151
|
Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G. The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 2014; 18:95-107. [PMID: 24188167 PMCID: PMC3991726 DOI: 10.1517/14728222.2014.851671] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A common feature of many types of cells is their responsiveness to chemotactic gradients of factors for which they express the corresponding receptors. The most studied chemoattractants so far are peptide-based growth factors and a family of cytokines endowed with strong chemotactic properties, called chemokines. However, additional evidence has accumulated that, in addition to these peptide-based chemoattractants, an important role in cell migration is played by bioactive lipids. AREAS COVERED Solid evidence has accumulated that two bioactive phosphorylated sphingolipids that are derivatives of sphingolipid metabolism, namely sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are potent chemoattractants for a variety of cells. In this review, we will discuss the effect of these two phosphorylated sphingolipids on the trafficking of normal and malignant cells, and, in particular, we will focus on their role in trafficking of normal hematopoietic stem/progenitor cells. Unlike other mediators, S1P under steady-state conditions maintain a steep gradient between interstitial fluid and peripheral blood and lymph across the endothelial barrier, which is important in the egress of cells from bone marrow. Both S1P and C1P may be upregulated in damaged tissues, which may result in reversal of this gradient. EXPERT OPINION S1P and C1P are important regulators of the trafficking of normal and malignant cells, and modification of their biological effects will have important applications in optimizing stem cell mobilization and homing, tissue organ/regeneration, and preventing cancer metastasis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- University of Louisville, Stem Cell Institute, James Graham Brown Cancer Center , 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 , USA +1 502 852 1788 ; +1 502 852 3032 ;
| | | | | | | | | |
Collapse
|
152
|
The role of cytokine responses during influenza virus pathogenesis and potential therapeutic options. Curr Top Microbiol Immunol 2014; 386:3-22. [PMID: 25267464 DOI: 10.1007/82_2014_411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant pulmonary immune responses are linked to the pathogenesis of multiple human respiratory viral infections. Elevated cytokine and chemokine production "cytokine storm" has been continuously associated with poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models. Initial trials using global immune suppression with corticosteroids or targeted neutralization of single inflammatory mediators proved ineffective to ameliorate pathology during pathogenic influenza virus infection. Thus, it was believed that cytokine storm was either chemically intractable or not causal in the pathology observed. During this review, we will discuss the history of research assessing the roles various cytokines, chemokines, and innate immune cells play in promoting pathology or protection during influenza virus infection. Several promising new strategies modulating lipid signaling have been recently uncovered for global blunting, but not ablation, of innate immune responses following influenza virus infection. Importantly, modulating lipid signaling through various means has proven effective at curbing morbidity and mortality in animal models and may be useful for curbing influenza virus induced pathology in humans. Finally, we highlight future research directions for mechanistically dissecting how modulation of lipid signaling pathways results in favorable outcomes following influenza virus infection.
Collapse
|
153
|
Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 2013; 36:1419-31. [PMID: 24222504 DOI: 10.1007/s12272-013-0271-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The primary reason for the high mortality rate of breast cancer is metastasis, which can result in a poor survival rate. The tumor environment is important for promotion and invasion of cancer cells. Recent studies have shown that inflammation is associated with breast cancer. Therefore, it is important to investigate the role of the inflammatory and microenvironment in breast cancer progression and metastasis. The present review summarizes some of the markers for inflammation and breast cancer invasion, which may aid in the design of an appropriate therapy for metastatic breast cancer. The following four inflammatory markers are discussed in this review: (1) Tumor associated macrophages (TAMs); (2) Matrix metalloproteinases (MMPs); (3) Sphingosine 1-phosphate (S1P); (4) C-reactive protein (CRP). TAMs are commonly found in breast cancer patients, and high infiltration is positively correlated with poor prognosis and low survival rate. MMPs are well-known for their roles in the degradation of ECM components when cancer cells invade and migrate. MMPs are also associated with inflammation through recruitment of a variety of stromal cells such as fibroblasts and leukocytes. S1P is an inflammatory lipid and is involved in various cellular processes such as proliferation, survival, and migration. Recent studies indicate that S1P participates in breast cancer invasion in various ways. CRP is used clinically to indicate the outcome of cancer patients as well as acute inflammatory status. This review summarizes the current understanding on the role of S1P in CRP expression which promotes the breast epithelial cell invasion, suggesting a specific mechanism linking inflammation and breast cancer. The present review might be useful for understanding the relationship between inflammation and breast cancer for the development of pharmacological interventions that may control the primary molecules involved in the breast cancer microenvironment.
Collapse
|
154
|
Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V. Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:745-58. [PMID: 24239768 DOI: 10.1016/j.bbalip.2013.11.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Marc Bigaud
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | - Danilo Guerini
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Andreas Billich
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | | | - Volker Brinkmann
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| |
Collapse
|
155
|
Caretti A, Bragonzi A, Facchini M, De Fino I, Riva C, Gasco P, Musicanti C, Casas J, Fabriàs G, Ghidoni R, Signorelli P. Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochim Biophys Acta Gen Subj 2013; 1840:586-94. [PMID: 24141140 DOI: 10.1016/j.bbagen.2013.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/07/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects. METHODS The therapeutic potential of myriocin, an inhibitor of the sphingolipid de novo synthesis rate limiting enzyme (Serine Palmitoyl Transferase, SPT),was investigated in CF cells and mice models. RESULTS We treated CF human respiratory epithelial cells with myriocin, This treatment resulted in reduced basal, as well as TNFα-stimulated, inflammation. In turn, TNFα induced an increase in SPT in these cells, linking de novo synthesis of ceramide to inflammation. Furthermore, myriocin-loaded nanocarrier, injected intratrachea prior to P. aeruginosa challenge, enabled a significant reduction of lung infection and reduced inflammation. CONCLUSIONS The presented data suggest that de novo ceramide synthesis is constitutively enhanced in CF mucosa and that it can be envisaged as pharmacological target for modulating inflammation and restoring effective innate immunity against acute infection. GENERAL SIGNIFICANCE Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Anna Caretti
- Department of Health Sciences, University of Milan, San Paolo Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Metabolism, physiological role, and clinical implications of sphingolipids in gastrointestinal tract. BIOMED RESEARCH INTERNATIONAL 2013; 2013:908907. [PMID: 24083248 PMCID: PMC3780527 DOI: 10.1155/2013/908907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/30/2013] [Accepted: 08/02/2013] [Indexed: 01/21/2023]
Abstract
Sphingolipids in digestive system are responsible for numerous important physiological and pathological processes. In the membrane of gut epithelial cells, sphingolipids provide structural integrity, regulate absorption of some nutrients, and act as receptors for many microbial antigens and their toxins. Moreover, bioactive sphingolipids such as ceramide or sphingosine-1-phosphate regulate cellular growth, differentiation, and programmed cell death-apoptosis. Although it is well established that sphingolipids have clinical implications in gastrointestinal tumorigenesis or inflammation, further studies are needed to fully explore the role of sphingolipids in neoplastic and inflammatory diseases in gastrointestinal tract. Pharmacological agents which regulate metabolism of sphingolipids can be potentially used in the management of colorectal cancer or inflammatory bowel diseases. The aim of this work is to critically the review physiological and pathological roles of sphingolipids in the gastrointestinal tract.
