151
|
Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan DX, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol 2012; 361:12-23. [PMID: 22575351 DOI: 10.1016/j.mce.2012.04.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/15/2012] [Indexed: 01/27/2023]
Abstract
Oxidative stress plays an essential role in triggering many cellular processes including programmed cell death. Proving a relationship between apoptosis and reactive oxygen species has been the goal of numerous studies. Accumulating data point to an essential role for oxidative stress in the activation of autophagy. The term autophagy encompasses several processes including not only survival or death mechanisms, but also pexophagy, mitophagy, ER-phagy or ribophagy, depending of which organelles are targeted for specific autophagic degradation. However, whether the outcome of autophagy is survival or death and whether the initiating conditions are starvation, pathogens or death receptors, reactive oxygen species are invariably involved. The role of antioxidants in the regulation of these processes, however, has been sparingly investigated. Among the known antioxidants, melatonin has high efficacy and, in both experimental and clinical situations, its protective actions against oxidative stress are well documented. Beneficial effects against mitochondrial dysfunction have also been described for melatonin; thus, this indoleamine seems to be linked to mitophagy. The present review focuses on data and the most recent advances related to the role of melatonin in health and disease, on autophagy activation in general, and on mitophagy in particular.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
152
|
Zachariae U, Schneider R, Briones R, Gattin Z, Demers JP, Giller K, Maier E, Zweckstetter M, Griesinger C, Becker S, Benz R, de Groot BL, Lange A. β-Barrel mobility underlies closure of the voltage-dependent anion channel. Structure 2012; 20:1540-9. [PMID: 22841291 PMCID: PMC5650048 DOI: 10.1016/j.str.2012.06.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 11/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) is the major protein in the outer mitochondrial membrane, where it mediates transport of ATP and ADP. Changes in its permeability, induced by voltage or apoptosis-related proteins, have been implicated in apoptotic pathways. The three-dimensional structure of VDAC has recently been determined as a 19-stranded β-barrel with an in-lying N-terminal helix. However, its gating mechanism is still unclear. Using solid-state NMR spectroscopy, molecular dynamics simulations, and electrophysiology, we show that deletion of the rigid N-terminal helix sharply increases overall motion in VDAC's β-barrel, resulting in elliptic, semicollapsed barrel shapes. These states quantitatively reproduce conductance and selectivity of the closed VDAC conformation. Mutation of the N-terminal helix leads to a phenotype intermediate to the open and closed states. These data suggest that the N-terminal helix controls entry into elliptic β-barrel states which underlie VDAC closure. Our results also indicate that β-barrel channels are intrinsically flexible.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK
| | - Robert Schneider
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Protein Dynamics and Flexibility by NMR, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zrinka Gattin
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jean-Philippe Demers
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elke Maier
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Campusring 1, 28759 Bremen, Germany
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
153
|
Structure-based analysis of VDAC1: N-terminus location, translocation, channel gating and association with anti-apoptotic proteins. Biochem J 2012; 444:475-85. [PMID: 22397371 DOI: 10.1042/bj20112079] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural studies place the VDAC1 (voltage-dependent anion channel 1) N-terminal region within the channel pore. Biochemical and functional studies, however, reveal that the N-terminal domain is cytoplasmically exposed. In the present study, the location and translocation of the VDAC1 N-terminal domain, and its role in voltage-gating and as a target for anti-apoptotic proteins, were addressed. Site-directed mutagenesis and cysteine residue substitution, together with a thiol-specific cross-linker, served to show that the VDAC1 N-terminal region exists in a dynamic equilibrium, located within the pore or exposed outside the β-barrel. Using a single cysteine-residue-bearing VDAC1, we demonstrate that the N-terminal region lies inside the pore. However, the same region can be exposed outside the pore, where it dimerizes with the N-terminal domain of a second VDAC1 molecule. When the N-terminal region α-helix structure was perturbed, intra-molecular cross-linking was abolished and dimerization was enhanced. This mutant also displays reduced voltage-gating and reduced binding to hexokinase, but not to the anti-apoptotic proteins Bcl-2 and Bcl-xL. Replacing glycine residues in the N-terminal domain GRS (glycine-rich sequence) yielded less intra-molecular cross-linked product but more dimerization, suggesting that GRS provides the flexibility needed for N-terminal translocation from the internal pore to the channel face. N-terminal mobility may thus contribute to channel gating and interaction with anti-apoptotic proteins.
