151
|
Yassine S, Escoffier J, Nahed RA, Pierre V, Karaouzene T, Ray PF, Arnoult C. Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One 2015; 10:e0118698. [PMID: 25775128 PMCID: PMC4361733 DOI: 10.1371/journal.pone.0118698] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The acrosome is an organelle that is central to sperm physiology and a defective acrosome biogenesis leads to globozoospermia, a severe male infertility. The identification of the actors involved in acrosome biogenesis is therefore particularly important to decipher the molecular pathogeny of globozoospermia. We recently showed that a defect in the DPY19L2 gene is present in more than 70% of globozoospermic men and demonstrated that Dpy19l2, located in the inner nuclear membrane, is the first protein involved in the attachment of the acrosome to the nuclear envelope (NE). SUN proteins serve to link the nuclear envelope to the cytoskeleton and are therefore good candidates to participate in acrosome-nucleus attachment, potentially by interacting with DPY19L2. In order to characterize new actors of acrosomal attachment, we focused on Sun5 (also called Spag4l), which is highly expressed in male germ cells, and investigated its localization during spermatogenesis. Using immunohistochemistry and Western blot experiments in mice, we showed that Sun5 transits through different cellular compartments during meiosis. In pachytene spermatocytes, it is located in a membranous compartment different to the reticulum. In round spermatids, it progresses to the Golgi and the NE before to be located to the tail/head junction in epididymal sperm. Interestingly, we demonstrate that Sun5 is not, as initially reported, facing the acrosome but is in fact excluded from this zone. Moreover, we show that in Dpy19l2 KO spermatids, upon the detachment of the acrosome, Sun5 relocalizes to the totality of the NE suggesting that the acrosome attachment excludes Sun5 from the NE facing the acrosome. Finally, Western-blot experiments demonstrate that Sun5 is glycosylated. Overall, our work, associated with other publications, strongly suggests that the attachment of the acrosome to the nucleus does not likely depend on the formation of SUN complexes.
Collapse
Affiliation(s)
- Sandra Yassine
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
| | - Virginie Pierre
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
| | - Thomas Karaouzene
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
- CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| | - Pierre F. Ray
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
- CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France
- Equipe "Génétique, Epigénétique et thérapies de l’Infertilité" Institut Albert Bonniot, INSERM U823, Grenoble, F-38000, France
- * E-mail:
| |
Collapse
|
152
|
Chang W, Worman HJ, Gundersen GG. Accessorizing and anchoring the LINC complex for multifunctionality. ACTA ACUST UNITED AC 2015; 208:11-22. [PMID: 25559183 PMCID: PMC4284225 DOI: 10.1083/jcb.201409047] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Wakam Chang
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Howard J Worman
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
153
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
154
|
Göb E, Meyer-Natus E, Benavente R, Alsheimer M. Expression of individual mammalian Sun1 isoforms depends on the cell type. Commun Integr Biol 2014. [DOI: 10.4161/cib.15369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
155
|
Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase. Mol Cell Biol 2014; 35:167-81. [PMID: 25332235 DOI: 10.1128/mcb.00857-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to "trap" ubiquitylated substrates on the SCF(FBXW11) E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCF(FBXW11) bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062.
Collapse
|
156
|
Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M, Straatman KR, Worman HJ, Gundersen GG, Lattanzi G, Wehnert M, Shackleton S. Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 2014; 10:e1004605. [PMID: 25210889 PMCID: PMC4161305 DOI: 10.1371/journal.pgen.1004605] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning. Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder involving muscle wasting and weakness, accompanied by cardiac defects. The disease is variable in its severity and also in its genetic cause. So far, 6 genes have been linked to EDMD, most encoding proteins that form a structural network that supports the nucleus of the cell and connects it to structural elements of the cytoplasm. This network is particularly important in muscle cells, providing resistance to mechanical strain. Weakening of this network is thought to contribute to development of muscle disease in these patients. Despite rigorous screening, at least 50% of patients with EDMD have no detectable mutation in the 6 known genes. We therefore undertook screening and identified mutations in two additional genes that encode other components of the nuclear structural network, SUN1 and SUN2. Our findings add to the genetic complexity of this disease since some individuals carry mutations in more than one gene. We also show that the mutations disrupt connections between the nucleus and the structural elements of cytoplasm, leading to mis-positioning and clustering of nuclei in muscle cells. This nuclear mis-positioning is likely to be another factor contributing to pathogenesis of EDMD.
Collapse
Affiliation(s)
- Peter Meinke
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Elisabetta Mattioli
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Farhana Haque
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Susumu Antoku
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Marta Columbaro
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Kees R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - Howard J. Worman
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Giovanna Lattanzi
- National Research Council of Italy - CNR - Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Rizzoli Orthopaedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | - Manfred Wehnert
- Institute of Human Genetics and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sue Shackleton
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
157
|
Wu J, Kent IA, Shekhar N, Chancellor TJ, Mendonca A, Dickinson RB, Lele TP. Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys J 2014; 106:7-15. [PMID: 24411232 DOI: 10.1016/j.bpj.2013.11.4489] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 10/29/2013] [Accepted: 11/19/2013] [Indexed: 01/14/2023] Open
Abstract
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.
