151
|
Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 2002; 118:99-109. [PMID: 12351174 DOI: 10.1016/s0925-4773(02)00237-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Commitment of the germ cell lineage during embryogenesis depends on zygotic gene expression in mammals, but little is known about the signaling molecules required for germ cell formation. Here we show that the intracellular signaling molecule SMAD1, acting downstream of bone morphogenetic protein (BMP) receptors, is required for the commitment of germ cell lineage from epiblast in early mouse embryos. Smad1 homozygous mutant embryos (Smad1-/-) were generated by in-frame insertion of lacZ gene into an exon of the Smad1 gene. Most of the Smad1-/- embryos contained no primordial germ cells (PGCs) and had short allantois, while histological analysis and in situ hybridization for the mesoderm marker genes revealed that early mesoderm induction was normal in those embryos. Smad1 expression was observed in epiblast and in visceral endoderm during gastrulation, while only a few alkaline phosphatase-positive PGCs at 7.5 and 8.5 days post coitum (E7.5 and E8.5) expressed Smad1. Phosphorylated SMAD proteins were localized in the proximal region of epiblast at E6.0-6.5, where the progenitors of PGCs and of allantois reside. Single-cell reverse transcription-polymerase chain reaction analysis revealed that the expression of Smad1, -5 and -8 were sporadic and mutually independent in proximal epiblast cells. We also found that BMP4-induced differentiation of PGCs from epiblast in vitro was fully dependent on the existence of phosphorylated SMAD1. These results indicate that SMAD1 signaling possesses a critical and non-redundant function in the initial commitment of the germ cell lineage.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Inman GJ, Nicolás FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 2002; 10:283-94. [PMID: 12191474 DOI: 10.1016/s1097-2765(02)00585-3] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transforming growth factor (TGF)-beta stimulation leads to phosphorylation and activation of Smad2 and Smad3, which form complexes with Smad4 that accumulate in the nucleus and regulate transcription of target genes. Here we demonstrate that, following TGF-beta stimulation of epithelial cells, receptors remain active for at least 3-4 hr, and continuous receptor activity is required to maintain active Smads in the nucleus and for TGF-beta-induced transcription. We show that continuous nucleocytoplasmic shuttling of the Smads during active TGF-beta signaling provides the mechanism whereby the intracellular transducers of the signal continuously monitor receptor activity. Our data therefore explain how, at all times, the concentration of active Smads in the nucleus is directly dictated by the levels of activated receptors in the cytoplasm.
Collapse
Affiliation(s)
- Gareth J Inman
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, United Kingdom
| | | | | |
Collapse
|
153
|
Rosendahl A, Pardali E, Speletas M, Ten Dijke P, Heldin CH, Sideras P. Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am J Respir Cell Mol Biol 2002; 27:160-9. [PMID: 12151307 DOI: 10.1165/ajrcmb.27.2.4779] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are pleiotropic secreted proteins, structurally related to transforming growth factor (TGF)-beta and activins. BMPs play pivotal roles in the regulation of embryonic lung development and branching of airways and have recently been considered to influence inflammatory processes in adults due to their chemotactic activity on fibroblasts, myocytes, and inflammatory cells. In this study, we have investigated the possible involvement of BMPs in a model of experimental allergic-airway inflammation in situ using antibodies that detect activated Smad proteins, and have monitored the modulation of BMP ligands during the inflammatory response. Inflamed bronchial epithelial cells and a few scattered alveolar cells expressed levels of phosphorylated Smad1 (pSmad1/5), indicative of active BMP/Smad signaling. This was in contrast to healthy epithelium, which was devoid of immunoreactivity. A mechanistic explanation for increased pSmad1/5 staining during inflammation was provided by the upregulated expression of all the BMP type I receptors, i.e., activin receptor-like kinase (ALK)2, ALK3, and ALK6, in the inflamed bronchial epithelial cells. Furthermore, the mRNA and protein profiles for BMP ligands were significantly altered during airway inflammation with induction of BMP2, BMP4, and BMP6, and downregulation of BMP5 and BMP7. Collectively, our data demonstrate for the first time active BMP/Smad signaling during airway inflammation in bronchial epithelial cells and thus raise the possibility that BMPs could play a determining role in respiratory pathophysiology.