Collapse
|
154
|
Arbel N, Ben-Hail D, Shoshan-Barmatz V. Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 2012; 287:23152-61. [PMID: 22589539 DOI: 10.1074/jbc.m112.345918] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial protein, the voltage-dependent anion channel (VDAC), is implicated in the control of apoptosis, including via its interaction with the pro- and antiapoptotic proteins. We previously demonstrated the direct interaction of Bcl2 with VDAC, leading to reduced channel conductance. VDAC1-based peptides interacted with Bcl2 to prevent its antiapoptotic activity. Here, using a variety of approaches, we show the interaction of the antiapoptotic protein, Bcl-xL, with VDAC1 and reveal that this interaction mediates Bcl-xL protection against apoptosis. C-terminally truncated Bcl-xL(Δ21) interacts with purified VDAC1, as revealed by microscale thermophoresis and as reflected in the reduced channel conductivity of bilayer-reconstituted VDAC1. Overexpression of Bcl-xL prevented staurosporine-induced apoptosis in cells expressing native VDAC1 but not certain VDAC1 mutants. Having identified mutations in VDAC1 that interfere with the Bcl-xL interaction, certain peptides representing VDAC1 sequences, including the N-terminal domain, were designed and generated as recombinant and synthetic peptides. The VDAC1 N-terminal region and two internal sequences were found to bind specifically, and in a concentration- and time-dependent manner, to immobilized Bcl-xL(Δ21), as revealed by surface plasmon resonance. Moreover, expression of the recombinant peptides in cells overexpressing Bcl-xL prevented protection offered by the protein against staurosporine-induced apoptosis. These results point to Bcl-xL acting as antiapoptotic protein, promoting tumor cell survival via binding to VDAC1. These findings suggest that interfering with Bcl-xL binding to the mitochondria by VDAC1-based peptides may serve to induce apoptosis in cancer cells and to potentiate the efficacy of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
155
|
Lau E, Kluger H, Varsano T, Lee K, Scheffler I, Rimm DL, Ideker T, Ronai ZA. PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell 2012; 148:543-55. [PMID: 22304920 DOI: 10.1016/j.cell.2012.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 08/12/2011] [Accepted: 01/06/2012] [Indexed: 01/05/2023]
Abstract
The transcription factor ATF2 elicits oncogenic activities in melanoma and tumor suppressor activities in nonmalignant skin cancer. Here, we identify that ATF2 tumor suppressor function is determined by its ability to localize at the mitochondria, where it alters membrane permeability following genotoxic stress. The ability of ATF2 to reach the mitochondria is determined by PKCε, which directs ATF2 nuclear localization. Genotoxic stress attenuates PKCε effect on ATF2; enables ATF2 nuclear export and localization at the mitochondria, where it perturbs the HK1-VDAC1 complex; increases mitochondrial permeability; and promotes apoptosis. Significantly, high levels of PKCε, as seen in melanoma cells, block ATF2 nuclear export and function at the mitochondria, thereby attenuating apoptosis following exposure to genotoxic stress. In melanoma tumor samples, high PKCε levels associate with poor prognosis. Overall, our findings provide the framework for understanding how subcellular localization enables ATF2 oncogenic or tumor suppressor functions.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Brahimi-Horn MC, Ben-Hail D, Ilie M, Gounon P, Rouleau M, Hofman V, Doyen J, Mari B, Shoshan-Barmatz V, Hofman P, Pouysségur J, Mazure NM. Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Cancer Res 2012; 72:2140-50. [PMID: 22389449 DOI: 10.1158/0008-5472.can-11-3940] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to chemotherapy-induced apoptosis of tumor cells represents a major hurdle to efficient cancer therapy. Although resistance is a characteristic of tumor cells that evolve in a low oxygen environment (hypoxia), the mechanisms involved remain elusive. We observed that mitochondria of certain hypoxic cells take on an enlarged appearance with reorganized cristae. In these cells, we found that a major mitochondrial protein regulating metabolism and apoptosis, the voltage-dependent anion channel 1 (VDAC1), was linked to chemoresistance when in a truncated (VDAC1-ΔC) but active form. The formation of truncated VDAC1, which had a similar channel activity and voltage dependency as full-length, was hypoxia-inducible factor-1 (HIF-1)-dependent and could be inhibited in the presence of the tetracycline antibiotics doxycycline and minocycline, known inhibitors of metalloproteases. Its formation was also reversible upon cell reoxygenation and associated with cell survival through binding to the antiapoptotic protein hexokinase. Hypoxic cells containing VDAC1-ΔC were less sensitive to staurosporine- and etoposide-induced cell death, and silencing of VDAC1-ΔC or treatment with the tetracycline antibiotics restored sensitivity. Clinically, VDAC1-ΔC was detected in tumor tissues of patients with lung adenocarcinomas and was found more frequently in large and late-stage tumors. Together, our findings show that via induction of VDAC1-ΔC, HIF-1 confers selective protection from apoptosis that allows maintenance of ATP and cell survival in hypoxia. VDAC1-ΔC may also hold promise as a biomarker for tumor progression in chemotherapy-resistant patients.
Collapse
Affiliation(s)
- M Christiane Brahimi-Horn
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS-UMR 6543, Centre Antoine Lacassagne, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
158
|
Uptake and protein targeting of fluorescent oxidized phospholipids in cultured RAW 264.7 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:706-18. [PMID: 22333180 PMCID: PMC3790972 DOI: 10.1016/j.bbalip.2012.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/04/2022]
Abstract
The truncated phospholipids 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) are oxidation products of 1-palmitoyl-2-arachidonoyl phosphatidylcholine. Depending on concentration and the extent of modification, these compounds induce growth and death, differentiation and inflammation of vascular cells thus playing a role in the development of atherosclerosis. Here we describe the import of fluorescent POVPC and PGPC analogs into cultured RAW 264.7 macrophages and the identification of their primary protein targets. We found that the fluorescent oxidized phospholipids were rapidly taken up by the cells. The cellular target sites depended on the chemical reactivity of these compounds but not on the donor (aqueous lipid suspension, albumin or LDL). The great differences in cellular uptake of PGPC and POVPC are a direct consequence of the subtle structural differences between both molecules. The former compound (carboxyl lipid) can only physically interact with the molecules in its immediate vicinity. In contrast, the aldehydo-lipid covalently reacts with free amino groups of proteins by forming covalent Schiff bases, and thus becomes trapped in the cell surface. Despite covalent binding, POVPC is exchangeable between (lipo)proteins and cells, since imines are subject to proton-catalyzed base exchange. Protein targeting by POVPC is a selective process since only a limited subfraction of the total proteome was labeled by the fluorescent aldehydo-phospholipid. Chemically stabilized lipid–protein conjugates were identified by MS/MS. The respective proteins are involved in apoptosis, stress response, lipid metabolism and transport. The identified target proteins may be considered primary signaling platforms of the oxidized phospholipid.