Collapse
Affiliation(s)
- Jun Wu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Ian A Kent
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Nandini Shekhar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - T J Chancellor
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Agnes Mendonca
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.
| |
Collapse
|
158
|
Cain NE, Tapley EC, McDonald KL, Cain BM, Starr DA. The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. ACTA ACUST UNITED AC 2014; 206:163-72. [PMID: 25023515 PMCID: PMC4107780 DOI: 10.1083/jcb.201405081] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SUN-KASH bridges that connect the nucleoskeleton to the cytoskeleton are only required to maintain nuclear envelope spacing in cells subjected to increased mechanical forces, such as muscle cells. The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Erin C Tapley
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Benjamin M Cain
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| | - Daniel A Starr
- Department of Molecular and Cellular Biology and Department of Physics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
159
|
Zhou X, Graumann K, Wirthmueller L, Jones JDG, Meier I. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J Cell Biol 2014; 205:677-92. [PMID: 24891605 PMCID: PMC4050730 DOI: 10.1083/jcb.201401138] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 OBP, England, UK
| | | | | | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
160
|
Wong X, Luperchio TR, Reddy KL. NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Curr Opin Cell Biol 2014; 28:105-20. [PMID: 24886773 DOI: 10.1016/j.ceb.2014.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/21/2014] [Accepted: 04/11/2014] [Indexed: 01/13/2023]
Abstract
In recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology. While further studies are needed, it is clear that the differential nuclear envelope proteome contributes to cell-type specific nuclear identity and functions. This review discusses the importance of proteome diversity at the nuclear periphery and highlights the putative roles of NET proteins, with a focus on nuclear architecture.
Collapse
Affiliation(s)
- Xianrong Wong
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States
| | - Teresa R Luperchio
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States
| | - Karen L Reddy
- Johns Hopkins University, School of Medicine, Department of Biological Chemistry and Center for Epigenetics, 855N. Wolfe St., Rangos 574, Baltimore, MD 21044, United States.
| |
Collapse
|
161
|
Ajduk A, Biswas Shivhare S, Zernicka-Goetz M. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo. Dev Biol 2014; 392:133-40. [PMID: 24855000 PMCID: PMC4111899 DOI: 10.1016/j.ydbio.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 10/30/2022]
Abstract
The early mouse embryo undertakes two types of cell division: symmetric that gives rise to the trophectoderm and then placenta or asymmetric that gives rise to inner cells that generate the embryo proper. Although cell division orientation is important, the mechanism regulating it has remained unclear. Here, we identify the relationship between the plane of cell division and the position of the nucleus and go towards identifying the mechanism behind it. We first find that as the 8-cell embryo progresses through the cell cycle, the nuclei of most - but not all - cells move from apical to more basal positions, in a microtubule- and kinesin-dependent manner. We then find that all asymmetric divisions happen when nuclei are located basally and, in contrast, all cells, in which nuclei remain apical, divide symmetrically. To understand the potential mechanism behind this, we determine the effects of modulating expression of Cdx2, a transcription factor key for trophectoderm formation and cell polarity. We find that increased expression of Cdx2 leads to an increase in a number of apical nuclei, whereas down-regulation of Cdx2 leads to more nuclei moving basally, which explains a previously identified relationship between Cdx2 and cell division orientation. Finally, we show that down-regulation of aPKC, involved in cell polarity, decreases the number of apical nuclei and doubles the number of asymmetric divisions. These results suggest a model in which the mutual interdependence of Cdx2 and cell polarity affects the cytoskeleton-dependent positioning of nuclei and, in consequence, the plane of cell division in the early mouse embryo.
Collapse
Affiliation(s)
- Anna Ajduk
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sourima Biswas Shivhare
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Institute of Reproductive Sciences, University of Oxford, Oxford OX4 2HW, UK
| | - Magdalena Zernicka-Goetz
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
162
|
Abstract
Nuclear envelope (NE) proteins have fundamental roles in maintaining nuclear structure, cell signaling, chromatin organization, and gene regulation, and mutations in genes encoding NE components were identified as primary cause of a number of age associated diseases and cancer. Nesprin-1 belongs to a family of multi-isomeric NE proteins that are characterized by spectrin repeats. We analyzed NE components in various tumor cell lines and found that Nesprin-1 levels were strongly reduced associated with alterations in further NE components. By reducing the amounts of Nesprin-1 by RNAi mediated knockdown, we could reproduce those alterations in mouse and human cell lines. In a search for novel Nesprin-1 binding proteins, we identified MSH2 and MSH6, proteins of the DNA damage response pathway, as interactors and found alterations in the corresponding pathways in cells with lower Nesprin-1 levels. We also noticed increased number of γH2AX foci in the absence of exogenous DNA damage as was seen in tumor cells. The levels of phosphorylated kinases Chk1 and 2 were altered in a manner resembling tumor cells and the levels of Ku70 were low and the protein was not recruited to the DNA after hydroxyurea (HU) treatment. Our findings indicate a role for Nesprin-1 in the DNA damage response pathway and propose Nesprin-1 as novel player in tumorigenesis and genome instability.
