151
|
Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments. J Biomech 2011; 44:1776-81. [PMID: 21536289 DOI: 10.1016/j.jbiomech.2011.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/29/2011] [Accepted: 04/09/2011] [Indexed: 01/08/2023]
Abstract
Actin filaments are the most abundant components of the cellular cytoskeleton, and play critical roles in various cellular functions such as migration, division and shape control. In these activities, mechanical tension causes structural changes in the double-helical structure of the actin filament, which is a key modulator of cytoskeletal reorganization. This study performed large-scale molecular dynamics (MD) and steered MD simulations to quantitatively analyze the effects of tensile force on the mechanical behavior of actin filaments. The results revealed that when a tensile force of 200pN was applied to a filament consisting of 14 actin subunits, the twist angle of the filament decreased by approximately 20°, corresponding to a rotation of approximately -2° per subunit, representing a critical structural change in actin filaments. Based on these structural changes, the variance in filament length and twist angle was found to decrease, leading to increases in extensional and torsional stiffness. Torsional stiffness increased significantly under the tensile condition, and the ratio of filament stiffness under tensile force to that under no external force increased significantly on longer temporal scales. The results obtained from this study contribute to the understanding of mechano-chemical interactions concerning actin dynamics, showing that increased tensile force in the filament prevents actin regulatory proteins from binding to the filament.
Collapse
Affiliation(s)
- Shinji Matsushita
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
152
|
Kawano T, Kidoaki S. Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 2011; 32:2725-33. [DOI: 10.1016/j.biomaterials.2011.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/05/2011] [Indexed: 01/31/2023]
|
153
|
Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y. Multifunctional carbon-nanotube cellular endoscopes. NATURE NANOTECHNOLOGY 2011; 6:57-64. [PMID: 21151109 DOI: 10.1038/nnano.2010.241] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/09/2010] [Indexed: 05/20/2023]
Abstract
Glass micropipettes, atomic force microscope tips and nanoneedles can be used to interrogate cells, but these devices either have conical geometries that can damage cells during penetration or are incapable of continuous fluid handling. Here, we report a carbon-nanotube-based endoscope for interrogating cells, transporting fluids and performing optical and electrochemical diagnostics at the single organelle level. The endoscope, which is made by placing a multiwalled carbon nanotube (length, 50-60 µm) at the tip of a glass pipette, can probe the intracellular environment with a spatial resolution of ∼100 nm and can also access organelles without disrupting the cell. When the nanotube is filled with magnetic nanoparticles, the endoscope can be remotely manoeuvered to transport nanoparticles and attolitre volumes of fluids to and from precise locations. Because they are mounted on conventional glass micropipettes, the endoscopes readily fit standard instruments, creating a broad range of opportunities for minimally invasive intracellular probing, drug delivery and single-cell surgery.
Collapse
Affiliation(s)
- Riju Singhal
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Stiber JA, Rosenberg PB. The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium 2010; 49:341-9. [PMID: 21176846 DOI: 10.1016/j.ceca.2010.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
In cardiac and skeletal muscle Ca(2+) release from intracellular stores triggers actomyosin cross-bridge formation and the generation of contractile force. In the face of large fluctuations of intracellular calcium ([Ca(2+)](i)) that occur with contractile activity, myocytes are able to sense and respond to changes in workload and patterns of activation through calcium signaling pathways which modulate gene expression and cellular metabolism. Store-operated calcium influx has emerged as a mechanism by which calcium signaling pathways are activated in order to respond to the changing demands of the myocyte. Abnormalities of store-operated calcium influx may contribute to maladaptive muscle remodeling in multiple disease states. The importance of store-operated calcium influx in muscle is confirmed in mice lacking STIM1 which die perinatally and in patients with mutations on STIM1 or Orai1 who exhibit a myopathy exhibited by hypotonia. In this review, we consider the role of store-operated Ca(2+) entry into skeletal muscle as a critical mediator of Ca(2+) dependent gene expression and how alterations in Ca(2+) influx may influence muscle development and disease.
Collapse
Affiliation(s)
- Jonathan A Stiber
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
155
|
Matsushita S, Adachi T, Inoue Y, Hojo M, Sokabe M. Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. J Biomech 2010; 43:3162-7. [DOI: 10.1016/j.jbiomech.2010.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/30/2010] [Accepted: 07/25/2010] [Indexed: 11/28/2022]
|
156
|
Smith MB, Li H, Shen T, Huang X, Yusuf E, Vavylonis D. Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton (Hoboken) 2010; 67:693-705. [PMID: 20814909 PMCID: PMC3020657 DOI: 10.1002/cm.20481] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/20/2010] [Indexed: 01/23/2023]
Abstract
We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy.