Collapse
|
154
|
Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62:65-74. [PMID: 12065756 DOI: 10.1124/mol.62.1.65] [Citation(s) in RCA: 1364] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small molecule inhibitors have proven extremely useful for investigating signal transduction pathways and have the potential for development into therapeutics for inhibiting signal transduction pathways whose activities contribute to human diseases. Transforming growth factor beta (TGF-beta) is a member of a large family of pleiotropic cytokines that are involved in many biological processes, including growth control, differentiation, migration, cell survival, adhesion, and specification of developmental fate, in both normal and diseased states. TGF-beta superfamily members signal through a receptor complex comprising a type II and type I receptor, both serine/threonine kinases. Here, we characterize a small molecule inhibitor (SB-431542) that was identified as an inhibitor of activin receptor-like kinase (ALK)5 (the TGF-beta type I receptor). We demonstrate that it inhibits ALK5 and also the activin type I receptor ALK4 and the nodal type I receptor ALK7, which are very highly related to ALK5 in their kinase domains. It has no effect on the other, more divergent ALK family members that recognize bone morphogenetic proteins (BMPs). Consistent with this, we demonstrate that SB-431542 is a selective inhibitor of endogenous activin and TGF-beta signaling but has no effect on BMP signaling. To demonstrate the specificity of SB-431542, we tested its effect on several other signal transduction pathways whose activities depend on the concerted activation of multiple kinases. SB-431542 has no effect on components of the ERK, JNK, or p38 MAP kinase pathways or on components of the signaling pathways activated in response to serum.
Collapse
Affiliation(s)
- Gareth J Inman
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Affiliation(s)
- Didier Y R Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143-0448, USA.
| |
Collapse
|
156
|
Faure S, de Santa Barbara P, Roberts DJ, Whitman M. Endogenous patterns of BMP signaling during early chick development. Dev Biol 2002; 244:44-65. [PMID: 11900458 DOI: 10.1006/dbio.2002.0579] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily signaling molecules that play important roles in a wide variety of developmental processes. In this study, we have used an antibody specific for the phosphorylated and activated form of Smad1 to examine endogenous patterns of BMP signaling in chick embryos during early development. We find complex spatial and temporal distributions of BMP signaling that elucidate how BMPs may function in multiple patterning events in the early chick embryo. In the pregastrula embryo, we find that BMP signaling is initially ubiquitous and is extinguished in the epiblast at the onset of primitive streak formation. At the head process stage, BMP signaling is inactivated in prospective neural plate, while it is strongly activated at the neural plate border, a region which is populated by cells that will give rise to neural crest. During later development, we find a dynamic spatiotemporal activation of BMP signaling along the rostrocaudal axis, in the dorsal neural tube, in the notochord, and in the somites during their maturation process. We discuss the implication of our results for endogenous functions of BMP signaling during chick development.
Collapse
Affiliation(s)
- Sandrine Faure
- Department of Cell Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
157
|
Miyanaga Y, Torregroza I, Evans T. A maternal Smad protein regulates early embryonic apoptosis in Xenopus laevis. Mol Cell Biol 2002; 22:1317-28. [PMID: 11839799 PMCID: PMC134692 DOI: 10.1128/mcb.22.5.1317-1328.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified cDNAs encoding the Xenopus Smad proteins most closely related to mammalian Smad8, and we present a functional analysis of this activity (also referred to recently as xSmad11). Misexpression experiments indicate that xSmad8(11) regulates pathways distinct from those regulated by the closely related xSmad1. Embryos that develop from eggs depleted of xSmad8(11) mRNA fail to gastrulate; instead, at the time of gastrulation, they initiate a widespread program of apoptosis, via a CPP32/caspase 3 pathway. Embryos that avoid this fate display gastrulation defects. Activation of apoptosis is rescued by expression of xSmad8(11) but not xSmad1. Our results demonstrate an embryonic requirement for Smad8(11) activity and show that a maternally derived Smad signaling pathway is required for gastrulation and for mediating a cell survival program during early embryogenesis. We suggest that xSmad8(11) functions as part of a maternally derived mechanism shown previously by others to monitor Xenopus early embryonic cell cycles.