Collapse
|
157
|
Egom EE, Rose RA, Neyses L, Soran H, Cleland JGF, Mamas MA. Activation of sphingosine-1-phosphate signalling as a potential underlying mechanism of the pleiotropic effects of statin therapy. Crit Rev Clin Lab Sci 2013; 50:79-89. [DOI: 10.3109/10408363.2013.813013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
158
|
Robciuc A, Hyötyläinen T, Jauhiainen M, Holopainen JM. Ceramides in the pathophysiology of the anterior segment of the eye. Curr Eye Res 2013; 38:1006-16. [PMID: 23885886 DOI: 10.3109/02713683.2013.810273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Sphingolipid (SL) research reached a peak in the past years. Yet this positive trend was not evident for eye research as the relative number of studies centered on SLs is decreasing. Our aim is to encourage the inclusion of SL metabolites in studies of ocular pathophysiology by summarizing recent findings and current awareness concerning ceramides in the anterior segment of the eye. METHODS Review of literature relating to ceramides as bioactive lipids and the extent to which their particular nature was investigated in ocular pathophysiology. RESULTS Ceramides are rare but indispensable lipids that influence cellular responses through their effects on membrane biophysical properties or direct interaction with target proteins. Their biological significance is increased by variability and adaptability as there are tens of enzymes designed to modulate their function. The eye offers a set of unique environments where ceramides or other SLs have not been extensively studied. Not surprisingly, ceramides were associated with apoptosis in the metabolically active tissues, while little is known about its effects on the biophysical properties of the tears or lens lipids. More so, there are still aspects of the ocular homeostasis control where SLs contribution has not been investigated to date (e.g. pathogen aggression). CONCLUSIONS Ceramides and SL metabolism still receive increasing attention and have proven to be a significant metabolite in many research fields (e.g. cancer, stress response and inflammation) and there are yet many questions that they will aid answer. With the present work, we seek to increase awareness of these lipids also in eye research and to highlight their importance as common regulators of various diseases.
Collapse
Affiliation(s)
- Alexandra Robciuc
- Department of Ophthalmology, University of Helsinki, Helsinki Eye Lab, Helsinki, Finland
| | | | | | | |
Collapse
|
159
|
Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X, Mishra SK, Molotkovsky JG, Malinina L, Hinchcliffe EH, Chalfant CE, Brown RE, Patel DJ. Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 2013; 500:463-7. [PMID: 23863933 PMCID: PMC3951269 DOI: 10.1038/nature12332] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
Phosphorylated sphingolipids [ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P)] have emerged as key regulators of cell growth, survival, migration, and inflammation1–5. C1P (Fig. 1a) produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production3,6–9, which contributes to disease pathogenesis in asthma/airway hyper-responsiveness, cancer, atherosclerosis, and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking, and presentation of C1P to specific cellular sites. Vesicular trafficking is likely10 but nonvesicular mechanisms for C1P sensing, transfer, and presentation remain unexplored11,12. Moreover, the molecular basis for selective recognition and binding among signaling lipids with phosphate headgroups, namely C1P, phosphatidic acid (PA) or their lyso-derivatives, remains unclear. Herein, an ubiquitously-expressed lipid transfer protein (CPTP) is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding via a novel surface-localized, phosphate headgroup recognition center connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated ‘sandwich’ topology identifies CPTP as the prototype for a new GLTP-fold13 subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi/TGN, nucleus, and plasma membrane. RNAi-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom. Toxicon 2013; 67:17-30. [DOI: 10.1016/j.toxicon.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
161
|
Karapetyan AV, Klyachkin YM, Selim S, Sunkara M, Ziada KM, Cohen DA, Zuba-Surma EK, Ratajczak J, Smyth SS, Ratajczak MZ, Morris AJ, Abdel-Latif A. Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. Stem Cells Dev 2013; 22:1645-56. [PMID: 23282236 PMCID: PMC3657281 DOI: 10.1089/scd.2012.0488] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022] Open
Abstract
Acute myocardial infarction (AMI) triggers mobilization of stem cells from bone marrow (BM) into peripheral blood (PB). Based on our observation that the bioactive sphingophospholipids, sphingosine-1 phosphate (S1P), and ceramide-1 phosphate (C1P) regulate trafficking of hematopoietic stem cells (HSCs), we explored whether they also direct trafficking of non-hematopoietic stem cells (non-HSCs). We detected a 3-6-fold increase in circulating CD34+, CD133+, and CXCR4+ lineage-negative (Lin-)/CD45- cells that are enriched in non-HSCs [including endothelial progenitors (EPCs) and very small embryonic-like stem cells (VSELs)] in PB from AMI patients (P<0.05 vs. controls). Concurrently, we measured a ∼3-fold increase in S1P and C1P levels in plasma from AMI patients. At the same time, plasma obtained at hospital admission and 6 h after AMI strongly chemoattracted human BM-derived CD34+/Lin- and CXCR4+/Lin- cells in Transwell chemotaxis assays. This effect of plasma was blunted after depletion of S1P level by charcoal stripping and was further inhibited by the specific S1P1 receptor antagonist such as W146 and VPC23019. We also noted that the expression of S1P receptor 1 (S1P1), which is dominant in naïve BM, is reduced after the exposure to S1P at concentrations similar to the plasma S1P levels in patients with AMI, thus influencing the role of S1P in homing to the injured myocardium. Therefore, we examined mechanisms, other than bioactive lipids, that may contribute to the homing of BM non-HSCs to the infarcted myocardium. Hypoxic cardiac tissue increases the expression of cathelicidin and β-2 defensin, which could explain why PB cells isolated from patients with AMI migrated more efficiently to a low, yet physiological, gradient of stromal-derived factor-1 in Transwell migration assays. Together, these observations suggest that while elevated S1P and C1P levels early in the course of AMI may trigger mobilization of non-HSCs into PB, cathelicidin and β-2 defensin could play an important role in their homing to damaged myocardium.