Collapse
Affiliation(s)
- Matthew B. Smith
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Hongsheng Li
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Tian Shen
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Xiaolei Huang
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Eddy Yusuf
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
157
|
Kobayashi T, Sokabe M. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol 2010; 22:669-76. [DOI: 10.1016/j.ceb.2010.08.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
|
158
|
Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg 2010; 126:426-434. [PMID: 20375759 DOI: 10.1097/prs.0b013e3181df715d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The physiopathogenesis of proliferative scarring in human skin is not well understood. Furthermore, knowledge of the precise mechanisms of action for physical treatment modalities is limited. Compression garments, occlusive/adhesive skin taping, and silicone gel sheets are applied to form an occlusion on the scar surface, reduce tension, and/or increase pressure on the scar itself. The mechanisms by which the external or superficial actions of these treatments cause remission of a protruding scar may be related to mechanoreceptor (nociceptor and cellular mechanoreceptor) responses. METHODS Basic research studies about mechanoreceptor-related (nociceptors and cellular mechanoreceptors, separately) events are reviewed and discussed based on proliferative scarring background. Scar management-related studies were corrected from the standpoint of mechanotransduction mechanisms. The methodologic quality of the clinical trials and basic studies was evaluated and reviewed. RESULTS It was suggested that many of the physical scar management methods, including compression therapy, silicone therapy, adhesive tape, and occlusive dressing therapy, are related to mechanotransduction mechanisms. CONCLUSIONS A unifying perspective of basic research findings and clinical observations may be obtained by considering the mechanoreceptor-related events in scar management. Moreover, a precise understanding of the roles that cellular mechanoreceptors and mechanosensitive nociceptors play in proliferative scarring may lead to the development of innovative treatment strategies and new pharmacologic therapies targeting cellular mechanoreceptors and mechanosensitive nociceptors in fibroproliferative diseases.
Collapse
|
159
|
Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Res Notes 2010; 3:210. [PMID: 20663206 PMCID: PMC2918634 DOI: 10.1186/1756-0500-3-210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/27/2010] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial cells are exposed to a variety of mechanical stimuli. Epithelial Na+ channels (ENaC) mediate sodium transport across apical membranes of epithelial cells that line the distal nephron, airway and alveoli, and distal colon. Early investigations into stretch sensitivity of ENaC were controversial. However, recent studies are supportive of ENaC's mechanosensitivity. This work studied whether flow-dependent activation of ENaC is modulated by changes in the state of the actin cytoskeleton and whether small GTPase RhoA is involved in flow-mediated increase of ENaC activity. Findings Pretreatment with Cytochalasin D and Latrunculin B for 20 min and 1-2 hrs to disassemble F-actin had no effect on flow-mediated increase of amiloride-sensitive current. Overexpression of ENaC with constitutively active (G14V) or dominant negative (T19N) RhoA similarly had no effect on flow-dependent activation of ENaC activity. In addition, we did not observe changes when we inhibited Rho-kinase with Y27632. Conclusions Our results suggest that the flow-dependent activation of ENaC is not influenced by small GTPase RhoA and modifications in the actin cytoskeleton.
Collapse
Affiliation(s)
- Alexey V Karpushev
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd,, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
160
|
Stevenson DJ, Gunn-Moore F, Dholakia K. Light forces the pace: optical manipulation for biophotonics. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041503. [PMID: 20799781 DOI: 10.1117/1.3475958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biomedical sciences have benefited immensely from photonics technologies in the last 50 years. This includes the application of minute forces that enable the trapping and manipulation of cells and single molecules. In terms of the area of biophotonics, optical manipulation has made a seminal contribution to our understanding of the dynamics of single molecules and the microrheology of cells. Here we present a review of optical manipulation, emphasizing its impact on the areas of single-molecule studies and single-cell biology, and indicating some of the key experiments in the fields.