Collapse
Affiliation(s)
- Yuko Miyanaga
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
158
|
Ohkawara B, Iemura SI, ten Dijke P, Ueno N. Action range of BMP is defined by its N-terminal basic amino acid core. Curr Biol 2002; 12:205-9. [PMID: 11839272 DOI: 10.1016/s0960-9822(01)00684-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During early development, cells receive positional information from neighboring cells to form tissue patterns in initially uniform germ layers. Ligands of the transforming growth factor (TGF-beta) superfamily are known to participate in this pattern formation. In particular, activin has been shown to act as a long-range dorsalizing signal to establish a concentration gradient in Xenopus. In contrast, BMP-2 and BMP-4, other members of the family, appear to influence and induce ventral fates only where they are expressed. This raises a question as to how the action of BMPs is tightly restricted to the region within and around the cells that produce them. Here, we have demonstrated that a basic core of only three amino acids in the N-terminal region of BMP-4 is required for its restriction to the non-neural ectoderm as its expression domain. Our results also suggest that heparan sulfate proteoglycans bind to this basic core and thus play a role in trapping BMP-4. The present study is the first to identify the critical domain of BMP that is responsible for its interaction with the extracellular environment that restricts its diffusion in vivo.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Morphogenesis, Department of Development Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
159
|
Abstract
A distinctive and essential feature of the vertebrate body is a pronounced left-right asymmetry of internal organs and the central nervous system. Remarkably, the direction of left-right asymmetry is consistent among all normal individuals in a species and, for many organs, is also conserved across species, despite the normal health of individuals with mirror-image anatomy. The mechanisms that determine stereotypic left-right asymmetry have fascinated biologists for over a century. Only recently, however, has our understanding of the left-right patterning been pushed forward by links to specific genes and proteins. Here we examine the molecular biology of the three principal steps in left-right determination: breaking bilateral symmetry, propagation and reinforcement of pattern, and the translation of pattern into asymmetric organ morphogenesis.
Collapse
Affiliation(s)
- M Mercola
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
160
|
Onuma Y, Takahashi S, Yokota C, Asashima M. Multiple nodal-related genes act coordinately in Xenopus embryogenesis. Dev Biol 2002; 241:94-105. [PMID: 11784097 DOI: 10.1006/dbio.2001.0493] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four nodal-related genes (Xnr1-4) have been isolated in Xenopus to date, and we recently further identified two more, Xnr5 and Xnr6. In the present functional study, we constructed cleavage mutants of Xnr5 (cmXnr5) and Xnr6 (cmXnr6) which were expected to act in a dominant-negative manner. Both cmXnr5 and cmXnr6 inhibited the activities of Xnr5 and Xnr6 in co-overexpression experiments. cmXnr5 also inhibited the activity of Xnr2, Xnr4, Xnr6, derrière, and BVg1, but did not inhibit the activity of Xnr1 or activin. Misexpression of cmXnr5 led to a severe delay in initiation of gastrulation and phenotypic changes, including defects in anterior structures, which were very similar to those seen in maternal VegT-depleted embryos. Further, although the expression of Xnr1, Xnr2, and Xnr4 was not delayed in these embryos, it was markedly reduced. Injection of cmXnr5 had no notable effect on expression of Xnr3, Xnr6, derrière, or siamois. Several mesodermal and endodermal markers also showed delayed and decreased expression during gastrulation in cmXnr5-injected embryos. These results suggest that, in early Xenopus embryogenesis, nodal-related genes may heterodimerize with other TGF-beta ligands, and further that one nodal-related gene alone is insufficient for mesendoderm formation, which may require the cooperative interaction of multiple nodal-related genes.
Collapse
Affiliation(s)
- Yasuko Onuma
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8902, Japan
| | | | | | | |
Collapse
|
161
|
Cui Y, Hackenmiller R, Berg L, Jean F, Nakayama T, Thomas G, Christian JL. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev 2001; 15:2797-802. [PMID: 11691831 PMCID: PMC312809 DOI: 10.1101/gad.940001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteolytic maturation of proBMP-4 is required to generate an active signaling molecule. We show that proBMP-4 is cleaved by furin in a sequential manner. Cleavage at a consensus furin site adjacent to the mature ligand domain allows for subsequent cleavage at an upstream nonconsensus furin site within the prodomain. BMP-4 synthesized from precursor in which the upstream site is noncleavable is less active, signals at a shorter range, and accumulates at lower levels than does BMP-4 cleaved from native precursor. Conversely, BMP-4 cleaved from precursor in which both sites are rapidly cleaved is more active and signals over a greater range. Differential use of the upstream cleavage site could provide for tissue-specific regulation of BMP-4 activity and signaling range.