Collapse
Affiliation(s)
- Anush V. Karapetyan
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Yuri M. Klyachkin
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Samy Selim
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Manjula Sunkara
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Khaled M. Ziada
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Donald A. Cohen
- Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | - Ewa K. Zuba-Surma
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janina Ratajczak
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Susan S. Smyth
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Mariusz Z. Ratajczak
- Stem Cell Biology Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrew J. Morris
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
- Lexington VA Medical Center, Lexington, Kentucky
- Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
162
|
Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
|
163
|
Biological functions of sphingomyelins. Prog Lipid Res 2013; 52:424-37. [PMID: 23684760 DOI: 10.1016/j.plipres.2013.05.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 12/14/2022]
Abstract
Sphingomyelin (SM) is a dominant sphingolipid in membranes of mammalian cells and this lipid class is specifically enriched in the plasma membrane, the endocytic recycling compartment, and the trans Golgi network. The distribution of SM and cholesterol among cellular compartments correlate. Sphingolipids have extensive hydrogen-bonding capabilities which together with their saturated nature facilitate the formation of sphingolipid and SM-enriched lateral domains in membranes. Cholesterol prefers to interact with SMs and this interaction has many important functional consequences. In this review, the synthesis, regulation, and intracellular distribution of SMs are discussed. The many direct roles played by membrane SM in various cellular functions and processes will also be discussed. These include involvement in the regulation of endocytosis and receptor-mediated ligand uptake, in ion channel and G-protein coupled receptor function, in protein sorting, and functioning as receptor molecules for various bacterial toxins, and for non-bacterial pore-forming toxins. SM is also an important constituent of the eye lens membrane, and is believed to participate in the regulation of various nuclear functions. SM is an independent risk factor in the development of cardiovascular disease, and new studies have shed light on possible mechanism behind its role in atherogenesis.
Collapse
|
164
|
Metabolic profiling of plasma from cardiac surgical patients concurrently administered with tranexamic acid: DI-SPME-LC-MS analysis. J Pharm Anal 2013; 4:6-13. [PMID: 29403864 PMCID: PMC5761052 DOI: 10.1016/j.jpha.2013.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/14/2013] [Indexed: 11/24/2022] Open
Abstract
A metabolic profile of plasma samples from patients undergoing heart surgery with the use of cardiopulmonary bypass (CPB) and concurrent administration of tranexamic acid was determined. Direct immersion solid phase microextraction (DI-SPME), a new sampling and sample preparation tool for metabolomics, was used in this study for the first time to investigate clinical samples. The results showed alteration of diverse compounds involved in different biochemical pathways. The most significant contribution in changes induced by surgery and applied pharmacotherapy was noticed in metabolic profile of lysophospholipids, triacylglycerols, mediators of platelet aggregation, and linoleic acid metabolites. Two cases of individual response to treatment were also reported.
Collapse
|
165
|
Ouro A, Arana L, Gangoiti P, Rivera IG, Ordoñez M, Trueba M, Lankalapalli RS, Bittman R, Gomez-Muñoz A. Ceramide 1-phosphate stimulates glucose uptake in macrophages. Cell Signal 2013; 25:786-95. [PMID: 23333242 DOI: 10.1016/j.cellsig.2013.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022]
Abstract
It is well established that ceramide 1-phosphate (C1P) is mitogenic and antiapoptotic, and that it is implicated in the regulation of macrophage migration. These activities require high energy levels to be available in cells. Macrophages obtain most of their energy from glucose. In this work, we demonstrate that C1P enhances glucose uptake in RAW264.7 macrophages. The major glucose transporter involved in this action was found to be GLUT 3, as determined by measuring its translocation from the cytosol to the plasma membrane. C1P-stimulated glucose uptake was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3K) or Akt, also known as protein kinase B (PKB), and by specific siRNAs to silence the genes encoding for these kinases. C1P-stimulated glucose uptake was also inhibited by pertussis toxin (PTX) and by the siRNA that inhibited GLUT 3 expression. C1P increased the affinity of the glucose transporter for its substrate, and enhanced glucose metabolism to produce ATP. The latter action was also inhibited by PI3K- and Akt-selective inhibitors, PTX, or by specific siRNAs to inhibit GLUT 3 expression.
