects and relative molecular mechanisms of the Notch signaling on FLSPCs and found the corresponding interfering target, which may become an index for the clinical application of FLSPCs.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
177
|
Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DYR. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 2012; 8:e1002754. [PMID: 22719264 PMCID: PMC3375260 DOI: 10.1371/journal.pgen.1002754] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/23/2012] [Indexed: 01/19/2023] Open
Abstract
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.
Collapse
Affiliation(s)
- Marion Delous
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chunyue Yin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Juliana Debrito Carten
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Luyuan Pan
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Taylur P. Ma
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Cecilia B. Moens
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|