Collapse
Affiliation(s)
- Y Cui
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
The nodal family of TGFbeta-related ligands have emerged as critical regulators of early vertebrate embryogenesis. Recent studies in mice, fish, and frogs of nodals and their intracellular transducers allow a comparison of how this signaling pathway is used in the patterning of early embryos of these different vertebrates.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
163
|
Zohn IE, Brivanlou AH. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev Biol 2001; 239:118-31. [PMID: 11784023 DOI: 10.1006/dbio.2001.0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple factors, including members of the FGF, TGF beta, and Wnt family of proteins, are important mediators in the regulation of dorsal-ventral pattern formation during vertebrate development. By using an expression cloning approach to identify novel factors that could regulate dorsal-ventral patterning in the Xenopus embryo, we isolated the Xenopus homologue of the human Os4 gene by virtue of its ability to induce a secondary dorsal axis. While Os4 homologues have been identified in a variety of species, and human Os4 is overexpressed in human tumors, the biological function of Os4 is unknown. To explore the mechanism by which Xenopus Os4 (XOs4) induces a secondary dorsal axis, we used Xenopus explant and whole-embryo assays. The secondary axis induced by XOs4 is distinct from that induced by activation of Wnt or FGF pathways but similar to that induced by inhibition of BMP signaling or activation of an Activin pathway. However, XOs4 did not inhibit BMP signaling in dissociated animal cap explants, indicating that XOs4 does not inhibit BMP signaling. Similar to activation of an Activin-like pathway, expression of XOs4 induces molecular markers for mesoderm in animal cap explants, although expression of gastrula-stage mesodermal markers was very weak and substantially delayed. Yet, XOs4 does not require activity of the Activin signal-transduction pathway for mesoderm induction as dominant-negative components of the Activin/Nodal/Vg1 pathway did not prevent XOs4-mediated induction of mesodermal derivatives. Finally, like Activin/Nodal/Vg1 pathways, XOs4 requires FGF signaling for expression of mesoderm markers. Results presented in this study demonstrate that XOs4 can induce mesoderm and dorsalize ventral mesoderm resulting in ectopic dorsal axis formation, suggesting a role for this large evolutionarily conserved gene family in early development.
Collapse
Affiliation(s)
- I E Zohn
- Laboratory of Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | |
Collapse
|
164
|
Abstract
A morphogen gradient is an important concept in developmental biology, because it describes a mechanism by which the emission of a signal from one part of an embryo can determine the location, differentiation and fate of many surrounding cells. The value of this idea has been clear for over half a century, but only recently have experimental systems and methods of analysis progressed to the point where we begin to understand how a cell can sense and respond to tiny changes in minute concentrations of extracellular signalling factors.
Collapse
|
165
|
Beck CW, Whitman M, Slack JM. The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev Biol 2001; 238:303-14. [PMID: 11784012 DOI: 10.1006/dbio.2001.0407] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tail bud formation in Xenopus depends on interaction between a dorsal domain (dorsal roof) expressing lunatic fringe and Notch, and a ventral domain (posterior wall) expressing the Notch ligand Delta. Ectopic expression of an activated form of Notch, Notch ICD, by means of an animal cap graft into the posterior neural plate, results in the formation of an ectopic tail-like structure containing a neural tube and fin. However, somites are never formed in these tails. Here, we show that BMP signaling is activated in the posterior wall of the tail bud and is involved in the formation of tail somites from this region. Grafts into the posterior neural plate, in which BMP signaling is activated, will form tail-like outgrowths. Unlike the Notch ICD tails, the BMP tails contain well-organized somites as well as neural tube and fin, with the graft contributing to both somites and neural tube. Through a variety of epistasis-type experiments, we show that the most likely model involves a requirement for BMP signaling upstream of Notch activation, resulting in formation of the secondary neural tube, as well as a Notch-independent pathway leading to the formation of tail somites from the posterior wall.
Collapse
Affiliation(s)
- C W Beck
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | | | | |
Collapse
|
166
|
Abstract
Many different ligands of the TGF-beta superfamily signal in the early Xenopus embryo and are required for the specification and patterning of the three germ layers as well as for gastrulation. Recent advances in the field are helping us understand how ligand activity is regulated both spatially and temporally, the mechanism by which the signals are transduced to the nucleus and how essentially the same signalling pathway can activate completely different sets of genes in different regions of the embryo.
Collapse
Affiliation(s)
- C S Hill
- Laboratory of Developmental Signalling, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK.
| |
Collapse
|
167
|
Engleka MJ, Craig EJ, Kessler DS. VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain. Dev Biol 2001; 237:159-72. [PMID: 11518513 DOI: 10.1006/dbio.2001.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.