Collapse
Affiliation(s)
- Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Peter Slotte J. Molecular properties of various structurally defined sphingomyelins -- correlation of structure with function. Prog Lipid Res 2013; 52:206-19. [PMID: 23295259 DOI: 10.1016/j.plipres.2012.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023]
Abstract
Sphingomyelins are important phospholipids in plasma membranes of most cells. Because of their dominantly saturated nature, they affect the lateral structure of membranes, and contribute to the regulation of cholesterol distribution within membranes, and in cells. However, the abundance of molecular species present in cells also implies that sphingomyelins have other, more specific functions. Many of these functions are currently unknown, but are under extensive study. Mostly model membrane studies have shown that sphingomyelins (and other sphingolipids), in contrast to glycerophospholipids, have important hydrogen bonding properties which in several important ways confer specific functional properties to this abundant class of membrane phospholipids. The often very asymmetric nature of sphingomyelins, arising from mismatch in length between the long chain base and N-acyl chains, also impose specific properties (e.g., interdigitation) to sphingomyelins not seen with glycerophospholipids. In this review, the latest sphingomyelin literature will be scrutinized, and an effort will be made to correlate the molecular structure of sphingomyelin with functional properties. In particular, the effects of head group properties, interfacial hydrogen bonding, long chain base hydroxylation, N-acyl chain hydroxylation, and N-acyl chain methyl-branching will be discussed.
Collapse
Affiliation(s)
- J Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| |
Collapse
|
167
|
C2-di-ethyl-ceramide-1-phosphate as an inhibitor of group IVA cytosolic phospholipase A2. Eur J Pharmacol 2012; 697:144-51. [DOI: 10.1016/j.ejphar.2012.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/18/2022]
|
168
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
169
|
Zhang H, Li L, Yu Y, Mo J, Sun L, Liu B, Li D, Song F. Cloning and characterization of two rice long-chain base kinase genes and their function in disease resistance and cell death. Mol Biol Rep 2012; 40:117-27. [PMID: 23054004 DOI: 10.1007/s11033-012-2040-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Sphingolipid metabolites such as long-chain base 1-phosphates (LCBPs) have been shown to play an important role in plants; however, little is known about their function in plant disease resistance and programmed cell death (PCD). In the present study, we cloned and identified two rice long-chain base kinase (LCBK) genes (OsLCBK1 and OsLCBK2), which are involved in biosynthesis of LCBPs, and performed functional analysis in transgenic tobacco. Expression of OsLCBK1 and OsLCBK2 was induced in rice seedlings after treatments with defense signaling molecules and after infection by Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants overexpressing OsLCBK1 were generated and disease resistance assays indicate that the OsLCBK1-overexpressing plants showed enhanced disease resistance against Pseudmonas syringae pv. tabacci, the causal agent of wildfire disease, and tobacco mosaic virus. Expression levels of some defense-related genes were constitutively up-regulated and further induced after pathogen infection in the OsLCBK1-overexpressing plants. Treatment with fungal toxin fumonisin B1, an effective inducer of PCD in plants, resulted in reduced level of cell death in the OsLCBK1-overexpressing plants, as indicated by cell death staining, leakage of electrolyte and expression of hypersensitive response indicator genes. These data suggest that rice LCBKs, probably through regulation of endogenous LCBP level, play important roles in disease resistance response and PCD in plants.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Bini F, Frati A, Garcia-Gil M, Battistini C, Granado M, Martinesi M, Mainardi M, Vannini E, Luzzati F, Caleo M, Peretto P, Gomez-Muñoz A, Meacci E. New signalling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase. Neuropharmacology 2012; 63:524-37. [DOI: 10.1016/j.neuropharm.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 01/12/2023]
|
171
|
Zhang H, Zhai J, Mo J, Li D, Song F. Overexpression of rice sphingosine-1-phoshpate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:652-62. [PMID: 22889013 DOI: 10.1111/j.1744-7909.2012.01150.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sphingolipids, including sphingosine-1-phosphate (S1P), have been shown to function as signaling mediators to regulate diverse aspects of plant growth, development, and stress response. In this study, we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response. Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA), and decreased tolerance to salt and oxidative stress, when compared with the wild type. Furthermore, the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress, indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress. Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | |
Collapse
|
172
|
Chughtai K, Jiang L, Greenwood TR, Glunde K, Heeren RMA. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J Lipid Res 2012; 54:333-44. [PMID: 22930811 DOI: 10.1194/jlr.m027961] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.
Collapse
Affiliation(s)
- Kamila Chughtai
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
173
|
Thiel J, Riewe D, Rutten T, Melzer M, Friedel S, Bollenbeck F, Weschke W, Weber H. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:639-55. [PMID: 22487146 DOI: 10.1111/j.1365-313x.2012.05018.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways.
Collapse
Affiliation(s)
- Johannes Thiel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Inhibitory effect of eriodictyol on IgE/Ag-induced type I hypersensitivity. Biosci Biotechnol Biochem 2012; 76:1285-90. [PMID: 22785465 DOI: 10.1271/bbb.110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.
Collapse
|
175
|
Kipp M, Amor S. FTY720 on the way from the base camp to the summit of the mountain: relevance for remyelination. Mult Scler 2012; 18:258-63. [PMID: 22383435 DOI: 10.1177/1352458512438723] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
FTY720 (fingolimod; Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator, is the first oral disease-modifying therapy to be approved for the treatment of relapsing-remitting multiple sclerosis. FTY720 is rapidly converted in vivo to the active S-fingolimod-phosphate, which binds to S1P receptors. This action inhibits egress of lymphocytes from the lymph nodes, preventing entry into the blood and thus infiltration into the central nervous system. More recent studies, however, convincingly show that FTY720 crosses the blood-brain barrier, where it is thought to act on S1P receptors on cells within the central nervous system, such as astrocytes, oligodendrocytes or microglia. Here we discuss the evidence showing that FTY720 also plays a role in remyelination and repair within the brain. While the mechanisms of action still require firm elucidation, it is clear that FTY720 could also be reparative, extending its therapeutic potential for multiple sclerosis.