Collapse
|
159
|
Betaneli V, Petrov EP, Schwille P. The role of lipids in VDAC oligomerization. Biophys J 2012; 102:523-31. [PMID: 22325275 DOI: 10.1016/j.bpj.2011.12.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022] Open
Abstract
Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the membrane. This study addresses the role of lipids in this process. We investigate the effect of cardiolipin (CL) and phosphatidylglycerol (PG), anionic lipids important for mitochondria metabolism and apoptosis, on VDAC oligomerization. By applying fluorescence cross-correlation spectroscopy to VDAC reconstituted into giant unilamellar vesicles, we demonstrate that PG significantly enhances VDAC oligomerization in the membrane, whereas cardiolipin disrupts VDAC supramolecular assemblies. During apoptosis, the level of PG in mitochondria increases, whereas the CL level decreases. We suggest that the specific lipid composition of the outer mitochondrial membrane might be of crucial relevance and, thus, a potential cue for regulating the oligomeric state of VDAC.
Collapse
Affiliation(s)
- Viktoria Betaneli
- Biophysics, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
160
|
Miura N, Takemori N, Kikugawa T, Tanji N, Higashiyama S, Yokoyama M. Adseverin: a novel cisplatin-resistant marker in the human bladder cancer cell line HT1376 identified by quantitative proteomic analysis. Mol Oncol 2012; 6:311-22. [PMID: 22265592 DOI: 10.1016/j.molonc.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/07/2011] [Accepted: 12/28/2011] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is currently the most effective antitumor agent available against bladder cancer. However, a majority of patients eventually relapse with cisplatin-resistant disease. Chemoresistance thus remains a major obstacle in bladder cancer therapy. To clarify the molecular mechanisms underlying cisplatin resistance in bladder cancer, we established a cisplatin-resistant subline from the human bladder cancer cell line HT1376 (HT1376-CisR), and conducted large-scale analyses of the expressed proteins using two-dimensional (2D) gel electrophoresis coupled with mass spectrometry (MS). Comparative proteomic analysis of HT1376 and HT1376-CisR cells revealed 36 differentially expressed proteins, wherein 21 proteins were upregulated and 15 were downregulated in HT1376-CisR cells. Among the differentially regulated proteins, adseverin (SCIN), a calcium-dependent actin-binding protein, was overexpressed (4-fold upregulation) in HT1376-CisR, with the increase being more prominent in the mitochondrial fraction than in the cytosol fraction. SCIN mRNA knockdown significantly reduced cell proliferation with mitochondria-mediated apoptosis in HT1376-CisR cells. Immunoprecipitation analysis revealed voltage-dependent anion channels (VDACs) to be bound to SCIN in the mitochondrial fraction. Our results suggest that the VDAC-SCIN interaction may inhibit mitochondria-mediated apoptosis in cisplatin-resistant cells. Targeting the VDAC-SCIN interaction may offer a new therapeutic strategy for cisplatin-resistant bladder cancer.
Collapse
Affiliation(s)
- Noriyoshi Miura
- Department of Urology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
161
|
Shoshan-Barmatz V, Ben-Hail D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 2012; 12:24-34. [DOI: 10.1016/j.mito.2011.04.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/16/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
|
162
|
Gessmann D, Flinner N, Pfannstiel J, Schlösinger A, Schleiff E, Nussberger S, Mirus O. Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1647-57. [DOI: 10.1016/j.bbabio.2011.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
|
163
|
Geula S, Naveed H, Liang J, Shoshan-Barmatz V. Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J Biol Chem 2011; 287:2179-90. [PMID: 22117062 DOI: 10.1074/jbc.m111.268920] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outer mitochondrial membrane protein, the voltage-dependent anion channel (VDAC), is increasingly implicated in the control of apoptosis. Oligomeric assembly of VDAC1 was shown to be coupled to apoptosis induction, with oligomerization increasing substantially upon apoptosis induction and inhibited by apoptosis blockers. In this study, structure- and computation-based selection of the predicated VDAC1 dimerization site, in combination with site-directed mutagenesis, cysteine replacement, and chemical cross-linking, were employed to identify contact sites between VDAC1 molecules in dimers and higher oligomers. The predicted weakly stable β-strands were experimentally found to represent the interfaces between VDAC1 monomers composing the oligomer. Replacing hydrophobic amino acids with charged residues in β-strands 1, 2, and 19 interfered with VDAC1 oligomerization. The proximity of β-strands 1, 2, and 19 within the VDAC1 dimer and the existence of other association sites involving β-strand 16 were confirmed when a cysteine was introduced at defined positions in cysteineless VDAC1 mutants, together with the use of cysteine-specific cross-linker bis(maleimido)ethane. Moreover, the results suggest that VDAC1 also exists as a dimer that upon apoptosis induction undergoes conformational changes and that its oligomerization proceeds through a series of interactions involving two distinct interfaces. Dissection of VDAC1 dimerization/oligomerization as presented here provides structural insight into the oligomeric status of cellular VDAC1 under physiological and apoptotic conditions.