Collapse
Affiliation(s)
- David James Stevenson
- University of St Andrews, Scottish Universities Physics Alliance, School of Physics and Astronomy, North Haugh, Fife, United Kingdom.
| | | | | |
Collapse
|
161
|
Measurements of strain on single stress fibers in living endothelial cells induced by fluid shear stress. Biochem Biophys Res Commun 2010; 395:441-6. [PMID: 20385099 DOI: 10.1016/j.bbrc.2010.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/07/2010] [Indexed: 12/11/2022]
Abstract
Fluid shear stress (FSS) acting on the apical surface of endothelial cells (ECs) can be sensed by mechano-sensors in adhesive protein complexes found in focal adhesions and intercellular junctions. This sensing occurs via force transmission through cytoskeletal networks. This study quantitatively evaluated the force transmitted through cytoskeletons to the mechano-sensors by measuring the FSS-induced strain on SFs using live-cell imaging for actin stress fibers (SFs). FSS-induced bending of SFs caused the SFs to align perpendicular to the direction of the flow. In addition, the displacement vectors of the SFs were detected using image correlation and the FSS-induced axial strain of the SFs was calculated. The results indicated that FSS-induced strain on SFs spanned the range 0.01-0.1% at FSSs ranging from 2 to 10 Pa. Together with the tensile property of SFs reported in a previous study, the force exerted on SFs was estimated to range from several to several tens of pN.
Collapse
|
162
|
Yoshimura K, Sokabe M. Mechanosensitivity of ion channels based on protein-lipid interactions. J R Soc Interface 2010. [PMID: 20356872 DOI: 10.1098/rsif.2010.0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ion channels form a group of membrane proteins that pass ions through a pore beyond the energy barrier of the lipid bilayer. The structure of the transmembrane segment of membrane proteins is influenced by the charges and the hydrophobicity of the surrounding lipids and the pressure on its surface. A mechanosensitive channel is specifically designed to change its conformation in response to changes in the membrane pressure (tension). However, mechanosensitive channels are not the only group that is sensitive to the physical environment of the membrane: voltage-gated channels are also amenable to the lipid environment. In this article, we review the structure and gating mechanisms of the mechanosensitive channels and voltage-gated channels and discuss how their functions are affected by the physical properties of the lipid bilayer.
Collapse
Affiliation(s)
- Kenjiro Yoshimura
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
163
|
Yoshimura K, Sokabe M. Mechanosensitivity of ion channels based on protein-lipid interactions. J R Soc Interface 2010; 7 Suppl 3:S307-20. [PMID: 20356872 DOI: 10.1098/rsif.2010.0095.focus] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ion channels form a group of membrane proteins that pass ions through a pore beyond the energy barrier of the lipid bilayer. The structure of the transmembrane segment of membrane proteins is influenced by the charges and the hydrophobicity of the surrounding lipids and the pressure on its surface. A mechanosensitive channel is specifically designed to change its conformation in response to changes in the membrane pressure (tension). However, mechanosensitive channels are not the only group that is sensitive to the physical environment of the membrane: voltage-gated channels are also amenable to the lipid environment. In this article, we review the structure and gating mechanisms of the mechanosensitive channels and voltage-gated channels and discuss how their functions are affected by the physical properties of the lipid bilayer.
Collapse
Affiliation(s)
- Kenjiro Yoshimura
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
164
|
Sen S, Kumar S. Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomech 2010; 43:45-54. [PMID: 19819457 PMCID: PMC2813341 DOI: 10.1016/j.jbiomech.2009.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 01/27/2023]
Abstract
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, 274A Stanley Hall #1762, University of California, Berkeley, CA 94720-1762, USA
| | | |
Collapse
|
165
|
Prager-Khoutorsky M, Bourque CW. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci 2009; 33:76-83. [PMID: 19963290 DOI: 10.1016/j.tins.2009.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022]
Abstract
The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Canada
| | | |
Collapse
|
166
|
Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol 2009; 54:116-22. [PMID: 19597371 DOI: 10.1097/fjc.0b013e3181aa233f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.
