151
|
Abstract
Myristoyl-CoA protein:NMT (N-myristoyl transferase) catalyses the N-myristoylation of cellular proteins with a range of functions and is essential for viability in the protozoan parasites, Leishmania major and Trypanosoma brucei. In our investigations to define the essential downstream targets of NMT, we have focused on the ARF (ADP-ribosylation factor) family of proteins, as growth arrest in Saccharomyces cerevisiae mutants with reduced NMT activity correlates with decreased modification of members of this group of proteins. We have identified nine ARF/ARLs (where ARL stands for ARF-like) encoded in the T. brucei and T. cruzi genomes and ten in L. major. The T. brucei ARL1 protein is expressed only in the mammalian bloodstream form of the parasite, in which it is localized to the Golgi apparatus. RNAi (RNA interference) has been used to demonstrate that ARL1 is essential for viability in these infective cells. Before cell death, depletion of ARL1 protein results in disintegration of the Golgi structure and a delay in exocytosis of the abundant GPI (glycosylphosphatidylinositol)-anchored VSG (variant surface glycoprotein) to the parasite surface.
Collapse
Affiliation(s)
- H P Price
- Immunology and Infection Unit, Department of Biology, Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
152
|
Molina-Portela MDP, Lugli EB, Recio-Pinto E, Raper J. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol Biochem Parasitol 2005; 144:218-26. [PMID: 16202458 DOI: 10.1016/j.molbiopara.2005.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes. We show that the replacement of external Na+ (23 Da) with the larger tetramethylammonium+, choline+ and tetraethylammonium+ ions (74 Da, 104 Da and 130 Da) ameliorates the osmotically driven swelling and lysis of trypanosomes by TLF1. Confirmation of cation pore-formation was obtained using small unilamellar vesicles incubated with TLF1; these showed the predicted change in membrane potential expected from an influx of sodium ions. Using planar lipid bilayer model membranes made from trypanosome lipids, which allow the detection of single channels, we found that TLF1 forms discrete ion-conducting channels (17 pS) that are selective for potassium ions over chloride ions. We propose that the initial influx of extracellular Na+ down its concentration gradient promotes the passive entry of Cl- through preexisting Cl- channels. The net influx of both Na+ and Cl- create an osmotic imbalance that leads to passive water diffusion. This loss of osmoregulation results in cytoplasmic vacuolization, cell swelling and ultimately trypanosome lysis.
Collapse
|
153
|
Schwartz KJ, Peck RF, Tazeh NN, Bangs JD. GPI valence and the fate of secretory membrane proteins in African trypanosomes. J Cell Sci 2005; 118:5499-511. [PMID: 16291721 DOI: 10.1242/jcs.02667] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progression of GPI-anchored proteins in bloodstream African trypanosomes correlates with GPI-valence: homodimeric VSG (2 GPI) is a surface protein; heterodimeric transferrin receptor (1 GPI) localizes in the flagellar pocket; homodimeric GPI-minus VSG (0 GPI) is rapidly degraded in the lysosome. We test this relationship using three native secretory/endocytic proteins as monomeric GPI-plus and -minus reporters. GPI-minus procyclin trafficks to the lysosome and is degraded. GPI-plus procyclin trafficks to the flagellar pocket/cell surface and is released (∼50%) with an intact anchor, the remainder (∼50%) is degraded in the lysosome. GPI-plus BiPNHP, derived from the ER marker BiP, is released quantitatively (>80%), while GPI-plus p67HP, derived from the lysosomal marker p67, turns over by both release (∼15%) and lysosomal degradation (>50%). Turnover of endogenous transferrin receptor occurs primarily by lysosomal degradation (>90%). Thus shedding of monovalent GPI reporters correlates inversely with lysosomal targeting. We propose that mono-GPI reporters cycle through the flagellar pocket and endosome until they are disposed of by either shedding or lysosomal targeting. Partitioning between these fates may be a function of individual physical properties. Release is likely due to the exclusive use of C-14:0 myristate in the bloodstream stage GPI anchor. Up-regulation of transferrin receptor by culture in dog serum resulted in prominent cell surface localization, but not in elevated release. Surface receptor was non-functional for ligand binding suggesting that it may be bivalent homodimers of the GPI-anchored ESAG6 receptor subunit.