Collapse
Affiliation(s)
- M Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Germany.
| | | |
Collapse
|
176
|
Barth BM, Gustafson SJ, Hankins JL, Kaiser JM, Haakenson JK, Kester M, Kuhn TB. Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cell Signal 2012; 24:1126-33. [PMID: 22230689 PMCID: PMC3338860 DOI: 10.1016/j.cellsig.2011.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/21/2011] [Indexed: 01/01/2023]
Abstract
A persistent inflammatory reaction is a hallmark of chronic and acute pathologies in the central nervous system (CNS) and greatly exacerbates neuronal degeneration. The proinflammatory cytokine tumor necrosis factor alpha (TNFα) plays a pivotal role in the initiation and progression of inflammatory processes provoking oxidative stress, eicosanoid biosynthesis, and the production of bioactive lipids. We established in neuronal cells that TNFα exposure dramatically increased Mg(2+)-dependent neutral sphingomyelinase (nSMase) activity thus generating the bioactive lipid mediator ceramide essential for subsequent NADPH oxidase (NOX) activation and oxidative stress. Since many of the pleiotropic effects of ceramide are attributable to its metabolites, we examined whether ceramide kinase (CerK), converting ceramide to ceramide-1-phosphate, is implicated both in NOX activation and enhanced eicosanoid production in neuronal cells. In the present study, we demonstrated that TNFα exposure of human SH-SY5Y neuroblastoma caused a profound increase in CerK activity. Depleting CerK activity using either siRNA or pharmacology completely negated NOX activation and eicosanoid biosynthesis yet, more importantly, rescued neuronal viability in the presence of TNFα. These findings provided evidence for a critical function of ceramide-1-phospate and thus CerK activity in directly linking sphingolipid metabolism to oxidative stress. This vital role of CerK in CNS inflammation could provide a novel therapeutic approach to intervene with the adverse consequences of a progressive CNS inflammation.
Collapse
Affiliation(s)
- Brian M. Barth
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Sally J. Gustafson
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
| | - Jody L. Hankins
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - James M. Kaiser
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Jeremy K. Haakenson
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Mark Kester
- Department of Pharmacology, College of Medicine, Pennsylvania State University, 500 University Drive, PO Box 850, Hershey, PA 17033
| | - Thomas B. Kuhn
- Department of Chemistry and Biochemistry, University of Alaska-Fairbanks, 900 Yukon Drive, Fairbanks, AK 99775
| |
Collapse
|
177
|
Wiedmer SK, Robciuc A, Kronholm J, Holopainen JM, Hyötyläinen T. Chromatographic lipid profiling of stress-exposed cells. J Sep Sci 2012; 35:1845-53. [DOI: 10.1002/jssc.201200252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Susanne K. Wiedmer
- Laboratory of Analytical Chemistry; Department of Chemistry; University of Helsinki; Finland
| | | | - Juhani Kronholm
- Laboratory of Analytical Chemistry; Department of Chemistry; University of Helsinki; Finland
| | - Juha M. Holopainen
- Helsinki Eye Lab; Department of Ophthalmology; University of Helsinki; Finland
| | | |
Collapse
|
178
|
Scheffer L, Raghavendra PR, Ma J, Acharya JK. Ceramide transfer protein and cancer. Anticancer Agents Med Chem 2012; 11:904-10. [PMID: 21707482 DOI: 10.2174/187152011797655087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/13/2011] [Accepted: 05/26/2011] [Indexed: 12/31/2022]
Abstract
Sphingolipids are important structural components of membranes, and play an equally important role in basic cellular processes as second messengers. Recently, sphingolipids are receiving increasing attention in cancer research. Ceramide is the central molecule that regulates sphingolipid metabolism forming the basic structural backbone of sphingolipids and the precursor of all complex sphingolipids. It is been proposed to be an important regulator of tumor cell death following exposure to stress stimuli. The increase or decrease of ceramide levels leading to change in sensitivity of cancer cells to stress stimuli provides support for a central role of ceramide signaling in cell death. In this review, we have focused on ceramide transfer protein (CERT) as a major regulator of ceramide flux in the cell.
Collapse
Affiliation(s)
- Luana Scheffer
- Laboratory of Cell and Developmental Signaling, National Cancer Institute Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
179
|
Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids. Chem Phys Lipids 2012; 165:462-74. [DOI: 10.1016/j.chemphyslip.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/25/2022]
|
180
|
Abstract
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.
Collapse
Affiliation(s)
- Ebru Boslem
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Trevor J. Biden
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
- Correspondence to: Trevor J. Biden,
| |
Collapse
|
181
|
Bourquin F, Capitani G, Grütter MG. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 2012; 20:1492-508. [PMID: 21710479 DOI: 10.1002/pro.679] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5'-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure-function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
182
|
Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. THE NEW PHYTOLOGIST 2012; 194:181-191. [PMID: 22236066 DOI: 10.1111/j.1469-8137.2011.04017.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Long-chain bases (LCBs) are pleiotropic sphingolipidic signals in eukaryotes. We investigated the source and function of phytosphingosine-1-phosphate (PHS-P), a phospho-LCB rapidly and transiently formed in Arabidopsis thaliana on chilling. • PHS-P was analysed by thin-layer chromatography following in vivo metabolic radiolabelling. Pharmacological and genetic approaches were used to identify the sphingosine kinase isoforms involved in cold-responsive PHS-P synthesis. Gene expression, mitogen-activated protein kinase activation and growth phenotypes of three LCB kinase mutants (lcbk1, sphk1 and lcbk2) were studied following cold exposure. • Chilling provoked the rapid and transient formation of PHS-P in Arabidopsis cultured cells and plantlets. Cold-evoked PHS-P synthesis was reduced by LCB kinase inhibitors and abolished in the LCB kinase lcbk2 mutant, but not in lcbk1 and sphk1 mutants. lcbk2 presented a constitutive AtMPK6 activation at 22°C. AtMPK6 activation was also triggered by PHS-P treatment independently of PHS/PHS-P balance. lcbk2 mutants grew comparably with wild-type plants at 22 and 4°C, but exhibited a higher root growth at 12°C, correlated with an altered expression of the cold-responsive DELLA gene RGL3. • Together, our data indicate a function for LCBK2 in planta. Furthermore, they connect PHS-P formation with plant response to cold, expanding the field of LCB signalling in plants.