Collapse
Affiliation(s)
- Ilknur Sur
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Sascha Neumann
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I; Medical Faculty; Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne, Germany
| |
Collapse
|
163
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
164
|
Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH, Tai LA, Liou GG, Yang CS, Chi YH. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J Cell Sci 2014; 127:1792-804. [PMID: 24522183 DOI: 10.1242/jcs.139683] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.
Collapse
Affiliation(s)
- Zi-Jie Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Liggett JL, Zhang X, Eling TE, Baek SJ. Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenase-independent targets. Cancer Lett 2014; 346:217-24. [PMID: 24486220 DOI: 10.1016/j.canlet.2014.01.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively for analgesic and antipyretic treatments. In addition, NSAIDs reduce the risk and mortality to several cancers. Their mechanisms in anti-tumorigenesis are not fully understood, but both cyclooxygenase (COX)-dependent and -independent pathways play a role. We and others have been interested in elucidating molecular targets of NSAID-induced apoptosis. In this review, we summarize updated literature regarding cellular and molecular targets modulated by NSAIDs. Among those NSAIDs, sulindac sulfide and tolfenamic acid are emphasized in this review because these two drugs have been well investigated for their anti-tumorigenic activity in many different types of cancer.
Collapse
Affiliation(s)
- Jason L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA
| | - Xiaobo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thomas E Eling
- Laboratory of Molecular Carcinogenesis, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA.
| |
Collapse
|
166
|
Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 2014; 5:3-10. [PMID: 24637401 DOI: 10.4161/nucl.27819] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pairing of homologous chromosome is a unique event in meiosis that is essential for both haploidization of the genome and genetic recombination. Rapid chromosome movements during meiotic prophase are a key feature of the pairing process. This is usually telomere-led, and in metazoans is dependent upon microtubules and dynein. Chromosome movements culminate in the formation of a meiotic "bouquet" in which nuclear envelope-associated telomeres are clustered at the centrosomal pole of the nucleus. Bouquet formation is thought to facilitate homolog pairing. Recent studies reveal that coupling of telomeres to cytoplasmic dynein is mediated by SUN1 in the inner nuclear membrane (INM) and KASH5 a novel protein of the outer nuclear membrane (ONM). Together SUN1 and KASH5 assemble to form a transluminal LINC (linker of the nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes. SUN1 forms attachment sites for telomeres at the INM while KASH5 functions as a dynein adaptor at the ONM. In mice deficient in KASH5, homologous chromosome pairing does not occur. The result is that meiosis is arrested at the leptotene/zygotene stage of meiotic prophase 1, and as a consequence both male and female mice are infertile. This study demonstrates an essential role for dynein directed telomere movement during meiotic prophase.
Collapse
Affiliation(s)
| | - Brian Burke
- Institute of Medical Biology; Immunos; Singapore
| |
Collapse
|
167
|
Li P, Meinke P, Huong LTT, Wehnert M, Noegel AA. Contribution of SUN1 mutations to the pathomechanism in muscular dystrophies. Hum Mutat 2014; 35:452-61. [PMID: 24375709 DOI: 10.1002/humu.22504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023]
Abstract
Mutations in several genes encoding nuclear envelope (NE) associated proteins cause Emery-Dreifuss muscular dystrophy (EDMD). We analyzed fibroblasts from a patient who had a mutation in the EMD gene (p.L84Pfs*6) leading to loss of Emerin and a heterozygous mutation in SUN1 (p.A203V). The second patient harbored a heterozygous mutation in LAP2alpha (p.P426L) and a further mutation in SUN1 (p.A614V). p.A203V is located in the N-terminal domain of SUN1 facing the nucleoplasm and situated in the vicinity of the Nesprin-2 and Emerin binding site. p.A614V precedes the SUN domain, which interacts with the KASH domain of Nesprins in the periplasmic space and forms the center of the LINC complex. At the cellular level, we observed alterations in the amounts for several components of the NE in patient fibroblasts and further phenotypic characteristics generally attributed to laminopathies such as increased sensitivity to heat stress. The defects were more severe than observed in EDMD cells with mutations in a single gene. In particular, in patient fibroblasts carrying the p.A203V mutation in SUN1, the alterations were aggravated. Moreover, SUN1 of both patient fibroblasts exhibited reduced interaction with Lamin A/C and when expressed ectopically in wild-type fibroblasts, the SUN1 mutant proteins exhibited reduced interactions with Emerin as well.
Collapse
Affiliation(s)
- Ping Li
- Institute for Biochemistry I, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
168
|
|
169
|
Razafsky D, Wirtz D, Hodzic D. Nuclear envelope in nuclear positioning and cell migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:471-90. [PMID: 24563361 PMCID: PMC4310828 DOI: 10.1007/978-1-4899-8032-8_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hauling and anchoring the nucleus within immobile or motile cells, tissues, and/or syncytia represents a major challenge. In the past 15 years, Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) have emerged as evolutionary-conserved molecular devices that span the nuclear envelope and provide interacting interfaces for cytoskeletal networks and molecular motors to the nuclear envelope. Here, we review the molecular composition of LINC complexes and focus on how their genetic alteration in vivo has provided a wealth of information related to the relevance of nuclear positioning during tissue development and homeostasis with a special emphasis on the central nervous system. As it may be relevant for metastasis in a range of cancers, the involvement of LINC complexes in migration of nonneuronal cells via its interaction with the perinuclear actin cap will also be developed.