Collapse
Affiliation(s)
- Shay Geula
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
164
|
Das S, Steenbergen C. Mitochondrial adenine nucleotide transport and cardioprotection. J Mol Cell Cardiol 2011; 52:448-53. [PMID: 21945520 DOI: 10.1016/j.yjmcc.2011.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
Mitochondria are highly metabolically active cell organelles that not only act as the powerhouse of the cell by supplying energy through ATP production, but also play a destructive role by initiating cell death pathways. Growing evidence recognizes that mitochondrial dysfunction is one of the major causes of cardiovascular disease. Under de-energized conditions, slowing of adenine nucleotide transport in and out of the mitochondria significantly attenuates myocardial ischemia-reperfusion injury. The purpose of this review is to elaborate on and update the mechanistic pathways which may explain how altered adenine nucleotide transport can influence cardiovascular function. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
165
|
Lu H, Pang W, Hu YD, Yang HP, Huang CY, Jiang YG. Effects of intracellular zinc depletion on the expression of VDAC in cultured hippocampal neurons. Nutr Neurosci 2011; 14:80-7. [PMID: 21605504 DOI: 10.1179/1476830511y.0000000004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
An experiment was conducted to investigate whether intracellular zinc depletion can actually change expression of voltage-dependent anion channel 1 (VDAC1) and VPAC2 in cultured hippocampal neurons as well as their significance. Hippocampal neurons were obtained by primary culture from hippocampus of newborn Wistar rats. Cultured hippocampal neurons were exposed to a cell membrane-permeable zinc chelator N,N,N',N'-tetrakis (2-pyridyl methyl) ethylenediamine (TPEN) (2 µM), and to TPEN plus zinc sulfate (5 µM) for 1 or 24 hours. Cultures were then processed to detect neuronal injury by lactate dehydrogenase (LDH) assay, intracellular Ca(2+) with the fluorescent probe fluo-3/AM, reactive oxygen species (ROS) generation using 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay, nuclear morphology by Hoechst 33342, VDAC1, and VDAC2 protein levels by western blot, and VDAC1 and VDAC2 mRNA levels by RT-PCR. The results demonstrated that exposure of hippocampal neurons to TPEN (2 µM) for 24 hours induced notably neuronal injury, significantly increased the number of apoptotic nuclei, up-regulated the expression of VDAC1 protein level and down-regulated the expression of VDAC2 protein level. Significant down-regulation of mRNA levels for VDAC1 and VDAC2 were observed in TPEN-treated neurons. Co-addition of zinc almost completely reversed TPEN-induced neuronal injury and above alterations in VDAC1 and VDAC2 protein levels and mRNA levels. Present results implicate a possibility that up-regulation of VDAC1 and down-regulation of VDAC2 may participate in hippocampal neuron injury induced by zinc deficiency.
Collapse
Affiliation(s)
- Hao Lu
- Department of Nutrition and Food Hygiene, West China School of Public Health, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
166
|
Amoêdo ND, Rodrigues MF, Pezzuto P, Galina A, da Costa RM, de Almeida FCL, El-Bacha T, Rumjanek FD. Energy metabolism in H460 lung cancer cells: effects of histone deacetylase inhibitors. PLoS One 2011; 6:e22264. [PMID: 21789245 PMCID: PMC3138778 DOI: 10.1371/journal.pone.0022264] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. METHODOLOGY/PRINCIPAL FINDINGS Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O(2) consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. CONCLUSION NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype.
Collapse
Affiliation(s)
- Nívea Dias Amoêdo
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Mariana Figueiredo Rodrigues
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rodrigo Madeiro da Costa
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | - Tatiana El-Bacha
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Franklin David Rumjanek
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
167
|
Mager F, Gessmann D, Nussberger S, Zeth K. Functional refolding and characterization of two Tom40 isoforms from human mitochondria. J Membr Biol 2011; 242:11-21. [PMID: 21717124 DOI: 10.1007/s00232-011-9372-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/24/2011] [Indexed: 11/26/2022]
Abstract
Tom40 proteins represent an essential class of molecules which facilitate translocation of unfolded proteins from the cytosol into the mitochondrial intermembrane space. They are part of a high-molecular mass complex that forms the protein-conducting channel in outer mitochondrial membranes. This study concerns the recombinant expression, purification and folding of amino-terminally truncated variants of the two human Tom40 isoforms for structural biology experiments. Both CD and FTIR secondary structure analysis revealed a dominant beta-sheet structure and a short alpha-helical part for both proteins together with a high thermal stability. Two secondary structure elements can be denatured independently. Reconstitution of the recombinant protein into planar lipid bilayers demonstrated ion channel activity similar to Tom40 purified from Neurospora crassa mitochondrial membranes, but conductivity fingerprints differ from the structurally closely related VDAC proteins.