Collapse
|
167
|
Poh YC, Na S, Chowdhury F, Ouyang M, Wang Y, Wang N. Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS One 2009; 4:e7886. [PMID: 19924282 PMCID: PMC2773925 DOI: 10.1371/journal.pone.0007886] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/27/2009] [Indexed: 01/08/2023] Open
Abstract
It is well known that mechanical forces are crucial in regulating functions of every tissue and organ in a human body. However, it remains unclear how mechanical forces are transduced into biochemical activities and biological responses at the cellular and molecular level. Using the magnetic twisting cytometry technique, we applied local mechanical stresses to living human airway smooth muscle cells with a magnetic bead bound to the cell surface via transmembrane adhesion molecule integrins. The temporal and spatial activation of Rac, a small guanosine triphosphatase, was quantified using a fluorescent resonance energy transfer (FRET) method that measures changes in Rac activity in response to mechanical stresses by quantifying intensity ratios of ECFP (enhanced cyan fluorescent protein as a donor) and YPet (a variant yellow fluorescent protein as an acceptor) of the Rac biosensor. The applied stress induced rapid activation (less than 300 ms) of Rac at the cell periphery. In contrast, platelet derived growth factor (PDGF) induced Rac activation at a much later time (>30 sec). There was no stress-induced Rac activation when a mutant form of the Rac biosensor (RacN17) was transfected or when the magnetic bead was coated with transferrin or with poly-L-lysine. It is known that PDGF-induced Rac activation depends on Src activity. Surprisingly, pre-treatment of the cells with specific Src inhibitor PP1 or knocking-out Src gene had no effects on stress-induced Rac activation. In addition, eliminating lipid rafts through extraction of cholesterol from the plasma membrane did not prevent stress-induced Rac activation, suggesting a raft-independent mechanism in governing the Rac activation upon mechanical stimulation. Further evidence indicates that Rac activation by stress depends on the magnitudes of the applied stress and cytoskeletal integrity. Our results suggest that Rac activation by mechanical forces is rapid, direct and does not depend on Src activation. These findings suggest that signaling pathways of mechanical forces via integrins might be fundamentally different from those of growth factors.
Collapse
Affiliation(s)
- Yeh-Chuin Poh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sungsoo Na
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Farhan Chowdhury
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mingxing Ouyang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yingxiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (YW); (NW)
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (YW); (NW)
| |
Collapse
|
168
|
Osteocyte calcium signaling response to bone matrix deformation. J Biomech 2009; 42:2507-12. [DOI: 10.1016/j.jbiomech.2009.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/10/2009] [Accepted: 07/11/2009] [Indexed: 11/22/2022]
|
169
|
Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M. Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 2009; 43:26-34. [PMID: 19648475 DOI: 10.1165/rcmb.2009-0073oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During high tidal volume mechanical ventilation in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), regions of the lung are exposed to excessive stretch, causing inflammatory responses and further lung damage. In this study, the effects of mechanical stretch on intracellular Ca(2+) concentration ([Ca(2+)](i)), which regulates a variety of endothelial properties, were investigated in human pulmonary microvascular endothelial cells (HPMVECs). HPMVECs grown on fibronectin-coated silicon chambers were exposed to uniaxial stretching, using a cell-stretching apparatus. After stretching and subsequent unloading, [Ca(2+)](i), as measured by fura-2 fluorescence, was transiently increased in a strain amplitude-dependent manner. The elevation of [Ca(2+)](i) induced by stretch was not evident in the Ca(2+)-free solution and was blocked by Gd(3+), a stretch-activated channel inhibitor, or ruthenium red, a transient receptor potential vanilloid inhibitor. The disruption of actin polymerization with cytochalasin D inhibited the stretch-induced elevation of [Ca(2+)](i). In contrast, increases in [Ca(2+)](i) induced by thapsigargin or thrombin were not affected by cytochalasin D. Increased actin polymerization with sphingosine-1-phosphate or jasplakinolide enhanced the stretch-induced elevation of [Ca(2+)](i). A simple network model of the cytoskeleton was also developed in support of the notion that actin stress fibers are required for efficient force transmission to open stretch-activated Ca(2+) channels. In conclusion, mechanical stretch activates Ca(2+) influx via stretch-activated channels which are tightly regulated by the actin cytoskeleton different from other Ca(2+) influx pathways such as receptor-operated and store-operated Ca(2+) entries in HPMVECs. These results suggest that abnormal Ca(2+) homeostasis because of excessive mechanical stretch during mechanical ventilation may play a role in the progression of ALI/ARDS.