Collapse
Affiliation(s)
- Kevin J Schwartz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
154
|
Abstract
The African trypanosome Trypanosoma brucei has a precarious existence as an extracellular parasite of the mammalian bloodstream, where it is faced with continuous immune attack. Key to survival is a dense VSG (variant surface glycoprotein) coat, which is repeatedly switched during the course of a chronic infection. New data demonstrate a link between VSG synthesis and cell cycle progression, indicating that VSG is monitored during the trypanosome cell cycle.
Collapse
Affiliation(s)
- G Rudenko
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK.
| |
Collapse
|
155
|
Maintaining the protective variant surface glycoprotein coat of African trypanosomes. Biochem Soc Trans 2005. [DOI: 10.1042/bst0330981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The African trypanosome Trypanosoma brucei has a precarious existence as an extracellular parasite of the mammalian bloodstream, where it is faced with continuous immune attack. Key to survival is a dense VSG (variant surface glycoprotein) coat, which is repeatedly switched during the course of a chronic infection. New data demonstrate a link between VSG synthesis and cell cycle progression, indicating that VSG is monitored during the trypanosome cell cycle.
Collapse
|
156
|
Weise F, Thilo L, Engstler M, Wiese M, Benzel I, Kühn C, Bühring HJ, Overath P. Binding affinity and capacity of putative adaptor-mediated sorting of a Type I membrane protein in Leishmania mexicana. Mol Biochem Parasitol 2005; 142:203-11. [PMID: 15890416 DOI: 10.1016/j.molbiopara.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/28/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The membrane-bound acid phosphatase (MBAP), a Type I membrane protein predominantly associated with endosomal/lysosomal structures of Leishmania mexicana promastigotes, contains motifs in its cytosolic COOH-terminal tail (-MEVWRRYMKFKNKQSEAIIV-COOH) akin to tyrosine- and di-leucine-based sorting signals in multicellular organisms. Here, we first show that the COOH-terminal residues IIV of MBAP, but not the Y-residue, are required for endosomal targeting, suggesting specific binding to an adaptor complex at the cell surface. We then determine whether specific binding can be saturated by analysing the efficiency of endosomal targeting for increasing numbers of MBAP molecules per cell. The ratio of the steady-state abundance of wild-type MBAP on the cell surface to MBAP on endosomes increases until the distribution is no longer different from that observed for a mutant MBAP which lacks the IIV-motif or for a glycosylphosphatidylinositol-anchored form, both of which are distributed according to bulk membrane flow. A quantitative analysis of these in vivo results indicates specific binding to a putative adaptor complex with an affinity of about 10-4M to 50,000 sorting sites on the cell surface.
Collapse
Affiliation(s)
- Frank Weise
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Hall BS, Smith E, Langer W, Jacobs LA, Goulding D, Field MC. Developmental variation in Rab11-dependent trafficking in Trypanosoma brucei. EUKARYOTIC CELL 2005; 4:971-80. [PMID: 15879531 PMCID: PMC1140102 DOI: 10.1128/ec.4.5.971-980.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In Trypanosoma brucei, endocytosis is developmentally regulated and is substantially more active in the mammalian infective stage, where it likely plays a role in immune evasion. The small GTPase TbRAB11 is highly expressed in the mammalian stage and mediates recycling of glycosylphosphatidylinositol-anchored proteins, including the variant surface glycoprotein (VSG) and the transferrin receptor, plus trafficking of internalized anti-VSG antibody and transferrin. No function has been assigned to TbRAB11 in the procyclic (insect) stage trypanosome. The importance of TbRAB11 to both bloodstream and procyclic form viability was assessed by RNA interference (RNAi). Suppression of TbRAB11 in the bloodstream form was rapidly lethal and led to cells with round morphology and an enlarged flagellar pocket. TbRAB11 RNAi was also lethal in procyclic forms, which also became rounded, but progression to cell death was significantly slower and the flagellar pocket remained normal. In bloodstream forms, silencing of TbRAB11 had no effect on exocytosis of newly synthesized VSG, fluid-phase endocytosis, or transferrin uptake, but export of internalized transferrin was inhibited. Lectin endocytosis assays revealed a block to postendosomal transport mediated by suppressing TbRAB11. By contrast, in procyclic forms, depletion of TbRAB11 blocks both fluid-phase endocytosis and internalization of surface proteins. In normal bloodstream forms, most VSG is recycled, but in procyclics, internalized surface proteins accumulated in the lysosome. These data demonstrate that TbRAB11 controls recycling and is essential in both life stages of T. brucei but that its primary role is subject to developmental variation.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