Collapse
Affiliation(s)
- Frauke Mager
- Biophysics Department, Institute of Biology, University of Stuttgart, Germany
| | | | | | | |
Collapse
|
168
|
Bauer AJ, Gieschler S, Lemberg KM, McDermott AE, Stockwell BR. Functional model of metabolite gating by human voltage-dependent anion channel 2. Biochemistry 2011; 50:3408-10. [PMID: 21425834 PMCID: PMC3082971 DOI: 10.1021/bi2003247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/22/2011] [Indexed: 11/29/2022]
Abstract
Voltage-dependent anion channels (VDACs) are critical regulators of outer mitochondrial membrane permeability in eukaryotic cells. VDACs have also been postulated to regulate cell death mechanisms. Erastin, a small molecule quinazolinone that is selectively lethal to tumor cells expressing mutant RAS, has previously been reported as a ligand for hVDAC2. While significant efforts have been made to elucidate the structure and function of hVDAC1, structural and functional characterization of hVDAC2 remains lacking. Here, we present an in vitro system that provides a platform for both functional and structural investigation of hVDAC2 and its small molecule modulator, erastin. Using this system, we found that erastin increases permeability of VDAC2 liposomes to NADH in a manner that requires the amino-terminal region of VDAC2. Furthermore, we confirmed that this VDAC2-lipsome sample is folded using solid-state NMR.
Collapse
Affiliation(s)
- Andras J. Bauer
- Howard Hughes Medical Institute, Department of Biological Sciences, Northwest Corner Building, 12th floor, 550 West 120th Street MC 4846, New York, New York 10027, United States
| | - Simone Gieschler
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Kathryn M. Lemberg
- Howard Hughes Medical Institute, Department of Biological Sciences, Northwest Corner Building, 12th floor, 550 West 120th Street MC 4846, New York, New York 10027, United States
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Brent R. Stockwell
- Howard Hughes Medical Institute, Department of Biological Sciences, Northwest Corner Building, 12th floor, 550 West 120th Street MC 4846, New York, New York 10027, United States
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
169
|
Gall JM, Wong V, Pimental DR, Havasi A, Wang Z, Pastorino JG, Bonegio RGB, Schwartz JH, Borkan SC. Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress. Kidney Int 2011; 79:1207-16. [PMID: 21430642 DOI: 10.1038/ki.2010.532] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hexokinase (HK), the rate-limiting enzyme in glycolysis, controls cell survival by promoting metabolism and/or inhibiting apoptosis. Since HK isoforms I and II have mitochondrial targeting sequences, we attempted to separate the protective effects of HK on cell metabolism from those on apoptosis. We exposed renal epithelial cells to metabolic stress causing ATP depletion in the absence of glucose and found that this activated glycogen synthase kinase 3β (GSK3β) and Bax caused mitochondrial membrane injury and apoptosis. ATP depletion led to a progressive HK II dissociation from mitochondria, released mitochondrial apoptosis inducing factor and cytochrome c into the cytosol, activated caspase-3, and reduced cell survival. Compared with control, adenoviral-mediated HK I or II overexpression improved cell survival following stress, but did not prevent GSK3β or Bax activation, improve ATP content, or reduce mitochondrial fragmentation. HK I or HK II overexpression increased mitochondria-associated isoform-specific HK content, and decreased mitochondrial membrane injury and apoptosis after stress. In vivo, HK II localized exclusively to the proximal tubule. Ischemia reduced total renal HK II content and dissociated HK II from proximal tubule mitochondria. In cells overexpressing HK II, Bax and HK II did not interact before or after stress. While the mechanism by which HK antagonizes Bax-mediated apoptosis is unresolved by these studies, one possible scenario is that the two proteins compete for a common binding site on the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Jonathan M Gall
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Rosano C. Molecular model of hexokinase binding to the outer mitochondrial membrane porin (VDAC1): Implication for the design of new cancer therapies. Mitochondrion 2011; 11:513-9. [PMID: 21315184 DOI: 10.1016/j.mito.2011.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022]
Abstract
A key feature of many cancers is the capacity and the propensity to metabolize glucose to lactic acid at a very high rate even in the presence of oxygen. This characteristic was first discovered in 1924 by Otto Heinrich Warburg. Hexokinase, the first enzyme in the glycolytic pathway, not only improves the cell's energy supply in malignant cells, but also protects cancer cells against apoptosis through direct interaction with mitochondria and with the Voltage Dependent Anion Channel 1 (VDAC1). The rupture of HK:VDAC1 protein complex provides a therapeutic opportunity, as this association appears to protect tumor cells from mitochondrial outer membrane permeabilization, an event that marks the point of no return in multiple pathways leading to cell death. In the absence of a crystallographic structure and in order to perform an in silico screening of possible small molecules able to inhibit the protein association, we are presenting a computational model of HK-I:VDAC1 complex. It appears as evident how the first 15 N-terminal residues of HK-I interact with the inner part of the barrel of VDAC1 and not with the outside walls, within the mitochondrial membrane as previously believed. This finding is in agreement with the existence of a secondary ATP binding site in the same N-terminal region of HK-I which seems to have a crucial role in HK-I interaction with VDAC1. This evidence appears to be in accord also with the high levels of ATP that are found in cancer cells. Eventually such arrangements may contribute to stabilize the tertiary structure of VDAC1 while shielding from pro-apoptotic factor binding, protecting in a synergic way the tumoral cell from programmed death.