Collapse
Affiliation(s)
- Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 2009; 42:1989-95. [PMID: 19625024 DOI: 10.1016/j.jbiomech.2009.04.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/29/2009] [Accepted: 04/25/2009] [Indexed: 11/30/2022]
Abstract
It is proposed that osteocytes embedded in the bone matrix have the ability to sense deformation and/or damage to the matrix and to feed these mechanical signals back to the adaptive bone remodeling process. When osteoblasts differentiate into osteocytes during the bone formation process, they change their morphology to a stellate form with many slender processes. This characteristic cell shape may underlie the differences in mechanosensitivity between the cell processes and cell body. To elucidate the mechanism of cellular response to mechanical stimulus in osteocytes, we investigated the site-dependent response to quantitatively controlled local mechanical stimulus in single osteocytes isolated from chick embryos, using the technique of calcium imaging. A mechanical stimulus was applied to a single osteocyte using a glass microneedle targeting a microparticle adhered to the cell membrane by modification with a monoclonal antibody OB7.3. Application of the local deformation induced calcium transients in the vicinity of the stimulated point and caused diffusive wave propagation of the calcium transient to the entire intracellular region. The rate of cell response to the stimulus was higher when applied to the cell processes than when applied to the cell body. In addition, a large deformation was necessary at the cell body to induce calcium transients, whereas a relatively small deformation was sufficient at the cell processes, suggesting that the mechanosensitivity of the cell processes was higher than that of the cell body. These results suggest that the cell shape with slender processes contributes to the site-dependent mechanosensitivity in osteocytes.
Collapse
Affiliation(s)
- Taiji Adachi
- Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
171
|
|
172
|
Asparuhova MB, Gelman L, Chiquet M. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand J Med Sci Sports 2009; 19:490-9. [PMID: 19422655 DOI: 10.1111/j.1600-0838.2009.00928.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mechanical forces are essential for tissue homeostasis. In adherent cells, cell-matrix adhesions connect the extracellular matrix (ECM) with the cytoskeleton and transmit forces in both directions. Integrin receptors and signaling molecules in cell-matrix adhesions transduce mechanical into chemical signals, thereby regulating many cellular processes. This review focuses on how cellular mechanotransduction is tuned by actin-generated cytoskeletal tension that balances external with internal mechanical forces. We point out that the cytoskeleton rapidly responds to external forces by RhoA-dependent actin assembly and contraction. This in turn induces remodeling of cell-matrix adhesions and changes in cell shape and orientation. As a consequence, a cell constantly modulates its response to new bouts of external mechanical stimulation. Changes in actin dynamics are monitored by MAL/MKL-1/MRTF-A, a co-activator of serum response factor. Recent evidence suggests that MAL is also involved in coupling mechanically induced changes in the actin cytoskeleton to gene expression. Compared with other, more rapid and transient signals evoked at the cell surface, this parallel mechanotransduction pathway is more sustained and provides spatial and temporal specificity to the response. We describe examples of genes that are regulated by mechanical stress in a manner depending on actin dynamics, among them the ECM protein, tenascin-C.
Collapse
Affiliation(s)
- M B Asparuhova
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | |
Collapse
|
173
|
Kraichely RE, Strege PR, Sarr MG, Kendrick ML, Farrugia G. Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 2009; 296:G833-9. [PMID: 19179622 PMCID: PMC2670668 DOI: 10.1152/ajpgi.90610.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The L-type Ca2+ channel expressed in gastrointestinal smooth muscle is mechanosensitive. Direct membrane stretch and shear stress result in increased Ca2+ entry into the cell. The mechanism for mechanosensitivity is not known, and mechanosensitivity is not dependent on an intact cytoskeleton. The aim of this study was to determine whether L-type Ca2+ channel mechanosensitivity is dependent on tension in the lipid bilayer in human jejunal circular layer myocytes. Whole cell currents were recorded in the amphotericin-perforated-patch configuration, and lysophosphatidyl choline (LPC), lysophosphatidic acid (LPA), and choline were used to alter differentially the tension in the lipid bilayer. Shear stress (perfusion at 10 ml/min) was used to mechanostimulate L-type Ca2+ channels. The increase in L-type Ca2+ current induced by shear stress was greater in the presence of LPC (large head-to-tail proportions), but not LPA or choline, than in the control perfusion. The increased peak Ca2+ current also did not return to baseline levels as in control conditions. Furthermore, steady-state inactivation kinetics were altered in the presence of LPC, leading to a change in window current. These findings suggest that changes in tension in the plasmalemmal membrane can be transmitted to the mechanosensitive L-type Ca2+ channel, leading to altered activity and Ca2+ entry in the human jejunal circular layer myocyte.