Collapse
Affiliation(s)
- Christelle Dutilleul
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Ghouziel Benhassaine-Kesri
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Chantal Demandre
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Nathalie Rézé
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Alban Launay
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Sandra Pelletier
- UMR INRA 1165-CNRS 8114-UEVE, Unité de Recherche en Génomique Végétale (URGV), 2, rue Gaston Crémieux, CP5708, F-91057 Evry Cedex, France
| | - Jean-Pierre Renou
- UMR INRA 1165-CNRS 8114-UEVE, Unité de Recherche en Génomique Végétale (URGV), 2, rue Gaston Crémieux, CP5708, F-91057 Evry Cedex, France
| | - Alain Zachowski
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Emmanuel Baudouin
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| | - Isabelle Guillas
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France and CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75252, Paris, France
| |
Collapse
|
183
|
Signaling and regulatory functions of bioactive sphingolipids as therapeutic targets in multiple sclerosis. Neurochem Res 2012; 37:1154-69. [PMID: 22451227 DOI: 10.1007/s11064-012-0728-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/04/2012] [Accepted: 02/10/2012] [Indexed: 12/21/2022]
Abstract
Spingolipids (SLs) are an important component of central nervous system (CNS) myelin sheaths and affect the viability of brain cells (oligodendrocytes, neurons and astrocytes) that is determined by signaling mediated by bioactive sphingoids (lyso-SLs). Recent studies indicate that two lipids, ceramide and sphingosine 1-phosphate (S1P), are particularly involved in many human diseases including the autoimmune inflammatory demyelination of multiple sclerosis (MS). In this review we: (1) Discuss possible sources of ceramide in CNS; (2) Summarize the features of the metabolism of S1P and its downstream signaling through G-protein-coupled receptors; (3) Link perturbations in bioactive SLs metabolism to MS neurodegeneration and (4) Compile ceramide and S1P relationships to this process. In addition, we described recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod) as well as proposed intervention to specify critical SL levels that tilt balances of apoptotic/active ceramide versus anti-apoptotic/inactive dihydroceramide that may offer a novel and important therapeutic approach to MS.
Collapse
|
184
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
185
|
Arana L, Gangoiti P, Ouro A, Rivera IG, Ordoñez M, Trueba M, Lankalapalli RS, Bittman R, Gomez-Muñoz A. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate. Exp Cell Res 2012; 318:350-60. [DOI: 10.1016/j.yexcr.2011.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/16/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
|
186
|
Walsh KB, Teijaro JR, Rosen H, Oldstone MBA. Quelling the storm: utilization of sphingosine-1-phosphate receptor signaling to ameliorate influenza virus-induced cytokine storm. Immunol Res 2012; 51:15-25. [PMID: 21901448 DOI: 10.1007/s12026-011-8240-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Initial and early tissue injury associated with severe influenza virus infection is the result of both virus-mediated lysis of infected pulmonary cells coupled with an exuberant immune response generated against the virus. The excessive host immune response associated with influenza virus infection has been termed "cytokine storm." Therapies that target virus replication are available; however, the selective pressure by such antiviral drugs on the virus often results in mutation and the escape of virus progeny now resistant to the antiviral regimen, thereby rendering such treatments ineffective. This event highlights the necessity for developing novel methods to combat morbidity and mortality caused by influenza virus infection. One potential method is restricting the host's immune response. However, prior treatment regimens employing drugs like corticosteroids that globally suppress the host's immune response were found unsatisfactory in large part because they disrupted the host's ability to control virus replication. Here, we discuss a novel therapy that utilizes sphingosine-1-phosphate (S1P) receptor signaling that has the ability to significantly limit immunopathologic injury caused by the host's innate and adaptive immune response, thereby significantly aborting morbidity and mortality associated with influenza virus infection. Moreover, S1P analog therapy allows for sufficient anti-influenza T cell and antibody formation to control infection. We review the anti-inflammatory effects of S1P signaling pathways and how modulation of these pathways during influenza virus infection restricts immunopathology. Finally, we discuss that combinatorial administration of S1P simultaneously with a current antiviral enhances the treatment efficacy for virulent influenza virus infections above that of either drug treatment alone. Interestingly, the scope of S1P receptor therapy reported here is likely to extend beyond influenza virus infection and could prove useful for the treatment of multiple maladies like other viral infections and autoimmune diseases where the host's inflammatory response is a major component in the disease process.
Collapse
Affiliation(s)
- Kevin B Walsh
- Department of Immunology and Microbial Science, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
187
|
Chaves-Moreira D, Souza FN, Fogaça RTH, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 2011; 112:2529-40. [PMID: 21590705 DOI: 10.1002/jcb.23177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.
Collapse
|
188
|
Kue CS, Jung MY, Cho D, Kim TS. C6-ceramide enhances Interleukin-12-mediated T helper type 1 cell responses through a cyclooxygenase-2-dependent pathway. Immunobiology 2011; 217:601-9. [PMID: 22112438 DOI: 10.1016/j.imbio.2011.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 10/25/2011] [Indexed: 12/24/2022]
Abstract
Ceramides, lipid molecules located predominantly within the plasma membrane of a cell, can function as second messengers, and have been known to carry out a number of cellular functions. T helper type 1 (Th1) immune responses are known to be involved in the cellular immunity, which is crucial in the cancer and allergy immunotherapy. This study was designed to evaluate the effects of ceramides on T helper cell responses and their underlying mechanisms. We demonstrated that a cell-permeable C6-ceramide (C6) together with IL-12 enhanced Th1 cell differentiation, whereas C6 alone had no effects, as demonstrated by the increased populations of IFN-γ expressing CD4(+) T cells and the up-regulation of IFN-γ production from CD4(+) T cells. In contrast, C2-ceramide and long chain ceramides (C16 and C24) did not affect the Th1 responses. C6 treatment was shown to increase the expression of T-bet, a master transcription factor of Th1 responses, in a dose-dependent fashion. Furthermore, C6 increased the expression of cyclooxygenase-2 (COX-2) in CD4(+) T cells. The C6-mediated increase of IFN-γ production and IFN-γ expressing CD4(+) T cell populations were significantly suppressed by a COX-2 specific inhibitor (NS-398) in a dose-dependent manner. T-bet expression was also decreased by NS-398 treatment, thereby indicating that C6 ceramide enhances Th1 responses via a COX-2 dependent pathway. This result demonstrates that C6 may be utilized in therapies for the treatment of immune diseases such cancer and allergy by enhancing the Th1 activity.