Collapse
Affiliation(s)
- Camillo Rosano
- National Institute for Cancer Research (IST), L.go Rosanna Benzi 10, 16129 Genova, Italy.
| |
Collapse
|
171
|
Park E, Lee GJ, Choi S, Choi SK, Chae SJ, Kang SW, Pak YK, Park HK. The role of glutamate release on voltage-dependent anion channels (VDAC)-mediated apoptosis in an eleven vessel occlusion model in rats. PLoS One 2010; 5:e15192. [PMID: 21203570 PMCID: PMC3006208 DOI: 10.1371/journal.pone.0015192] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/28/2010] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent anion channel (VDAC) is the main protein in mitochondria-mediated apoptosis, and the modulation of VDAC may be induced by the excessive release of extracellular glutamate. This study examined the role of glutamate release on VDAC-mediated apoptosis in an eleven vessel occlusion model in rats. Male Sprague-Dawley rats (250-350 g) were used for the 11 vessel occlusion ischemic model, which were induced for a 10-min transient occlusion. During the ischemic and initial reperfusion episode, the real-time monitoring of the extracellular glutamate concentration was measured using an amperometric microdialysis biosensor and the cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry. To confirm neuronal apoptosis, the brains were removed 72 h after ischemia to detect the neuron-specific nuclear protein and pro-apoptotic proteins (cleaved caspase-3, VDAC, p53 and BAX). The changes in the mitochondrial morphology were measured by atomic force microscopy. A decrease in the % of CBF was observed, and an increase in glutamate release was detected after the onset of ischemia, which continued to increase during the ischemic period. A significantly higher level of glutamate release was observed in the ischemia group. The increased glutamate levels in the ischemia group resulted in the activation of VDAC and pro-apoptotic proteins in the hippocampus with morphological alterations to the mitochondria. This study suggests that an increase in glutamate release promotes VDAC-mediated apoptosis in an 11 vessel occlusion ischemic model.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Medical Zoology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Samjin Choi
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Keun Choi
- Department of Neurosurgery, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Su-Jin Chae
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Wook Kang
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, and Healthcare Industry Research Institute, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
172
|
Jang H, Arce FT, Ramachandran S, Capone R, Lal R, Nussinov R. β-Barrel topology of Alzheimer's β-amyloid ion channels. J Mol Biol 2010; 404:917-34. [PMID: 20970427 PMCID: PMC7291702 DOI: 10.1016/j.jmb.2010.10.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 11/19/2022]
Abstract
Emerging evidence supports the ion channel mechanism for Alzheimer's disease pathophysiology wherein small β-amyloid (Aβ) oligomers insert into the cell membrane, forming toxic ion channels and destabilizing the cellular ionic homeostasis. Solid-state NMR-based data of amyloid oligomers in solution indicate that they consist of a double-layered β-sheets where each monomer folds into β-strand-turn-β-strand and the monomers are stacked atop each other. In the membrane, Aβ peptides are proposed to be β-type structures. Experimental structural data available from atomic force microscopy (AFM) imaging of Aβ oligomers in membranes reveal heterogeneous channel morphologies. Previously, we modeled the channels in a non-tilted organization, parallel with the cross-membrane normal. Here, we modeled a β-barrel-like organization. β-Barrels are common in transmembrane toxin pores, typically consisting of a monomeric chain forming a pore, organized in a single-layered β-sheet with antiparallel β-strands and a right-handed twist. Our explicit solvent molecular dynamics simulations of a range of channel sizes and polymorphic turns and comparisons of these with AFM image dimensions support a β-barrel channel organization. Different from the transmembrane β-barrels where the monomers are folded into a circular β-sheet with antiparallel β-strands stabilized by the connecting loops, these Aβ barrels consist of multimeric chains forming double β-sheets with parallel β-strands, where the strands of each monomer are connected by a turn. Although the Aβ barrels adopt the right-handed β-sheet twist, the barrels still break into heterogeneous, loosely attached subunits, in good agreement with AFM images and previous modeling. The subunits appear mobile, allowing unregulated, hence toxic, ion flux.