Trypanosoma brucei provides an excellent system for studies of many aspects of cell biology, including cell structure and morphology, organelle positioning, cell division and protein trafficking. However, the trypanosome has a complex life cycle in which it must adapt either to the mammalian bloodstream or to different compartments within the tsetse fly. These differentiation events require stage-specific changes to basic cell biological processes and reflect responses to environmental stimuli and programmed differentiation events that must occur within a single cell. The organization of cell structure is fundamental to the trypanosome throughout its life cycle. Modulations of the overall cell morphology and positioning of the specialized mitochondrial genome, flagellum and associated basal body provide the classical descriptions of the different life cycle stages of the parasite. The dependency relationships that govern these morphological changes are now beginning to be understood and their molecular basis identified. The overall picture emerging is of a highly organized cell in which the rules established for cell division and morphogenesis in organisms such as yeast and mammalian cells do not necessarily apply. Therefore, understanding the developmental cell biology of the African trypanosome is providing insight into both fundamentally conserved and fundamentally different aspects of the organization of the eukaryotic cell.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
159
|
Sheader K, Vaughan S, Minchin J, Hughes K, Gull K, Rudenko G. Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes. Proc Natl Acad Sci U S A 2005; 102:8716-21. [PMID: 15937117 PMCID: PMC1150830 DOI: 10.1073/pnas.0501886102] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes African sleeping sickness. T. brucei multiplies extracellularly in the bloodstream, relying on antigenic variation of a dense variant surface glycoprotein (VSG) coat to escape antibody-mediated lysis. We investigated the role of VSG in proliferation and pathogenicity by using inducible RNA interference to ablate VSG transcript down to 1-2% normal levels. Inhibiting VSG synthesis in vitro triggers a rapid and specific cell cycle checkpoint blocking cell division. Parasites arrest at a discrete precytokinesis stage with two full-length flagella and opposing flagellar pockets, without undergoing additional rounds of S phase and mitosis. A subset (<10%) of the stalled cells have internal flagella, indicating that the progenitors of these cells were already committed to cytokinesis when VSG restriction was sensed. Although there was no obvious VSG depletion in vitro after 24-h induction of VSG RNA interference, there was rapid clearance of these cells in vivo. We propose that a stringent block in VSG synthesis produces stalled trypanosomes with a minimally compromised VSG coat, which can be targeted by the immune system. Our data indicate that VSG protein or transcript is monitored during cell cycle progression in bloodstream-form T. brucei and describes precise precytokinesis cell cycle arrest. This checkpoint before cell division provides a link between the protective VSG coat and cell cycle progression and could function as a novel parasite safety mechanism, preventing extensive dilution of the protective VSG coat in the absence of VSG synthesis.
Collapse
Affiliation(s)
- Karen Sheader
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | |
Collapse
|
160
|
Engstler M, Weise F, Bopp K, Grünfelder CG, Günzel M, Heddergott N, Overath P. The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei. J Cell Sci 2005; 118:2105-18. [PMID: 15855239 DOI: 10.1242/jcs.02327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the parasitic protozoan Trypanosoma brucei, endocytosis and exocytosis occur exclusively at an invagination of the plasma membrane around the base of the flagellum, called the flagellar pocket, which actively communicates by vesicular membrane flow with cisternal/tubulovesicular endosomes. The division of the cell surface into three morphologically distinct sub-domains and the rapid plasma membrane turnover establishes T. brucei as an interesting model for investigations on the sorting and recycling of membrane proteins. In this study we show that the type I membrane protein TbMBAP1, an L-(+)-tartrate-sensitive acid phosphatase, is present in all endosomal membranes but is virtually absent from the lysosome membrane (where this type of protein is mainly found in other organisms) and is not detectable at the cell surface. The endosomal localization of TbMBAP1 is a function of protein abundance. Moderate overexpression (three- to fourfold) leads to an increased appearance within the flagellar pocket membrane. At higher levels the protein is found in the flagellum, and routing to the pellicular plasma membrane is observed at levels 10- to 25-fold above that of wild type. In other organisms L-(+)-tartrate-sensitive acid phosphatases appear to be dispensable but TbMBAP1 is essential, as shown by RNA interference, which causes growth arrest followed by cell death. Comparison of the phenotype of TbMBAP1-depleted cells with that of cells in which endocytosis or exocytosis has been specifically inhibited by RNAi against clathrin of RAB11, reveals that TbMBAP1 is essential for both incoming and recycling membrane traffic. During differentiation of the organism from bloodstream to insect stage, TbMBAP1 is down-regulated and differentially modified in parallel with a 10-fold decrease in the rate of endocytosis.