Collapse
Affiliation(s)
- David Razafsky
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| | - Denis Wirtz
- The Johns Hopkins University, Department of Chemical and Biomolecular engineering, 3400 North Charles St., Baltimore, MD, 21218, USA
| | - Didier Hodzic
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, 660 South Euclid Ave, St Louis, MO, 63110, USA
| |
Collapse
|
170
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
171
|
Neumann S, Noegel AA. Nesprins in Cell Stability and Migration. CANCER BIOLOGY AND THE NUCLEAR ENVELOPE 2014; 773:491-504. [DOI: 10.1007/978-1-4899-8032-8_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
172
|
Cartwright S, Karakesisoglou I. Nesprins in health and disease. Semin Cell Dev Biol 2013; 29:169-79. [PMID: 24374011 DOI: 10.1016/j.semcdb.2013.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 01/20/2023]
Abstract
LINC (Linker of Nucleoskeleton and Cytoskeleton) complex is an evolutionary conserved structure that spans the entire nuclear envelope (NE), and integrates the nuclear interior with the cytoskeleton, in order to support a diverse array of fundamental biological processes. Key components of the LINC complex are the nesprins (Nuclear Envelope SPectrin Repeat proteINS) that were initially described as large integral NE proteins. However, nesprin genes are complex and generate many variants, which occupy various sub-cellular compartments suggesting additional functions. Hence, the potential involvement of nesprins in disease has expanded immensely on what we already know. That is, nesprins are implicated in diseases such as cancer, myopathies, arthrogryposis, neurological disorders and hearing loss. Here we review nesprins by providing an in depth account of their structure, molecular interactions and cellular functions with relevance to their potential roles in disease. Specifically, we speculate about possible pathomechanisms underlying nesprin-associated diseases.
Collapse
Affiliation(s)
- Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
173
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
174
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
175
|
Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. ACTA ACUST UNITED AC 2013; 202:1023-39. [PMID: 24062341 PMCID: PMC3787381 DOI: 10.1083/jcb.201304004] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex of KASH5 and Sun1 is required for meiotic homologous chromosome pairing through the coupling of telomere attachment sites to cytoplasmic dynein and microtubules. Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Collapse
Affiliation(s)
- Henning F Horn
- Laborotory of Nuclear Dynamics and Architecture, 2 Laboratory of Developmental and Regenerative Biology, and 3 IMB Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | | | | | | | | | | | | |
Collapse
|
176
|
Osorio DS, Gomes ER. The contemporary nucleus: A trip down memory lane. Biol Cell 2013; 105:430-41. [DOI: 10.1111/boc.201300009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/21/2013] [Indexed: 01/12/2023]
|
177
|
Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A. Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol Biol Cell 2013; 24:2454-66. [PMID: 23761073 PMCID: PMC3727937 DOI: 10.1091/mbc.e13-02-0100] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nesprin-3 regulates perinuclear localization of plectin and vimentin in Sertoli cells but is dispensable for Sertoli cell function in spermatogenesis. In addition, nuclear positioning and anchorage are not disturbed in nesprin-3–knockout mice. Nesprin-3 is a nuclear envelope protein that connects the nucleus to intermediate filaments by interacting with plectin. To investigate the role of nesprin-3 in the perinuclear localization of plectin, we generated nesprin-3–knockout mice and examined the effects of nesprin-3 deficiency in different cell types and tissues. Nesprin-3 and plectin are coexpressed in a variety of tissues, including peripheral nerve and muscle. The expression level of nesprin-3 in skeletal muscle is very low and decreases during myoblast differentiation in vitro. Of interest, plectin was concentrated at the nuclear envelope in only a few cell types. This was most prominent in Sertoli cells of the testis, in which nesprin-3 is required for the localization of both plectin and vimentin at the nuclear perimeter. Testicular morphology and the position of the nucleus in Sertoli cells were normal, however, in the nesprin-3–knockout mice and the mice were fertile. Furthermore, nesprin-3 was not required for the polarization and migration of mouse embryonic fibroblasts. Thus, although nesprin-3 is critical for the localization of plectin to the nuclear perimeter of Sertoli cells, the resulting link between the nuclear envelope and the intermediate filament system seems to be dispensable for normal testicular morphology and spermatogenesis.