Collapse
Affiliation(s)
- Robert E. Kraichely
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter R. Strege
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael G. Sarr
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael L. Kendrick
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Miles and Shirley Fiterman Center for Digestive Diseases, and Gastroenterologic and General Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
174
|
Kim TJ, Seong J, Ouyang M, Sun J, Lu S, Hong JP, Wang N, Wang Y. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J Cell Physiol 2009; 218:285-93. [PMID: 18844232 PMCID: PMC2592496 DOI: 10.1002/jcp.21598] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Substrate rigidity plays crucial roles in regulating cellular functions, such as cell spreading, traction forces, and stem cell differentiation. However, it is not clear how substrate rigidity influences early cell signaling events such as calcium in living cells. Using highly sensitive Ca(2+) biosensors based on fluorescence resonance energy transfer (FRET), we investigated the molecular mechanism by which substrate rigidity affects calcium signaling in human mesenchymal stem cells (HMSCs). Spontaneous Ca(2+) oscillations were observed inside the cytoplasm and the endoplasmic reticulum (ER) using the FRET biosensors targeted at subcellular locations in cells plated on rigid dishes. Lowering the substrate stiffness to 1 kPa significantly inhibited both the magnitudes and frequencies of the cytoplasmic Ca(2+) oscillation in comparison to stiffer or rigid substrate. This Ca(2+) oscillation was shown to be dependent on ROCK, a downstream effector molecule of RhoA, but independent of actin filaments, microtubules, myosin light chain kinase, or myosin activity. Lysophosphatidic acid, which activates RhoA, also inhibited the frequency of the Ca(2+) oscillation. Consistently, either a constitutive active mutant of RhoA (RhoA-V14) or a dominant negative mutant of RhoA (RhoA-N19) inhibited the Ca(2+) oscillation. Further experiments revealed that HMSCs cultured on gels with low elastic moduli displayed low RhoA activities. Therefore, our results demonstrate that RhoA and its downstream molecule ROCK may mediate the substrate rigidity-regulated Ca(2+) oscillation, which determines the physiological functions of HMSCs.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jihye Seong
- Neuroscience Program, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mingxing Ouyang
- Department of Bioengineering, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jie Sun
- Department of Molecular & Integrative Physiology, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jun Pyu Hong
- Department of Bioengineering, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ning Wang
- Departments of Mechanical Science and Engineering, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yingxiao Wang
- Neuroscience Program, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Molecular & Integrative Physiology, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Computational Biology, Institute of Genomic Biology, and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
175
|
Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:911-20. [PMID: 19339214 DOI: 10.1016/j.bbamcr.2009.01.012] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.
Collapse
Affiliation(s)
- Matthias Chiquet
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | | | |
Collapse
|
176
|
Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009; 10:75-82. [DOI: 10.1038/nrm2594] [Citation(s) in RCA: 1229] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
177
|
Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10:21-33. [DOI: 10.1038/nrm2593] [Citation(s) in RCA: 1799] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
178
|
Jackson WM, Jaasma MJ, Tang RY, Keaveny TM. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol 2008; 295:C1007-15. [DOI: 10.1152/ajpcell.00509.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many structural modifications have been observed as a part of the cellular response to mechanical loading in a variety of cell types. Although changes in morphology and cytoskeletal rearrangement have been widely reported, few studies have investigated the change in cytoskeletal composition. Measuring how the amounts of specific structural proteins in the cytoskeleton change in response to mechanical loading will help to elucidate cellular mechanisms of functional adaptation to the applied forces. Therefore, the overall hypothesis of this study was that osteoblasts would respond to fluid shear stress by altering the amount of specific cross-linking proteins in the composition of the cytoskeleton. Mouse osteoblats cell line MC3T3-E1 and human fetal osteoblasts (hFOB) were exposed to 2 Pa of steady fluid shear for 2 h in a parallel plate flow chamber, and then the amount of actin, vimentin, α-actinin, filamin, and talin in the cytoskeleton was measured using Western blot analyses. After mechanical loading, there was no change in the amount of actin monomers in the cytoskeleton, but the cross-linking proteins α-actinin and filamin that cofractionated with the cytoskeleton increased by 29% ( P < 0.01) and 18% ( P < 0.02), respectively. Localization of the cross-linking proteins by fluorescent microscopy revealed that they were more widely distributed throughout the cell after exposure to fluid shear. The amount of vimentin in the cytoskeleton also increased by 15% ( P < 0.01). These results indicate that osteoblasts responded to mechanical loading by altering the cytoskeletal composition, which included an increase in specific proteins that would likely enhance the mechanical resistance of the cytoskeleton.