Collapse
Affiliation(s)
- Markus Engstler
- Ludwig-Maximilians-Universität, Department Biologie I, Genetik, Maria-Ward-Strasse 1a, München, 80638, Germany.
| | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
John Heuser is being honored in this special issue for his enormous contributions to cell biology using morphological approaches. Foremost in this context is his ability to use light and electron microscopy to visualize structures and processes such that the information has both scientific and artistic value. The beauty of his images helps to focus the observer more intensely on the scientific messages, which have been numerous and important. His recent studies of living cells using state-of-the-art light and video microscopy fits into a general pattern of a huge explosion in the application of these methods worldwide that is revolutionizing cell biology. However, whereas John Heuser continues to use light microscopy (LM) for a low-resolution global and dynamical overview he then moves on to the electron microscopy (EM) level to see the details; in this he is--unfortunately--in a minority; and EM is an approach that a majority of today's cell biologists never use. The continued drop in EM usage has already been articulated in recent reviews. Here, I suggest that an additional problem for EM in cell biology, in its continued crises, is the declining number of scientists who can confidently interpret the--admittedly--complex information in most electron micrographs of cells. A major re-education is needed, or cell biology as a discipline will have a real problem in the 21st century.
Collapse
|
162
|
Price HP, Panethymitaki C, Goulding D, Smith DF. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci 2005; 118:831-41. [PMID: 15687105 PMCID: PMC2705012 DOI: 10.1242/jcs.01624] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT), an essential protein in Trypanosoma brucei and Leishmania major, catalyses the covalent attachment of the fatty acid myristate to the N-terminus of a range of target proteins. In order to define the essential targets contributing to lethality in the absence of NMT activity, we have focused on the ADP-ribosylation factor (Arf) family of GTP-binding proteins, as growth arrest in Saccharomyces cerevisiae mutants with reduced NMT activity correlates with a decrease in N-myristoylated Arf proteins. We have identified nine Arf/Arls in the T. brucei and T. cruzi genomes and ten in L. major. Characterization of the T. brucei ARL1 homologue has revealed that the protein is localized in the Golgi apparatus and is expressed only in the mammalian bloodstream form of the parasite and not in the insect procyclic stage. This is the only reported example to date of a differentially expressed ARL1 homologue in any species. We have used RNA interference to demonstrate that ARL1 is essential for viability in T. brucei bloodstream parasites. Prior to cell death, depletion of ARL1 protein in bloodstream parasites results in abnormal morphology, including disintegration of the Golgi structure, multiple flagella and nuclei, and the presence of large numbers of vesicles. The cells have only a minor apparent defect in endocytosis but exocytosis of variant surface glycoprotein to the parasite surface is significantly delayed. RNA interference of ARL1 in procyclic cells has no effect on parasite growth or morphology. Our results suggest that there may be different pathways regulating Golgi structure and function in the two major life cycle stages of T. brucei.
Collapse
|
163
|
Engstler M, Boshart M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev 2004; 18:2798-811. [PMID: 15545633 PMCID: PMC528899 DOI: 10.1101/gad.323404] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transmission of a protozoan parasite from a vertebrate to invertebrate host is accompanied by cellular differentiation. The signals from the environment that trigger the process are poorly understood. The model parasite Trypanosoma brucei proliferates in the mammalian bloodstream and in the tsetse fly. On ingestion by the tsetse, the trypanosome undergoes a rapid differentiation that is marked by replacement of the variant surface glycoprotein (VSG) coat with GPI-anchored EP and GPEET procyclins. Here we show that a cold shock of DeltaT > 15 degrees C is sufficient to reversibly induce high-level expression of the insect stage-specific EP gene in the mammalian bloodstream stages of T. brucei. The 3'-UTR of the EP mRNA is necessary and sufficient for the increased expression. During cold shock, EP protein accumulates in the endosomal compartment in the proliferating, slender, bloodstream stage, whereas the EP is present on the plasma membrane in the quiescent, stumpy, bloodstream stage. Thus, there is a novel developmentally regulated cell surface access control mechanism for a GPI-anchored protein. In addition to inducing EP expression, cold shock results in the acquisition of sensitivity to micromolar concentrations of cis-aconitate and citrate by stumpy but not slender bloodstream forms. The cis-aconitate and citrate commit stumpy bloodstream cells to differentiation to the procyclic stage along with rapid initial proliferation. We propose a hierarchical model of three events that regulate differentiation after transmission to the tsetse: sensing the temperature change, surface access of a putative receptor, and sensing of a chemical cue.