Collapse
Affiliation(s)
- M J Engleka
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
168
|
Abstract
AIM: To extract and purify the transforming growth factor β (TGFβ), and to demonstrate its biological activity in vivo and induction of apoptosis of hepatocytes in vitro.
METHODS: TGFβ was isolated from fresh bovine platelets by acid/ethanol extraction method and purified with ion exchange and gel chromatography. The extracted TGFβ as injected subcutaneously to mice, and its biological activity in vivo was observed 72 hrs post-injection by HE staining. The morphological changes were observed by HE staining and the occurrence of apoptosis was detected by TUNEL method after the human normal hepatic cell line QZG was treated with 8 μg·L-1TGFβ for 12 hrs in vitro.
RESULTS: The molecular mass 25 ku TGFβ protein was successfully extracted. It was able to induce localized granulation tissue formation in vivo. TGFβ-treated hepatocytes showed obvious apoptotic morphological changes, including the pyknosis and dense-stained nuclei and cytoplasm, the fragmentary, annular or crescent nuclei, and the “bubbling” cytoplasm. Moreover, its apoptotic rate was significantly higher than that of the control group (P < 0.05).
CONCLUSION: Biological active TGFβ protein is extracted and purified successfully from bovine platelets, and it is able to induce the apoptosis of hepatocytes.
Collapse
Affiliation(s)
- X H Si
- Research Institute of Stomatology, the Ninth People's Hospital, Shanghai Second Medical University, Shanghai 200011, China
| | | |
Collapse
|
169
|
Fritz BR, Sheets MD. Regulation of the mRNAs encoding proteins of the BMP signaling pathway during the maternal stages of Xenopus development. Dev Biol 2001; 236:230-43. [PMID: 11456457 DOI: 10.1006/dbio.2001.0324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the Xenopus bone morphogenetic protein (BMP) pathway is coincident with the onset of zygotic transcription but requires maternal signaling proteins. The mechanisms controlling the translation of mRNAs that encode proteins of the BMP pathway were investigated by using polysome association as an assay for translational activity. Our results indicate that five different mRNAs encoding proteins of the BMP pathway were translationally regulated during Xenopus development. These mRNAs were either not associated or inefficiently associated with polysomes in oocytes, and each was recruited to polysomes at a different developmental stage. The Smad1 and ALK-2 mRNAs were recruited to polysomes during oocyte maturation, whereas the BMP-7 and XSTK9 mRNAs were recruited during the early stages of embryogenesis. The ALK-3 mRNA was not efficiently associated with polysomes during any maternal stage of development and was efficiently recruited to polysomes only after the onset of zygotic transcription. In general, for all stages except oocytes, polysome recruitment was associated with the presence of a 3' poly(A) tail. However, there was not an obvious correlation between the absolute length of poly(A) and the efficiency of polysome recruitment, indicating that the relationship between poly(A) tail length and translation during early frog embryogenesis is complex. We further focused on the BMP-7 mRNA and demonstrated that sequence elements within the 3'UTR were necessary for recruitment of the BMP-7 mRNA to polysomes and sufficient to direct the addition of poly(A) and activate translation of a reporter during embryogenesis. Interestingly, the BMP-7 mRNA lacks the previously defined eCPE sequences proposed to direct poly(A) addition and translational activation during embryogenesis. The implications of our findings for translational regulation of maternal mRNAs during embryogenesis and for the activation of the BMP pathway are discussed.
Collapse
Affiliation(s)
- B R Fritz
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
170
|
Shimizu K, Bourillot PY, Nielsen SJ, Zorn AM, Gurdon JB. Swift is a novel BRCT domain coactivator of Smad2 in transforming growth factor beta signaling. Mol Cell Biol 2001; 21:3901-12. [PMID: 11359898 PMCID: PMC87053 DOI: 10.1128/mcb.21.12.3901-3912.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) signaling is transduced via Smad2-Smad4-DNA-binding protein complexes which bind to responsive elements in the promoters of target genes. However, the mechanism of how the complexes activate the target genes is unclear. Here we identify Xenopus Swift, a novel nuclear BRCT (BRCA1 C-terminal) domain protein that physically interacts with Smad2 via its BRCT domains. We examine the activity of Swift in relation to gene activation in Xenopus embryos. Swift mRNA has an expression pattern similar to that of Smad2. Swift has intrinsic transactivation activity and activates target gene transcription in a TGFbeta-Smad2-dependent manner. Inhibition of Swift activity results in the suppression of TGFbeta-induced gene transcription and defective mesendoderm development. Blocking Swift function affects neither bone morphogenic protein nor fibroblast growth factor signaling during early development. We conclude that Swift is a novel coactivator of Smad2 and that Swift has a critical role in embryonic TGFbeta-induced gene transcription. Our results suggest that Swift may be a general component of TGFbeta signaling.