Collapse
Affiliation(s)
- Mirjam Ketema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
178
|
Abstract
Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes formed by SUN and KASH proteins are conserved eukaryotic protein complexes that bridge the nuclear envelope (NE) via protein-protein interactions in the NE lumen. Revealed by opisthokont studies, LINC complexes are key players in multiple cellular processes, such as nuclear and chromosomal positioning and nuclear shape determination, which in turn influence the generation of gametes and several aspects of development. Although comparable processes have long been known in plants, the first plant nuclear envelope bridging complexes were only recently identified. WPP domain-interacting proteins at the outer NE have little homology to known opisthokont KASH proteins, but form complexes with SUN proteins at the inner NE that have plant-specific properties and functions. In this review, we will address the importance of LINC complex-regulated processes, describe the plant NE bridging complexes and compare them to opisthokont LINC complexes.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
179
|
Structural insights into LINC complexes. Curr Opin Struct Biol 2013; 23:285-91. [PMID: 23597672 DOI: 10.1016/j.sbi.2013.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/21/2013] [Accepted: 03/23/2013] [Indexed: 11/21/2022]
Abstract
Communication between nucleus and cytoplasm extends past molecular exchange and critically includes mechanical wiring. Cytoskeleton and nucleoskeleton are connected via molecular tethers that span the nuclear envelope. Sad1, UNC84 (SUN)-domain proteins spanning the inner nuclear membrane and Klarsicht, ANC-1 and SYNE/Nesprin-1 and -2 Homology (KASH)-peptide bearing proteins residing in the outer nuclear membrane directly bind and constitute the core of the LInkers of Nucleoskeleton and Cytoskeleton (LINC) complex. These connections appear critical for a growing number of biological processes and aberrations are implicated in a host of diverse diseases, including muscular dystrophies, cardiomyopathies, and premature aging. We discuss recent developments in this vibrant research area, particularly in context of first structural insights into LINC complexes reported in the past year.
Collapse
|
180
|
Burakov AV, Nadezhdina ES. Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 2013; 37:95-104. [DOI: 10.1002/cbin.10016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anton V. Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
| | - Elena S. Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
- Institute of Protein Research of Russian Academy of Science; Vavilova ul., 34, Moscow 119333 Russia
| |
Collapse
|
181
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
182
|
Abstract
Gametogenesis combines two important features: reduction of the genome content from diploid to haploid by carefully partitioning chromosomes, and the subsequent differentiation into fertilization-competent gametes, which in males is characterized by profound nuclear restructuring. These are quite difficult tasks and require a tight coordination of different cellular mechanisms. Recent studies in the field established a key role for LINC complexes in both meiosis and sperm head formation. LINC complexes comprise SUN and KASH domain proteins that form nuclear envelope (NE) bridges, linking the nucleoskeleton to the cytoskeleton. They are well known for their crucial roles in diverse cellular and developmental processes, such as nuclear positioning and cell polarization. In this review, we highlight key roles ascribed to LINC complexes and to the nucleocytoskeletal connection in gametogenesis. First, we give a short overview about the general features of LINC components and the profound reorganization of the NE in germ cells. We then focus on specific roles of LINC complexes in meiotic chromosome dynamics and their impact on pairing, synapsis, and recombination. Finally, we provide an update of the mechanisms controlling sperm head formation and discuss the role of sperm-specific LINC complexes in nuclear shaping and their relation to specialized cytoskeletal structures that form concurrently with nuclear restructuring and sperm elongation.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Department of Physiology, Wayne State University Medical School, Detroit, Michigan, USA
| | | | | |
Collapse
|
183
|
Crabbe L, Cesare AJ, Kasuboski JM, Fitzpatrick JAJ, Karlseder J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep 2012; 2:1521-9. [PMID: 23260663 DOI: 10.1016/j.celrep.2012.11.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022] Open
Abstract
Telomeres are essential for nuclear organization in yeast and during meiosis in mice. Exploring telomere dynamics in living human cells by advanced time-lapse confocal microscopy allowed us to evaluate the spatial distribution of telomeres within the nuclear volume. We discovered an unambiguous enrichment of telomeres at the nuclear periphery during postmitotic nuclear assembly, whereas telomeres were localized more internally during the rest of the cell cycle. Telomere enrichment at the nuclear rim was mediated by physical tethering of telomeres to the nuclear envelope, most likely via specific interactions between the shelterin subunit RAP1 and the nuclear envelope protein Sun1. Genetic interference revealed a critical role in cell-cycle progression for Sun1 but no effect on telomere positioning for RAP1. Our results shed light on the dynamic relocalization of human telomeres during the cell cycle and suggest redundant pathways for tethering telomeres to the nuclear envelope.
Collapse
Affiliation(s)
- Laure Crabbe
- Molecular and Cellular Biology Department, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
184
|
|
185
|
Dreier B, Raghunathan VK, Russell P, Murphy CJ. Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues. Acta Biomater 2012; 8:4285-94. [PMID: 22813850 DOI: 10.1016/j.actbio.2012.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
A rapidly expanding literature broadly documents the impact of biophysical cues on cellular behaviors. In spite of increasing research efforts in this field, the underlying signaling processes are poorly understood. One of the candidate molecules for being involved in mechanotransduction is focal adhesion kinase (FAK). To examine the role of FAK in the response of immortalized human corneal epithelial (hTCEpi) cells to topographic cues, FAK was depleted by siRNA transfection. Contrary to expectations, FAK knockdown resulted in an enhanced response with a greater number of hTCEpi cells aligned to the long axis of anisotropically ordered surface ridges and grooves. Both underlying topographic features and FAK depletion modulated the migration of corneal epithelial cells. The impact of FAK knockdown on both migration and alignment varied depending on the topographic cues to which the cells were exposed, with the most significant change observed on the biologically relevant size scale (400nm). Additionally, a change in expression of genes encoding perinuclear Nesprins 1 and 2 (SYNE1, 2) was observed in response to topographic cues. SYNE1/2 expression was also altered by FAK depletion, suggesting that these proteins might represent a link between cytosolic and nuclear signaling processes. The data presented here have relevance to our understanding of the fundamental processes involved in corneal cell behavior to topographic cues. These results highlight the importance of incorporating biophysical cues in the conduction of in vitro studies and into the design and fabrication of implantable prosthetics.