Collapse
|
179
|
Ogawa R. Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med Hypotheses 2008; 71:493-500. [DOI: 10.1016/j.mehy.2008.05.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 12/31/2022]
|
180
|
Follonier L, Schaub S, Meister JJ, Hinz B. Myofibroblast communication is controlled by intercellular mechanical coupling. J Cell Sci 2008; 121:3305-16. [PMID: 18827018 DOI: 10.1242/jcs.024521] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neoformation of intercellular adherens junctions accompanies the differentiation of fibroblasts into contractile myofibroblasts, a key event during development of fibrosis and in wound healing. We have previously shown that intercellular mechanical coupling of stress fibres via adherens junctions improves contraction of collagen gels by myofibroblasts. By assessing spontaneous intracellular Ca2+ oscillations, we here test whether adherens junctions mechanically coordinate myofibroblast activities. Periodic Ca2+ oscillations are synchronised between physically contacting myofibroblasts and become desynchronised upon dissociation of adherens junctions with function-blocking peptides. Similar uncoupling is obtained by inhibiting myofibroblast contraction using myosin inhibitors and by blocking mechanosensitive ion channels using Gd3+ and GSMTx4. By contrast, gap junction uncouplers do not affect myofibroblast coordination. We propose the following model of mechanical coupling for myofibroblasts: individual cell contraction is transmitted via adherens junctions and leads to the opening of mechanosensitive ion channels in adjacent cells. The resulting Ca2+ influx induces a contraction that can feed back on the first cell and/or stimulate other contacting cells. This mechanism could improve the remodelling of cell-dense tissue by coordinating the activity of myofibroblasts.
Collapse
Affiliation(s)
- Lysianne Follonier
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SG-AA-B143, Station 15, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
181
|
Vásquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E. A structural mechanism for MscS gating in lipid bilayers. Science 2008; 321:1210-4. [PMID: 18755978 PMCID: PMC2897165 DOI: 10.1126/science.1159674] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanosensitive channel of small conductance (MscS) is a key determinant in the prokaryotic response to osmotic challenges. We determined the structural rearrangements associated with MscS activation in membranes, using functorial measurements, electron paramagnetic resonance spectroscopy, and computational analyses. MscS was trapped in its open conformation after the transbilayer pressure profile was modified through the asymmetric incorporation of lysophospholipids. The transition from the closed to the open state is accompanied by the downward tilting of the transmembrane TM1-TM2 hairpin and by the expansion, tilt, and rotation of the TM3 helices. These movements expand the permeation pathway, leading to an increase in accessibility to water around TM3. Our open MscS model is compatible with single-channel conductance measurements and supports the notion that helix tilting is associated with efficient pore widening in mechanosensitive channels.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
182
|
NAKAMURA C, KAMIISHI H, NAKAMURA N, MIYAKE J. A Nanoneedle can be Inserted into a Living Cell without Any Mechanical Stress Inducing Calcium Ion Influx. ELECTROCHEMISTRY 2008. [DOI: 10.5796/electrochemistry.76.586] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
183
|
Katoh K, Kano Y, Ookawara S. Role of stress fibers and focal adhesions as a mediator for mechano-signal transduction in endothelial cells in situ. Vasc Health Risk Manag 2008; 4:1273-82. [PMID: 19337541 PMCID: PMC2663434 DOI: 10.2147/vhrm.s3933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluid shear stress is the mechanical force generated by the blood flow which is applied over the apical surface of endothelial cells in situ. The findings of a recent study suggest that stress fibers and its associated focal adhesions play roles in mechano-signal transduction mechanism. Stress fibers are present along the apical and the basal portion of the endothelial cells. Endothelial cells respond to fluid shear stress and change their morphological characteristics in both their cell shape and cytoskeletal organization. Atherosclerosis is a common disease of the arteries and it occurs in areas around the branching site of blood vessels where the cells are exposed to low fluid shear stress. The organization of stress fibers and focal adhesions are strongly influenced by shear stress, and therefore the generation of atherosclerotic lesions seem to be associated with the cytoskeletal components of endothelial cells. This review describes the possible role of the cytoskeleton as a mechano-transducer in endothelial cells in situ.
Collapse
Affiliation(s)
- Kazuo Katoh
- Department of Anatomy, School, of Medicine, Jichi Medical University, Yakushiji, Shimotsuke-city, Tochigi, Japan.
| | | | | |
Collapse
|