Collapse
Affiliation(s)
- K Shimizu
- Wellcome Trust Cancer Research Campaign Institute, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | |
Collapse
|
171
|
Ulloa L, Tabibzadeh S. Lefty inhibits receptor-regulated Smad phosphorylation induced by the activated transforming growth factor-beta receptor. J Biol Chem 2001; 276:21397-404. [PMID: 11278746 DOI: 10.1074/jbc.m010783200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic cytokine that regulates growth and differentiation of diverse types of cells. TGF-beta actions are directed by ligand-induced activation of TGF-beta receptors with intrinsic serine/threonine kinase activity that trigger phosphorylation of receptor-regulated Smad (R-Smad) protein. Phosphorylated R-Smad proteins bind to Smad4, and the complexes formed move into the nucleus, where they act as components of a transcriptional complex. Here, we show that TGF-beta signaling is inhibited by lefty, a novel member of the TGF-beta superfamily. Lefty perturbed TGF-beta signaling by inhibiting the phosphorylation of Smad2 following activation of the TGF-beta receptor. Moreover, lefty inhibited the events that lie downstream from R-Smad phosphorylation, including heterodimerization of R-Smad proteins with Smad4 and nuclear translocation of the R-Smad.Smad4 complex. Lefty repressed TGF-beta-induced expression of reporter genes for the p21, cdc25, and connective tissue growth factor promoters and of a reporter gene driven by the Smad-binding element. Similarly, lefty inhibited both BMP-mediated Smad5 phosphorylation and gene transcription. The action of lefty does not appear to depend on protein synthesis, including synthesis of inhibitory Smad proteins. Thus, lefty provides a repressed state of TGF-beta- or BMP-responsive genes and participates in negative modulation of TGF-beta and BMP signaling by inhibition of phosphorylation of R-Smad proteins.
Collapse
Affiliation(s)
- L Ulloa
- Department of Pathology, North Shore-Long Island Jewish Health System and Biomedical Research Center, Manhasset, New York 11030, USA
| | | |
Collapse
|
172
|
Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, López-Casillas F. Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 2001; 276:14588-96. [PMID: 11278442 DOI: 10.1074/jbc.m008866200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F., Payne, H., Andres, J. L., and Massagué, J. (1994) J. Cell Biol. 124, 557-568), and the other at the carboxyl-terminal half, the uromodulin-related region (Pepin, M.-C., Beauchemin, M., Plamondon, J., and O'Connor-McCourt, M. D. (1994) Proc. Natl. Acad. Sci. U. S. A 91, 6997-7001). In the present work we have functionally characterized these ligand binding regions. Similar to the wild type receptor, both regions bind TGF-beta2 with higher affinity than TGF-beta1. However, only the endoglin-related region increases the TGF-beta2 labeling of the TGF-beta type II receptor, the so-called "TGF-beta -presentation" function of the wild type receptor. Despite this preference, both regions as well as the wild type receptor mediate the TGF-beta2-dependent Smad2 phosphorylation, indicating that they can function indistinguishably as TGF-beta-enhancing co-receptors. On the other hand, we found that the recently described ability of the wild type betaglycan to bind inhibin A is a property of the core protein that resides in the uromodulin-related region. Binding competition experiments indicate that this region binds inhibin and TGF-beta with the following relative affinities: TGF-beta2 > inhibin A > TGF-beta1. All together, the present results suggest that betaglycan ectodomain is endowed with two bona fide independent ligand binding domains that can perform specialized functions as co-receptors of distinct members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- J Esparza-Lopez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM Apartado Postal 70-246, México City, D. F., 04510, México
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
Nodal ligands are essential for the patterning of chordate embryos. Genetic evidence indicates that EGF-CFC factors are required for Nodal signaling, but the molecular basis for this requirement is unknown. We have investigated the role of Cripto, an EGF-CFC factor, in Nodal signaling. We find that Cripto interacts with the type I receptor ALK4 via the conserved CFC motif in Cripto. Cripto interaction with ALK4 is necessary both for Nodal binding to the ALK4/ActR-IIB receptor complex and for Smad2 activation by Nodal. We also find that Nodal can inhibit BMP signaling by a Cripto-independent mechanism. Inhibition appears to be mediated by heterodimerization between Nodal and BMPs, indicating that antagonism between Nodal and BMPs can occur at the level of dimeric ligand production.