Collapse
Affiliation(s)
- Britta Dreier
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, One Shields Avenue, University of California Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
186
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
187
|
Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro KI, Han M, Watanabe Y. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. ACTA ACUST UNITED AC 2012; 198:165-72. [PMID: 22826121 PMCID: PMC3410425 DOI: 10.1083/jcb.201204085] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In yeasts and worms, KASH (Klarsicht/ANC-1/Syne/homology) domain and SUN (Sad-1/UNC-84) domain nuclear envelope (NE) proteins play a crucial role in meiotic chromosome movement and homologue pairing. However, although the vertebrate SUN domain protein SUN1 is involved in these processes, its partner has remained identified. Based on subcellular localization screening in mouse spermatocytes, we identified a novel germ cell-specific protein, KASH5, that localized exclusively at telomeres from the leptotene to diplotene stages in both spermatocytes and oocytes. KASH5 possesses hitherto unknown KASH-related sequences that directly interacted with SUN1 and mediated telomere localization. Thus, KASH5 is a mammalian meiosis-specific KASH domain protein. We show that meiotic chromosome movement depended on microtubules and that KASH5 interacted with the microtubule-associated dynein-dynactin complex. These results suggest that KASH5 connects the telomere-associated SUN1 protein to the cytoplasmic force-generating mechanism involved in meiotic chromosome movement. Our study strongly suggests that the meiotic homologue-pairing mechanism mediated by the SUN-KASH NE bridge is highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Akihiro Morimoto
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
188
|
Lu W, Schneider M, Neumann S, Jaeger VM, Taranum S, Munck M, Cartwright S, Richardson C, Carthew J, Noh K, Goldberg M, Noegel AA, Karakesisoglou I. Nesprin interchain associations control nuclear size. Cell Mol Life Sci 2012; 69:3493-509. [PMID: 22653047 PMCID: PMC11114684 DOI: 10.1007/s00018-012-1034-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
Nesprins-1/-2/-3/-4 are nuclear envelope proteins, which connect nuclei to the cytoskeleton. The largest nesprin-1/-2 isoforms (termed giant) tether F-actin through their N-terminal actin binding domain (ABD). Nesprin-3, however, lacks an ABD and associates instead to plectin, which binds intermediate filaments. Nesprins are integrated into the outer nuclear membrane via their C-terminal KASH-domain. Here, we show that nesprin-1/-2 ABDs physically and functionally interact with nesprin-3. Thus, both ends of nesprin-1/-2 giant are integrated at the nuclear surface: via the C-terminal KASH-domain and the N-terminal ABD-nesprin-3 association. Interestingly, nesprin-2 ABD or KASH-domain overexpression leads to increased nuclear areas. Conversely, nesprin-2 mini (contains the ABD and KASH-domain but lacks the massive nesprin-2 giant rod segment) expression yields smaller nuclei. Nuclear shrinkage is further enhanced upon nesprin-3 co-expression or microfilament depolymerization. Our findings suggest that multivariate intermolecular nesprin interactions with the cytoskeleton form a lattice-like filamentous network covering the outer nuclear membrane, which determines nuclear size.
Collapse
Affiliation(s)
- Wenshu Lu
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Maria Schneider
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sascha Neumann
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Verena-Maren Jaeger
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Surayya Taranum
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Martina Munck
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Sarah Cartwright
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - James Carthew
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Kowoon Noh
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE UK
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | |
Collapse
|
189
|
Wang W, Shi Z, Jiao S, Chen C, Wang H, Liu G, Wang Q, Zhao Y, Greene MI, Zhou Z. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res 2012; 22:1440-52. [PMID: 22945352 DOI: 10.1038/cr.2012.126] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Linker of the nucleoskeleton and the cytoskeleton (LINC) complexes are composed of SUN and KASH domain-containing proteins and bridge the inner and outer membranes of the nuclear envelope. LINC complexes play critical roles in nuclear positioning, cell polarization and cellular stiffness. Previously, we reported the homotrimeric structure of human SUN2. We have now determined the crystal structure of the human SUN2-KASH complex. In the complex structure, the SUN domain homotrimer binds to three independent "hook"-like KASH peptides. The overall conformation of the SUN domain in the complex closely resembles the SUN domain in its apo state. A major conformational change involves the AA'-loop of KASH-bound SUN domain, which rearranges to form a mini β-sheet that interacts with the KASH peptide. The PPPT motif of the KASH domain fits tightly into a hydrophobic pocket on the homotrimeric interface of the SUN domain, which we termed the BI-pocket. Moreover, two adjacent protomers of the SUN domain homotrimer sandwich the KASH domain by hydrophobic interaction and hydrogen bonding. Mutations of these binding sites disrupt or reduce the association between the SUN and KASH domains in vitro. In addition, transfection of wild-type, but not mutant, SUN2 promotes cell migration in Ovcar-3 cells. These results provide a structural model of the LINC complex, which is essential for additional study of the physical and functional coupling between the cytoplasm and the nucleoplasm.