Collapse
Affiliation(s)
- Markus Engstler
- Ludwig-Maximilians-Universität, Department Biologie I, Genetik, 80638 München, Germany
| | | |
Collapse
|
164
|
Hall B, Allen CL, Goulding D, Field MC. Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis. Mol Biochem Parasitol 2004; 138:67-77. [PMID: 15500917 DOI: 10.1016/j.molbiopara.2004.07.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 12/16/2022]
Abstract
Endocytosis is an essential process in Trypanosoma brucei and all evidence suggests it is exclusively clathrin-mediated. The trypanosome genome encodes two Rab5 proteins, small GTPases that play a role in very early stages of endocytosis. In the mammalian bloodstream stage TbRAB5A localises to compartments containing internalised antibody, variant surface glycoprotein (VSG) and transferrin, whilst TbRAB5B localises to compartments containing the transmembrane protein ISG(100). Dominant-active forms of TbRAB5A stimulate endocytosis in procyclic forms and alter the kinetics of anti-VSG antibody and transferrin turnover in bloodstream stages. Similar mutants of TbRAB5B increase fluid phase uptake in procyclic cells but do not significantly affect endocytosis in bloodstream forms. Here, we use RNA interference to evaluate the relative importance of TbRAB5A and TbRAB5B and show that both GTPases are essential in the bloodstream form. Depletion of either TbRAB5A or TbRAB5B results in morphological abnormalities, including enlargement of the flagellar pocket, consistent with a potent block to endocytosis. Also, RNAi compromises transferrin accumulation in both cases but induces distinct patterns of mislocalisation of endosomal markers. Finally, RNAi of either TbRAB5A or TbRAB5B results in a decrease in levels of clathrin. Taken together, these data indicate that both TbRAB5A and TbRAB5B are required for endocytosis in trypanosomes and demonstrate that there are multiple essential endocytic routes in this organism.
Collapse
Affiliation(s)
- Belinda Hall
- Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
| | | | | | | |
Collapse
|
165
|
Atrih A, Richardson JM, Prescott AR, Ferguson MAJ. Trypanosoma brucei glycoproteins contain novel giant poly-N-acetyllactosamine carbohydrate chains. J Biol Chem 2004; 280:865-71. [PMID: 15509560 DOI: 10.1074/jbc.m411061200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellar pocket of the bloodstream form of the African sleeping sickness parasite Trypanosoma brucei contains material that binds the beta-d-galactose-specific lectin ricin (Brickman, M. J., and Balber, A. E. (1990) J. Protozool. 37, 219-224). Glycoproteins were solubilized from bloodstream form T. brucei cells in 8 M urea and 3% SDS and purified by ricin affinity chromatography. Essentially all binding of ricin to these glycoproteins was abrogated by treatment with peptide N-glycosidase, showing that the ricin ligands are attached to glycoproteins via N-glycosidic linkages to asparagine residues. Glycans released by peptide N-glycosidase were resolved by Bio-Gel P-4 gel filtration into two fractions: a low molecular mass mannose-rich fraction and a high molecular mass galactose and N-acetylglucosamine-rich fraction. The latter fraction was further separated by high pH anion exchange chromatography and analyzed by gas chromatography mass spectrometry, one- and two-dimensional NMR, electrospray mass spectrometry, and methylation linkage analysis. The high molecular mass ricin-binding N-glycans are based on a conventional Manalpha1-3(Manalpha1-6)Manbeta1-4-GlcNAcbeta1-4GlcNAc core structure and contain poly-N-acetyllactosamine chains. A significant proportion of these structures are extremely large and of unusual structure. They contain an average of 54 N-acetyllactosamine (Galbeta1-4GlcNAc) repeats per glycan, linked mostly by -4GlcNAcbeta1-6Galbeta1-interrepeat linkages, with an average of one -4GlcNAcbeta1-3(-4GlcNAcbeta1-6)Galbeta1- branch point in every six repeats. These structures, which also bind tomato lectin, are twice the size reported for the largest mammalian poly-N-acetyllactosamine N-linked glycans and also differ in their preponderance of -4GlcNAcbeta1-6Galbeta1- over -4GlcNacbeta1-3Galbeta1- interrepeat linkages. Molecular modeling suggests that -4GlcNAcbeta1-6Galbeta1- interrepeat linkages produce relatively compact structures that may give these giant N-linked glycans unique physicochemical properties. Fluorescence microscopy using fluorescein isothiocyanatericin indicates that ricin ligands are located mainly in the flagellar pocket and in the endosomal/lysosomal system of the trypanosome.