Collapse
Affiliation(s)
- Hyunbum Jang
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Fernando Teran Arce
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ricardo Capone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
173
|
Retracted article: MAVS protects cells from apoptosis by negatively regulating VDAC1. Mol Cell Biochem 2010; 375:219. [PMID: 21110072 DOI: 10.1007/s11010-010-0658-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
|
174
|
Kobliakov VA. Mechanisms of tumor promotion by reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2010; 75:675-85. [PMID: 20636258 DOI: 10.1134/s0006297910060015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review analyzes the available information concerning mechanisms of non-genotoxic action of reactive oxygen species (ROS) during tumor promotion and pathways of their generation under the influence of chemical compounds. Special attention is given to the ability of ROS to induce pseudohypoxia through inhibition of prolyl oxidase, which is an oxygen sensor in the cell. Functions of HIF-1alpha as a main contributor to the ROS-induced promotion are analyzed. Data suggest that an unregulated high level of HIF-1alpha in the cell could induce the development of tumors. Hypothetical possibilities of ROS production under the influence of different environmental pollutants, which are promoters of tumorigenesis, include functioning of cytochrome P450 during oxidation of substrates, functioning of the mitochondrial respiratory chain, and action of peroxisome proliferators.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
175
|
Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 2010; 30:5698-709. [PMID: 20937774 DOI: 10.1128/mcb.00165-10] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence implicates that the voltage-dependent anion channel (VDAC) functions in mitochondrion-mediated apoptosis and as a critical player in the release of apoptogenic proteins, such as cytochrome c, triggering caspase activation and apoptosis. The mechanisms regulating cytochrome c release and the molecular architecture of the cytochrome c-conducting channel remain unknown. Here the relationship between VDAC oligomerization and the induction of apoptosis was examined. We demonstrated that apoptosis induction by various stimuli was accompanied by highly increased VDAC oligomerization, as revealed by cross-linking and directly monitored in living cells using bioluminescence resonance energy transfer technology. VDAC oligomerization was induced in all cell types and with all apoptosis inducers used, including staurosporine, curcumin, As(2)O(3), etoposide, cisplatin, selenite, tumor necrosis factor alpha (TNF-α), H(2)O(2), and UV irradiation, all acting through different mechanisms yet all involving mitochondria. Moreover, correlation between the levels of VDAC oligomerization and apoptosis was observed. Furthermore, the apoptosis inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited VDAC oligomerization. Finally, a caspase inhibitor had no effect on VDAC oligomerization and cytochrome c release. We propose that VDAC oligomerization is involved in mitochondrion-mediated apoptosis and may represent a general mechanism common to numerous apoptogens acting via different initiating cascades. Thus, targeting the oligomeric status of VDAC, and hence apoptosis, offers a therapeutic strategy for combating cancers and neurodegenerative diseases.
Collapse
|
176
|
Israelson A, Arbel N, Cruz SD, Ilieva H, Yamanaka K, Shoshan-Barmatz V, Cleveland DW. Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron 2010; 67:575-87. [PMID: 20797535 PMCID: PMC2941987 DOI: 10.1016/j.neuron.2010.07.019] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 02/07/2023]
Abstract
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by loss of motor neurons. With conformation-specific antibodies, we now demonstrate that misfolded mutant SOD1 binds directly to the voltage-dependent anion channel (VDAC1), an integral membrane protein imbedded in the outer mitochondrial membrane. This interaction is found on isolated spinal cord mitochondria and can be reconstituted with purified components in vitro. ADP passage through the outer membrane is diminished in spinal mitochondria from mutant SOD1-expressing ALS rats. Direct binding of mutant SOD1 to VDAC1 inhibits conductance of individual channels when reconstituted in a lipid bilayer. Reduction of VDAC1 activity with targeted gene disruption is shown to diminish survival by accelerating onset of fatal paralysis in mice expressing the ALS-causing mutation SOD1(G37R). Taken together, our results establish a direct link between misfolded mutant SOD1 and mitochondrial dysfunction in this form of inherited ALS.
Collapse
Affiliation(s)
- Adrian Israelson
- Ludwig Institute for Cancer Research and Department of Medicine and Neuroscience, University of California at San Diego, La Jolla, CA 92093-0670
| | - Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research and Department of Medicine and Neuroscience, University of California at San Diego, La Jolla, CA 92093-0670
| | - Hristelina Ilieva
- Ludwig Institute for Cancer Research and Department of Medicine and Neuroscience, University of California at San Diego, La Jolla, CA 92093-0670
| | - Koji Yamanaka
- Yamanaka Research Unit, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research and Department of Medicine and Neuroscience, University of California at San Diego, La Jolla, CA 92093-0670
| |
Collapse
|
177
|
Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 2010; 36:30-8. [PMID: 20728362 DOI: 10.1016/j.tibs.2010.07.007] [Citation(s) in RCA: 999] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are small and highly reactive molecules that can oxidize proteins, lipids and DNA. When tightly controlled, ROS serve as signaling molecules by modulating the activity of the oxidized targets. Accumulating data point to an essential role for ROS in the activation of autophagy. Be the outcome of autophagy survival or death and the initiation conditions starvation, pathogens or death receptors, ROS are invariably involved. The nature of this involvement, however, remains unclear. Moreover, although connections between ROS and autophagy are observed in diverse pathological conditions, the mode of activation of autophagy and its potential protective role remain incompletely understood. Notably, recent advances in the field of redox regulation of autophagy focus on the role of mitochondria as a source of ROS and on mitophagy as a means for clearance of ROS.
Collapse
Affiliation(s)
- Ruth Scherz-Shouval
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
178
|
A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 2010; 38:841-60. [DOI: 10.1042/bst0380841] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to their normal physiological role in ATP production and metabolism, mitochondria exhibit a dark side mediated by the opening of a non-specific pore in the inner mitochondrial membrane. This mitochondrial permeability transition pore (MPTP) causes the mitochondria to breakdown rather than synthesize ATP and, if unrestrained, leads to necrotic cell death. The MPTP is opened in response to Ca2+ overload, especially when accompanied by oxidative stress, elevated phosphate concentration and adenine nucleotide depletion. These conditions are experienced by the heart and brain subjected to reperfusion after a period of ischaemia as may occur during treatment of a myocardial infarction or stroke and during heart surgery. In the present article, I review the properties, regulation and molecular composition of the MPTP. The evidence for the roles of CyP-D (cyclophilin D), the adenine nucleotide translocase and the phosphate carrier are summarized and other potential interactions with outer mitochondrial membrane proteins are discussed. I then review the evidence that MPTP opening mediates cardiac reperfusion injury and that MPTP inhibition is cardioprotective. Inhibition may involve direct pharmacological targeting of the MPTP, such as with cyclosporin A that binds to CyP-D, or indirect inhibition of MPTP opening such as with preconditioning protocols. These invoke complex signalling pathways to reduce oxidative stress and Ca2+ load. MPTP inhibition also protects against congestive heart failure in hypertensive animal models. Thus the MPTP is a very promising pharmacological target for clinical practice, especially once more specific drugs are developed.