Collapse
Affiliation(s)
- C Yeo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
174
|
Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 2001; 128:859-69. [PMID: 11222141 DOI: 10.1242/dev.128.6.859] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TGFbeta signaling pathways of the bone morphogenetic protein (BMP) subclass are essential for dorsoventral pattern formation of both vertebrate and invertebrate embryos. Here we determine by chromosomal mapping, linkage analysis, cDNA sequencing and mRNA rescue that the dorsalized zebrafish mutant lost-a-fin (laf) is defective in the gene activin receptor-like kinase 8 (alk8), which encodes a novel type I TGFbeta receptor. The alk8 mRNA is expressed both maternally and zygotically. Embyros that lack zygotic, but retain maternal Laf/Alk8 activity, display a weak dorsalization restricted to the tail and die by 3 days postfertilization. We rescued the laf dorsalized mutant phenotype by alk8 mRNA injection and generated homozygous laf/alk8 mothers to investigate the maternal role of Laf/Alk8 activity. Adult fish lacking Laf/Alk8 activity are fertile, exhibit a growth defect and are significantly smaller than their siblings. Embryos derived from homozygous females, which lack both maternal and zygotic Laf/Alk8 activity, display a strongly dorsalized mutant phenotype, no longer limited to the tail. These mutant embryos lack almost all gastrula ventral cell fates, with a concomitant expansion of dorsal cell types. During later stages, most of the somitic mesoderm and neural tissue circumscribe the dorsoventral axis of the embryo. Zygotic laf/alk8 mutants can be rescued by overexpression of the BMP signal transducer Smad5, but not the Bmp2b or Bmp7 ligands, consistent with the Laf/Alk8 receptor acting within a BMP signaling pathway, downstream of a Bmp2b/Bmp7 signal. Antibodies specific for the phosphorylated, activated form of Smad1/5, show that BMP signaling is nearly absent in gastrula lacking both maternal and zygotic Laf/Alk8 activity, providing further evidence that Laf/Alk8 transduces a BMP signal. In total, our work strongly supports the role of Laf/Alk8 as a type I BMP receptor required for the specification of ventral cell fates.
Collapse
MESH Headings
- Activin Receptors
- Animals
- Body Patterning/genetics
- Body Patterning/physiology
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Protein Receptors
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/physiology
- Chromosome Mapping
- Crosses, Genetic
- Embryo, Nonmammalian/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Genetic Linkage
- Genomic Imprinting
- Male
- Mutation
- Mutation, Missense
- Polymorphism, Genetic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Growth Factor
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Signal Transduction
- Transcription, Genetic
- Transforming Growth Factor beta
- Zebrafish/embryology
- Zebrafish/genetics
- Zygote/physiology
Collapse
Affiliation(s)
- K A Mintzer
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
175
|
Kurata T, Nakabayashi J, Yamamoto TS, Mochii M, Ueno N. Visualization of endogenous BMP signaling during Xenopus development. Differentiation 2001; 67:33-40. [PMID: 11270121 DOI: 10.1046/j.1432-0436.2001.067001033.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TGF-beta superfamily of growth factors is known to transmit signals to the nucleus mainly through the Smads, intracellular signaling components that are highly conserved from nematodes to humans. The signaling activity of the Smads is regulated by their ligand-stimulated phosphorylation through Ser/Thr kinase receptors. Here, to examine the in vivo role of BMP, we investigated the spatio-temporal activation of BMP-regulated signals during Xenopus development, using a polyclonal antibody that specifically recognizes the phosphorylated form of BMP-regulated Smads. BMP signaling was observed uniformly in embryos as early as stage 7, but was restricted to the ventral side of the embryo at the late blastula stage, supporting the proposed role of BMP4 as a ventralizing factor in Xenopus embryos. In addition, localized staining was detected in several developing organs, consistent with the predicted function of BMP family members in organogenesis.