Collapse
Affiliation(s)
- Chin Siang Kue
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
189
|
Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress. Cell Mol Bioeng 2011; 4:547-559. [PMID: 22247741 DOI: 10.1007/s12195-011-0208-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The process of sprouting angiogenesis involves activating endothelial cells in a quiescent monolayer of an existing vessel to degrade and migrate into the underlying matrix to form new blood vessels. While the roles of biochemical factors in angiogenic sprouting have been well characterized, the roles of fluid forces have received much less attention. This review summarizes results that support a role for wall shear stress in post-capillary venules as a mechanical factor capable of synergizing with biochemical factors to stimulate pro-angiogenic signaling in endothelial cells and promote sprout formation.
Collapse
|
190
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 861] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
191
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 588] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
192
|
Guan H, Liu L, Cai J, Liu J, Ye C, Li M, Li Y. Sphingosine kinase 1 is overexpressed and promotes proliferation in human thyroid cancer. Mol Endocrinol 2011; 25:1858-66. [PMID: 21940753 DOI: 10.1210/me.2011-1048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SphK1), an oncogenic kinase, has been previously found to be elevated in various types of human cancer and play a role in tumor development and progression. Nevertheless, the biological and clinical significance of SphK1 in thyroid cancer is largely unknown. Here, we demonstrate that the expression of SphK1 is generally up-regulated in thyroid cancer and that its expression level is correlated with the degree of thyroid malignancy. Silencing SphK1 by specific RNA interference is able to suppress the proliferation of thyroid cancer cells, and SphK1 expression level is strongly associated with the expression of proliferation cell nuclear antigen in thyroid cancer tissues. Of particular note is that depletion of SphK1 results in dephosphorylation of protein kinase B and glycogen synthase kinase-3β and subsequent inactivation of β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity. Hence, taken together, our study has identified SphK1 as a proproliferative oncogenic kinase, an Akt/glycogen synthase kinase-3β/β-catenin activator, and probably a biomarker for thyroid cancer as well.
Collapse
Affiliation(s)
- Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
193
|
Barth BM, Gustafson SJ, Kuhn TB. Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. J Neurosci Res 2011; 90:229-42. [PMID: 21932365 DOI: 10.1002/jnr.22748] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 06/16/2011] [Accepted: 06/27/2011] [Indexed: 12/26/2022]
Abstract
Inflammation accompanied by severe oxidative stress plays a vital role in the orchestration and progression of neurodegeneration prevalent in chronic and acute central nervous system pathologies as well as in aging. The proinflammatory cytokine tumor necrosis factor-α (TNFα) elicits the formation of the bioactive ceramide by stimulating the hydrolysis of the membrane lipid sphingomyelin by sphingomyelinase activities. Ceramide stimulates the formation of reactive oxygen species (ROS) and apoptotic mechanisms in both neurons and nonneuronal cells, establishing a link between sphingolipid metabolism and oxidative stress. We demonstrated in SH-SY5Y human neuroblastoma cells and primary cortical neurons that TNFα is a potent stimulator of Mg(2+) -dependent neutral sphingomyelinase (Mg(2+) -nSMase) activity, and sphingomyelin hydrolysis, rather than de novo synthesis, was the predominant source of ceramide increases. Mg(2+) -nSMase activity preceded an accumulation of ROS by a neuronal NADPH oxidase (NOX). Notably, TNFα provoked an NOX-dependent oxidative damage to sphingosine kinase-1, which generates sphingosine-1-phosphate, a ceramide metabolite associated with neurite outgrowth. Indeed, ceramide and ROS inhibited neurite outgrowth of dorsal root ganglion neurons by disrupting growth cone motility. Blunting ceramide and ROS formation both rescued sphingosine kinase-1 activity and neurite outgrowth. Our studies suggest that TNFα-mediated activation of Mg(2+) -nSMase and NOX in neuronal cells not only produced the neurotoxic intermediates ceramide and ROS but also directly antagonized neuronal survival mechanisms, thus accelerating neurodegeneration.