Collapse
Affiliation(s)
- Wenjia Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Molecular basis for sculpting the endoplasmic reticulum membrane. Int J Biochem Cell Biol 2012; 44:1436-43. [DOI: 10.1016/j.biocel.2012.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 01/07/2023]
|
191
|
Strasser C, Grote P, Schäuble K, Ganz M, Ferrando-May E. Regulation of nuclear envelope permeability in cell death and survival. Nucleus 2012; 3:540-51. [PMID: 22929227 DOI: 10.4161/nucl.21982] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nuclear pore complex (NPC) mediates macromolecular exchange between nucleus and cytoplasm. It is a regulated channel whose functional properties are modulated in response to the physiological status of the cell. Identifying the factors responsible for regulating NPC activity is crucial to understand how intracellular signaling cues are integrated at the level of this channel to control nucleocytoplasmic trafficking. For proteins lacking active translocation signals the NPC acts as a molecular sieve limiting passage across the nuclear envelope (NE) to proteins with a MW below ~40 kD. Here, we investigate how this permeability barrier is altered in paradigms of cell death and cell survival, i.e., apoptosis induction via staurosporine, and enhanced viability via overexpression of Bcl-2. We monitor dynamic changes of the NPC's size-exclusion limit for passive diffusion by confocal time-lapse microscopy of cells undergoing apoptosis, and use different diffusion markers to determine how Bcl-2 expression affects steady-state NE permeability. We show that staurosporine triggers an immediate and gradual leakiness of the NE preceding the appearance of apoptotic hallmarks. Bcl-2 expression leads to a constitutive increase in NE permeability, and its localization at the NE is sufficient for the effect, evincing a functional role for Bcl-2 at the nuclear membrane. In both settings, NPC leakiness correlates with reduced Ca²⁺ in internal stores, as demonstrated by fluorometric measurements of ER/NE Ca²⁺ levels. By comparing two cellular models with opposite outcome these data pinpoint ER/NE Ca²⁺ as a general and physiologically relevant regulator of the permeability barrier function of the NPC.
Collapse
Affiliation(s)
- Christine Strasser
- Bioimaging Center, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
192
|
Abstract
Mutations in the LMNA gene are associated with a spectrum of human dystrophic diseases termed the "nuclear laminopathies." We recently found that the accumulation of the inner nuclear envelope proteins SUN1 is pathogenic in progeric and dystrophic laminopathies. This conclusion arose from the unexpected observation that the deletion of Sun1, instead of accelerating aging, actually ameliorated the progeric and dystrophic phenotypes in Lmna-deficient mice. In human cells, knocking down SUN1 corrected the nuclear aberrancies and the senescent tendencies of HGPS (Hutchinson-Gilford progeria syndrome) skin fibroblasts. Here we offer additional comments on the contributions of SUN1 and the process of normal protein turnover to cellular aging.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| | | | | |
Collapse
|
193
|
Lei K, Zhu X, Xu R, Shao C, Xu T, Zhuang Y, Han M. Inner nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA damage response. Curr Biol 2012; 22:1609-15. [PMID: 22863315 PMCID: PMC3466333 DOI: 10.1016/j.cub.2012.06.043] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 05/23/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022]
Abstract
The DNA damage response (DDR) and DNA repair are critical for maintaining genomic stability and evading many human diseases. Recent findings indicate that accumulation of SUN1, a nuclear envelope (NE) protein, is a significant pathogenic event in Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome, both caused by mutations in LMNA. However, roles of mammalian SUN proteins in mitotic cell division and genomic stability are unknown. Here we report that the inner NE proteins SUN1 and SUN2 may play a redundant role in DDR. Mouse embryonic fibroblasts from Sun1(-/-)Sun2(-/-) mice displayed premature proliferation arrest in S phase of cell cycle, increased apoptosis and DNA damage, and decreased perinuclear heterochromatin, indicating genome instability. Furthermore, activation of ATM and H2A.X, early events in DDR, were impaired in Sun1(-/-)Sun2(-/-) fibroblasts. A biochemical screen identified interactions between SUN1 and SUN2 and DNA-dependent protein kinase (DNAPK) complex that functions in DNA nonhomologous end joining repair and possibly in DDR. Knockdown of DNAPK reduced ATM activation in NIH 3T3 cells, consistent with a potential role of SUN1- and SUN2-DNAPK interaction during DDR. SUN1 and SUN2 could affect DDR by localizing certain nuclear factors to the NE or by mediating communication between nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Kai Lei
- Institute of Developmental Biology and Molecular Medicine, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
194
|
Sosa BA, Rothballer A, Kutay U, Schwartz TU. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 2012; 149:1035-47. [PMID: 22632968 DOI: 10.1016/j.cell.2012.03.046] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.