Collapse
Affiliation(s)
- T Kurata
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaijicho, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
176
|
Xanthos JB, Kofron M, Wylie C, Heasman J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 2001; 128:167-80. [PMID: 11124113 DOI: 10.1242/dev.128.2.167] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cleavage stages, maternal VegT mRNA and protein are localized to the Xenopus embryo's vegetal region from which the endoderm will arise and where several zygotic gene transcripts will be localized. Previous loss-of-function experiments on this T-box transcription factor suggested a role for VegT in Xenopus endoderm formation. Here, we test whether VegT is required to initiate endoderm formation using a loss of function approach. We find that the endodermal genes, Bix1, Bix3, Bix4, Milk (Bix2), Mix.1, Mix.2, Mixer, Xsox17 alpha, Gata4, Gata5, Gata6 and endodermin, as well as the anterior endodermal genes Xhex and cerberus, and the organizer specific gene, Xlim1, are downstream of maternal VegT. We also find that the TGF beta s, Xnr1, Xnr2, Xnr4 and derriere rescue expression of these genes, supporting the idea that cell interactions are critical for proper endoderm formation. Additionally, inhibitory forms of Xnr2 and Derriere blocked the ability of VegT mRNA injection to rescue VegT-depleted embryos. Furthermore, a subset of endodermal genes was rescued in VegT-depleted vegetal masses by induction from an uninjected vegetal mass. Finally, we begin to establish a gene hierarchy downstream of VegT by testing the ability of Mixer and Gata5 to rescue the expression of other endodermal genes. These results identify VegT as the maternal regulator of endoderm initiation and illustrate the complexity of zygotic pathways activated by VegT in the embryo's vegetal region.
Collapse
Affiliation(s)
- J B Xanthos
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
177
|
Whitman M, Mercola M. TGF-beta superfamily signaling and left-right asymmetry. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re1. [PMID: 11752633 DOI: 10.1126/stke.2001.64.re1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an outwardly bilaterally symmetrical appearance, most internal organs of vertebrates display considerable left-right (LR) asymmetry in their anatomy and physiology. The orientation of LR asymmetry with respect to the dorsoventral and anteroposterior body axes is invariant such that fewer than 1 in 10,000 individuals exhibit organ reversals. The stereotypic orientation of LR asymmetry is ensured by distinct left- and right-side signal transduction pathways that are initiated by divergent members of the transforming growth factor-beta (TGF-beta) superfamily of secreted proteins. During early embryogenesis, the TGF-beta-like protein Nodal (or a Nodal-related ortholog) is expressed by the left lateral plate mesoderm and provides essential LR cues to the developing organs. In chick embryos at least, bone morphogenetic protein (BMP) signaling is active on the right side of the embryo and must be inhibited on the left in order for Nodal to be expressed. Thus, at a key point in the determination of LR asymmetry, left-sided signaling is mediated by the transcription factors Smad2 and Smad3 (regulated by Nodal), whereas signaling on the right depends on Smad1 and Smad5 (which are regulated by BMP). This review summarizes the considerable progress that has been made in recent years in understanding the complex network of feedback and feedforward circuitry that regulates both the left- and right-sided pathways. Also discussed is the problem of how signal transduction mediated by the Smad proteins can pattern LR asymmetry without interfering with coincident dorsoventral patterning, which relies on the same Smad proteins.
Collapse
Affiliation(s)
- M Whitman
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
178
|
|
179
|
De Robertis EM, Larraín J, Oelgeschläger M, Wessely O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 2000; 1:171-81. [PMID: 11252746 PMCID: PMC2291143 DOI: 10.1038/35042039] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular studies have begun to unravel the sequential cell-cell signalling events that establish the dorsal-ventral, or 'back-to-belly', axis of vertebrate animals. In Xenopus and zebrafish, these events start with the movement of membrane vesicles associated with dorsal determinants. This mediates the induction of mesoderm by generating gradients of growth factors. Dorsal mesoderm then becomes a signalling centre, the Spemann's organizer, which secretes several antagonists of growth-factor signalling. Recent studies have led to new models for the regulation of cell-cell signalling during development, which may also apply to the homeostasis of adult tissues.
Collapse
Affiliation(s)
- E M De Robertis
- Howard Hughes Medical Institute, and Department of Biological Chemistry, University of California, Los Angeles, California 90095-1662, USA.
| | | | | | | |
Collapse
|
180
|
Abstract
Many of the key molecular events underlying the induction and patterning of the vertebrate mesoderm and endoderm have recently been elucidated. T-box transcription factors and TGF-beta and Wnt signaling pathways play crucial roles in the initial induction of the mesendoderm and the subdivision of the posterior mesoderm into rostral and caudal domains.
Collapse
Affiliation(s)
- D Kimelman
- Department of Biochemistry, Center for Developmental Biology, University of Washington, Seattle 98195-7350, USA.
| | | |
Collapse
|