Collapse
Affiliation(s)
- Abdelmadjid Atrih
- Division of Biological Chemistry and Molecular Microbiology, the School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
166
|
Abstract
Trypanosomes belong to the order kinetoplastida, an early diverging group of organisms in the eukaryotic lineage. The principal reasons for interest in these organisms are twofold; they provide a superb distant triangulation point from which to assess global features of eukaryotic biology and, more importantly, they are representative of a number of pathogenic parasitic protozoa with a huge public health impact --Trypanosoma brucei, T. cruzi and Leishmania spp. Recent advances in the study of intracellular transport in T. brucei have been considerable, and a fuller picture of the complexity, function and role that the endomembrane system plays in trypanosomes is finally emerging.
Collapse
Affiliation(s)
- Mark C Field
- Department of Biological Sciences, Imperial College, London, UK.
| | | |
Collapse
|
167
|
Field MC, Allen CL, Dhir V, Goulding D, Hall BS, Morgan GW, Veazey P, Engstler M. New approaches to the microscopic imaging of Trypanosoma brucei. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:621-636. [PMID: 15525435 DOI: 10.1017/s1431927604040942] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Indexed: 05/24/2023]
Abstract
Protozoan parasites are fearsome pathogens responsible for a substantial proportion of human mortality, morbidity, and economic hardship. The principal disease agents are members of the orders Apicomplexa (Plasmodium, Toxoplasma, Eimeria) and Kinetoplastida (Trypanosomes, Leishmania). The majority of humans are at risk from infection from one or more of these organisms, with profound effects on the economy, social structure and quality of life in endemic areas; Plasmodium itself accounts for over one million deaths per annum, and an estimated 4 x 10(7) disability-adjusted life years (DALYs), whereas the Kinetoplastida are responsible for over 100,000 deaths per annum and 4 x 10(6) DALYs. Current control strategies are failing due to drug resistance and inadequate implementation of existing public health strategies. Trypanosoma brucei, the African Trypanosome, has emerged as a favored model system for the study of basic cell biology in Kinetoplastida, because of several recent technical advances (transfection, inducible expression systems, and RNA interference), and these advantages, together with genome sequencing efforts are widely anticipated to provide new strategies of therapeutic intervention. Here we describe a suite of methods that have been developed for the microscopic analysis of T. brucei at the light and ultrastructural levels, an essential component of analysis of gene function and hence identification of therapeutic targets.