Collapse
Affiliation(s)
- Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
195
|
Khatau SB, Bloom RJ, Bajpai S, Razafsky D, Zang S, Giri A, Wu PH, Marchand J, Celedon A, Hale CM, Sun SX, Hodzic D, Wirtz D. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci Rep 2012; 2:488. [PMID: 22761994 PMCID: PMC3388469 DOI: 10.1038/srep00488] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 12/26/2022] Open
Abstract
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles - the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions.
Collapse
Affiliation(s)
- Shyam B Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Untethering the nuclear envelope and cytoskeleton: biologically distinct dystonias arising from a common cellular dysfunction. Int J Cell Biol 2012; 2012:634214. [PMID: 22611399 PMCID: PMC3352338 DOI: 10.1155/2012/634214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/12/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
Most cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells. We suggest that through a shared interaction with the nuclear envelope protein nesprin-3α, torsinA and the neuronal dystonin-a2 isoform comprise a bridge complex between the outer nuclear membrane and the cytoskeleton, which is critical for some aspects of neuronal development and function. Elucidation of the overlapping roles of torsinA and dystonin-a2 in nuclear/endoplasmic reticulum dynamics should provide insights into the cellular mechanisms underlying the dystonic phenotype.
Collapse
|
197
|
Taranum S, Vaylann E, Meinke P, Abraham S, Yang L, Neumann S, Karakesisoglou I, Wehnert M, Noegel AA. LINC complex alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol 2012; 91:614-28. [PMID: 22555292 PMCID: PMC3778752 DOI: 10.1016/j.ejcb.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/29/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a late onset-disease characterized by skeletal muscle wasting and heart defects with associated risk of sudden death. The autosomal dominant form of the disease is caused by mutations in the LMNA gene encoding LaminA and C, the X-linked form results from mutations in the gene encoding the inner nuclear membrane protein Emerin (STA). Both Emerin and LaminA/C interact with the nuclear envelope proteins Nesprin-1 and -2 and mutations in genes encoding C-terminal isoforms of Nesprin-1 and -2 have also been implicated in EDMD. Here we analyse primary fibroblasts from patients affected by either Duchenne muscular dystrophy (DMD) or Emery-Dreifuss muscular dystrophy/Charcot-Marie-Tooth syndrome (EDMD/CMT) that in addition to the disease causing mutations harbour mutations in the Nesprin-1 gene and in the SUN1 and SUN2 gene, respectively. SUN proteins together with the Nesprins form the core of the LINC complex which connects the nucleus with the cytoskeleton. The mutations are accompanied by changes in cell adhesion, cell migration, senescence, and stress response, as well as in nuclear shape and nuclear envelope composition which are changes characteristic for laminopathies. Our results point to a potential influence of mutations in components of the LINC complex on the clinical outcome and the molecular pathology in the patients.
Collapse
Affiliation(s)
- Surayya Taranum
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Jaspersen SL, Ghosh S. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 2012; 3:226-36. [PMID: 22572959 PMCID: PMC3414398 DOI: 10.4161/nucl.20148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The defining feature of eukaryotic cells is the double lipid bilayer of the nuclear envelope (NE) that serves as a physical barrier separating the genome from the cytosol. Nuclear pore complexes (NPCs) are embedded in the NE to facilitate transport of proteins and other macromolecules into and out of the nucleus. In fungi and early embryos where the NE does not completely breakdown during mitosis, microtubule-organizing centers such as the spindle pole body (SPB) must also be inserted into the NE to facilitate organization of the mitotic spindle. Several recent papers have shed light on the mechanism by which SPB complexes are inserted into the NE. An unexpected link between the SPB and NPCs suggests that assembly of these NE complexes is tightly coordinated. We review the findings of these reports in light of our current knowledge of SPB, NPC and NE structure, assembly and function.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
199
|
Zhou X, Graumann K, Evans DE, Meier I. Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination. ACTA ACUST UNITED AC 2012; 196:203-11. [PMID: 22270916 PMCID: PMC3265956 DOI: 10.1083/jcb.201108098] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inner nuclear membrane Sad1/UNC-84 (SUN) proteins interact with outer nuclear membrane (ONM) Klarsicht/ANC-1/Syne homology (KASH) proteins, forming linkers of nucleoskeleton to cytoskeleton conserved from yeast to human and involved in positioning of nuclei and chromosomes. Defects in SUN-KASH bridges are linked to muscular dystrophy, progeria, and cancer. SUN proteins were recently identified in plants, but their ONM KASH partners are unknown. Arabidopsis WPP domain-interacting proteins (AtWIPs) are plant-specific ONM proteins that redundantly anchor Arabidopsis RanGTPase-activating protein 1 (AtRanGAP1) to the nuclear envelope (NE). In this paper, we report that AtWIPs are plant-specific KASH proteins interacting with Arabidopsis SUN proteins (AtSUNs). The interaction is required for both AtWIP1 and AtRanGAP1 NE localization. AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells. Together, our data identify the first KASH members in the plant kingdom and provide a novel function of SUN-KASH complexes, suggesting that a functionally diverged SUN-KASH bridge is conserved beyond the opisthokonts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
200
|
Abstract
Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell's microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can not only affect nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer.
Collapse
Affiliation(s)
- Monika Zwerger
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|