Collapse
Affiliation(s)
- Brian M Barth
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | | | | |
Collapse
|
194
|
Nakamura H, Tada E, Makiyama T, Yasufuku K, Murayama T. Role of cytosolic phospholipase A2α in cell rounding and cytotoxicity induced by ceramide-1-phosphate via ceramide kinase. Arch Biochem Biophys 2011; 512:45-51. [DOI: 10.1016/j.abb.2011.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/12/2011] [Accepted: 05/15/2011] [Indexed: 11/26/2022]
|
195
|
Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis. Biochim Biophys Acta Gen Subj 2011; 1810:652-65. [DOI: 10.1016/j.bbagen.2011.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/11/2011] [Accepted: 03/31/2011] [Indexed: 01/12/2023]
|
196
|
Roviezzo F, Brancaleone V, De Gruttola L, Vellecco V, Bucci M, D'Agostino B, Cooper D, Sorrentino R, Perretti M, Cirino G. Sphingosine-1-phosphate modulates vascular permeability and cell recruitment in acute inflammation in vivo. J Pharmacol Exp Ther 2011; 337:830-7. [PMID: 21421740 DOI: 10.1124/jpet.111.179168] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sphingosine kinase (SPK)/sphingosine-1-phosphate (S1P) pathway recently has been associated with a variety of inflammatory-based diseases. The majority of these studies have been performed in vitro. Here, we have addressed the relevance of the SPK/S1P pathway in the acute inflammatory response in vivo by using different well known preclinical animal models. The study has been performed by operating a pharmacological modulation using 1) L-cycloserine and DL-threo-dihydrosphingosine (DTD), S1P synthesis inhibitors or 2) 2-undecyl-thiazolidine-4-carboxylic acid (BML-241) and N-(2,6-dichloro-4-pyridinyl)-2-[1,3-dimethyl-4-(1-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-hydrazinecarboxamide (JTE-013), specific S1P(2) and S1P(3) receptor antagonists. After local injection of carrageenan in mouse paw S1P release significantly increases locally and decreases during the resolution phase. Expression of SPKs and S1P(2) and S1P(3) receptors is increased in inflamed tissues. Administration of L-cycloserine or DTD caused a significant anti-inflammatory effect. By using different animal models we have also demonstrated that the SPK/S1P pathway contributes to changes in vascular permeability and promotes cell recruitment. The S1P effect on cell recruitment results is receptor-mediated because both JTE-013 and BML-241 inhibited zymosan-induced cell chemotaxis without effect on vascular leakage. Conversely, changes in vascular permeability involve mainly SPK activity, because compound 48/80-induced vascular leakage was significantly inhibited by DTD. In conclusion, the SPK/S1P pathway is involved in acute inflammation and could represent a valuable therapeutic target for developing a new class of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Fiorentina Roviezzo
- Dipartimento di Farmacologia Sperimentale, Università di Napoli Federico II, Domenico Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Sinha UK, Schorn VJ, Hochstim C, Chinn SB, Zhu S, Masood R. Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck 2011; 33:178-88. [PMID: 20848438 DOI: 10.1002/hed.21418] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SphK1) is an important regulator of apoptosis, survival, and proliferation in cancer cells. SphK1 expression in head and neck squamous cell cancer (HNSCC) cell lines and tumor tissue was assessed, and the efficacy of SphK1 knockdown in increasing tumor radiosensitivity was evaluated in vitro and in vivo. METHODS Expression of SphK1 was determined by immunohistochemistry, Western blot, and real-time polymerase chain reaction (RT-PCR) in 34 prospectively collected HNSCC tumor samples. HNSCC cell lines squamous cell carcinoma (SCC)-15 and SCC-25 were treated with SphK1 inhibitor SKI-II and siRNA targeting SphK1 with and without radiation, and the cell viability was assessed. SCC-15 cells with and without transfection of SphK1 siRNA were then injected into athymic nude mice to develop tumor xenografts, and these 2 groups were further divided into 1 group that received radiation and 1 group that did not. Tumor size was measured over 18 days, when the animals were killed and the tumors were evaluated by immunohistochemistry. RESULTS SphK1 is found in both HNSCC cell lines and human tumor samples, with higher expression correlated with advanced tumor stage, nodal involvement, and recurrence. In vitro, both SCC-15 and SCC-25 were found to be radioresistant; however, they were sensitized by administration of SKI-II and transfection with siRNA targeting SphK1. In vivo, SphK1-siRNA transfected xenografts were decreased in size compared with both nonradiated control and radiated control mice, whereas mice with both SphK1-siRNA and radiation treatment showed a synergistic reduction in tumor volume. Histopathologic analysis demonstrated a decreased proliferative state in SphK1-siRNA transfected tumors. CONCLUSION SphK1 is upregulated in HNSCC, and inhibition of SphK1 sensitizes HNSCC to radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Uttam K Sinha
- Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
198
|
MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 2011; 401:115-25. [DOI: 10.1007/s00216-011-5090-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/03/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
199
|
Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, Hohlfeld T, Schrör K, Rauch BH. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost 2011; 9:790-8. [PMID: 21251196 DOI: 10.1111/j.1538-7836.2011.04194.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets release the immune-modulating lipid sphingosine-1-phosphate (S1P). However, the mechanisms of platelet S1P secretion are not fully understood. OBJECTIVES The present study investigates the function of thromboxane (TX) for platelet S1P secretion during platelet activation and the consequences for monocyte chemotaxis. METHODS S1P was detected using thin-layer chromatography in [(3)H]sphingosine-labeled platelets and by mass spectrometry. Monocyte migration was measured in modified Boyden chamber chemotaxis assays. RESULTS Release of S1P from platelets was stimulated with protease-activated receptor-1-activating peptide (PAR-1-AP, 100 μM). Acetylsalicylic acid (ASA) and two structurally unrelated reversible cyclooxygenase inhibitors diclofenac and ibuprofen suppressed S1P release. Oral ASA (500-mg single dose or 100 mg over 3 days) attenuated S1P release from platelets in healthy human volunteers ex vivo. This was paralleled by inhibition of TX formation. S1P release was increased by the TX receptor (TP) agonist U-46619, and inhibited by the TP antagonist ramatroban and by inhibitors of ABC-transport. Furthermore, thrombin-induced release of S1P was attenuated in platelets from TP-deficient mice. Supernatants from PAR-1-AP-stimulated human platelets increased the chemotactic capacity of human peripheral monocytes in a S1P-dependent manner via S1P receptors-1 and -3. These effects were inhibited by ASA-pretreatment of platelets. CONCLUSIONS TX synthesis and TP activation mediate S1P release after thrombin receptor activation. Inhibition of this pathway may contribute to the anti-inflammatory actions of ASA, for example by affecting activity of monocytes at sites of vascular injury.
Collapse
Affiliation(s)
- T Ulrych
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Bi FC, Zhang QF, Liu Z, Fang C, Li J, Su JB, Greenberg JT, Wang HB, Yao N. A conserved cysteine motif is critical for rice ceramide kinase activity and function. PLoS One 2011; 6:e18079. [PMID: 21483860 PMCID: PMC3069040 DOI: 10.1371/journal.pone.0018079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. PRINCIPAL FINDINGS OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. CONCLUSIONS OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.
Collapse
Affiliation(s)
- Fang-Cheng Bi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ce Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bin Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|