Collapse
Affiliation(s)
- Mark C Field
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Hall BS, Pal A, Goulding D, Field MC. Rab4 is an essential regulator of lysosomal trafficking in trypanosomes. J Biol Chem 2004; 279:45047-56. [PMID: 15284229 DOI: 10.1074/jbc.m407271200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid endocytosis and recycling of surface proteins are important processes common to most nucleated eukaryotic cells. The best characterized membrane recycling routes are mediated by the small GTPases Rab4 and Rab11, but the precise roles that these pathways play have not been fully elucidated. The protozoan Trypanosoma brucei has a highly developed endocytic system that is similar to that found in metazoans, albeit with an accelerated rate of membrane turnover. We have used this organism to investigate the function of the trypanosome orthologue of Rab4 (TbRAB4) by a combination of RNA interference, microscopy, and quantitative trafficking assays. RNA interference-mediated suppression of TbRAB4 expression inhibited the growth of trypanosomes without affecting receptor-mediated endocytosis or ligand recycling. Ultrastructural analysis indicated a major defect in membrane transport events. The accumulation of fluorescent dextran, a fluid-phase marker, was blocked in cells lacking TbRAB4 protein. Since most fluid-phase markers are transported to the lysosome in T. brucei, the effects of TbRAB4 RNA interference on lysosomal function were investigated. By immunofluorescence, the major lysosomal protein p67 became progressively dispersed in cells lacking the TbRAB4 protein. Pulse-chase analysis demonstrated that initial proteolytic cleavage and glycan processing of p67 were unaffected but that cells failed to accumulate the later p67 proteolyzed products associated with the lysosome. To confirm the role of TbRAB4 in lysosomal trafficking, a constitutively active mutant, TbRAB4QL, was expressed. TbRAB4QL was closely associated with an enlarged multivesicular body that contained p67. In addition, cells expressing TbRAB4QL showed increased fluid-phase uptake when compared with the parental line. Taken together, these data suggest that TbRAB4 is involved in regulation of fluid-phase traffic to the lysosome in T. brucei but not in receptor-mediated endocytosis or recycling. These data have implications for the role of Rab4 in other cell systems.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Biological Sciences, Imperial College, London SW7 2AY, United Kingdom
| | | | | | | |
Collapse
|
169
|
Mussmann R, Engstler M, Gerrits H, Kieft R, Toaldo CB, Onderwater J, Koerten H, van Luenen HGAM, Borst P. Factors affecting the level and localization of the transferrin receptor in Trypanosoma brucei. J Biol Chem 2004; 279:40690-8. [PMID: 15263009 DOI: 10.1074/jbc.m404697200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer of bloodstream-form Trypanosoma brucei variant 221a from calf serum to dog serum-based medium induces acute iron starvation, as the transferrin receptor (Tf-R) of variant 221a binds dog Tf poorly. We show here that transfer to dog serum induces a 3-5-fold increase in Tf-R mRNA and protein within one doubling time (8 h). Because iron stores are still high 8 h after transfer, we infer that the signal for Tf-R overproduction is the decreased availability of cytosolic iron when cellular iron import drops. Up to 30% of the extra Tf-R spills out of the flagellar pocket onto the pellicular surface. Because the 5-fold increase in Tf-R is accompanied by a 5-fold increase in bovine Tf uptake, the up-regulation of Tf-R levels in response to Tf starvation helps the trypanosome to compete for limiting amounts of Tf. We noted that Tf-R levels also vary in calf serum medium. Cells in dense cultures contain up to 5-fold more Tf-R mRNA and protein than in dilute cultures. Only one-tenth of the extra Tf-R reaches the pellicular surface. The increase cannot be explained by a lack of Tf or to cell density sensing but is due to pericellular hypoxia. Our results show that bloodstream-form trypanosomes can regulate the expression of the two Tf-R subunit genes and the localization of their gene products in a flexible manner. This flexibility is made possible by the promoter-proximal position of the two genes in the variant surface glycoprotein expression site.
Collapse
Affiliation(s)
- Rainer Mussmann
- The Netherlands Cancer Institute, Division of Molecular Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Overath P, Engstler M. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 2004; 53:735-44. [PMID: 15255888 DOI: 10.1111/j.1365-2958.2004.04224.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the flagellated protozoon Trypanosoma brucei, endo- and exocytosis are restricted to a small area of the plasma membrane, the flagellar pocket. All endosomal compartments and the single Golgi complex are located within the posterior part of the cell between the flagellar pocket and the nucleus. The use of reverse genetic tools, including RNA interference, in combination with quantitative 3D-fluorescence and electron microscopic techniques has provided an insight into endosomal membrane traffic, which occurs at a very high rate and appears to exhibit a lower level of complexity than in mammalian cells. The flagellate is an excellent model system for studies on endocytosis, sorting and recycling of glycosylphosphatidylinositol-anchored glycoproteins, because 10(7) molecules of the variant surface glycoprotein form a dense coat at the cell's surface. Because the endocytic rate varies widely at different stages in the parasite's life cycle, trypanosomes may be used for investigating developmental aspects of their endocytic system.
Collapse
Affiliation(s)
- Peter Overath
- Universität Tübingen, Interfakultäres Institut für Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | | |
Collapse
|