Collapse
|
179
|
Chacko AD, Liberante F, Paul I, Longley DB, Fennell DA. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8. BMC Cancer 2010; 10:380. [PMID: 20646307 PMCID: PMC2913963 DOI: 10.1186/1471-2407-10-380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. METHODS We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. RESULTS Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. CONCLUSIONS Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway.
Collapse
Affiliation(s)
- Alex D Chacko
- Queen's University Belfast, Centre for Cancer Research and Cell Biology, Belfast, UK
| | | | | | | | | |
Collapse
|
180
|
Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange A. The native conformation of the human VDAC1 N terminus. Angew Chem Int Ed Engl 2010; 49:1882-5. [PMID: 20140924 DOI: 10.1002/anie.200906241] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert Schneider
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10:670-81. [PMID: 20601192 DOI: 10.1016/j.mito.2010.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/12/2023]
Abstract
Cancer is an ever-increasing problem that is yet to be harnessed. Frequent mutations make this pathology very variable and, consequently, a considerable challenge. Intriguingly, mitochondria have recently emerged as novel targets for cancer therapy. A group of agents with anti-cancer activity that induce apoptosis by way of mitochondrial destabilisation, termed mitocans, have been a recent focus of research. Of these compounds, many are hydrophobic agents that associate with various sub-cellular organelles. Clearly, modification of such structures with mitochondria-targeting moieties, for example tagging them with lipophilic cations, would be expected to enhance their activity. This may be accomplished by the addition of triphenylphosphonium groups that direct such compounds to mitochondria, enhancing their activity. In this paper, we will review agents that possess anti-cancer activity by way of destabilizing mitochondria and their possible targets. We propose that mitochondrial targeting, in particular where the agent associates directly with the target, results in more specific and efficient anti-cancer drugs of potential high clinical relevance.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Dept. of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
182
|
Mathupala SP, Pedersen PL. Voltage dependent anion channel-1 (VDAC-1) as an anti-cancer target. Cancer Biol Ther 2010; 9:1053-6. [PMID: 20581475 DOI: 10.4161/cbt.9.12.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | | |
Collapse
|
183
|
Dominant-negative VDAC1 mutants reveal oligomeric VDAC1 to be the active unit in mitochondria-mediated apoptosis. Biochem J 2010; 429:147-55. [DOI: 10.1042/bj20091338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria play a central role in the intrinsic pathway of apoptosis. Oligomerization of the mitochondrial protein VDAC1 (voltage-dependent anion channel 1) has been proposed to play a role in apoptosis in various studies. In the present study, we have generated dimeric fusion proteins consisting of tandem-linked wild-type and RuR (Ruthenium Red)-insensitive mutant VDAC1 monomers and studied the capacity of RuR to protect against apoptosis, as induced by various means. Fusion proteins composed of wild-type and/or E72Q-VDAC1 were successfully expressed in T-REx-293 cells. Bilayer-reconstituted dimeric rVDAC1 (rat VDAC1) functions as a channel-forming protein, showing typical voltage-dependence conductance, but with a unitary conductance higher than that of monomeric VDAC. As with wild-type VDAC1, overexpression of either the wild-type or mutated VDAC1 dimeric fusion protein induced apoptotic cell death. In addition, as shown previously, the anti-apoptotic effect of RuR was not observed in cells expressing E72Q-VDAC1, despite endogenous VDAC1 being present in these cells. Similar RuR insensitivity governed the VDAC1 fusion proteins comprising the E72Q mutation in either the first, second or both VDAC1 monomers of the same dimer. RuR-mediated protection against apoptosis in T-REx-293 cells, as induced by staurosporine, was observed in cells expressing VDAC1 or dimeric wild-type VDAC1. However, RuR offered no protection against staurosporine-induced apoptosis in cells expressing E72Q-VDAC1 or E72Q-containing dimeric VDAC1. These results suggest that E72Q-VDAC1 has a dominant-negative effect and implies that VDAC1 homo-oligomerization, involving intermolecular interactions, might be involved in the apoptotic process.
Collapse
|
184
|
Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J 2010; 277:2022-37. [PMID: 20412056 DOI: 10.1111/j.1742-4658.2010.07633.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds. As a new concept, it can be hypothesized that the synergistic interaction of sugars (or sugar-like compounds) and phenolic compounds forms part of an integrated redox system, quenching ROS and contributing to stress tolerance, especially in tissues or organelles with high soluble sugar concentrations.
Collapse
|
185
|
Thinnes FP. Letter to the editor: AVD1, AVDT, AVD2 in cisplatin-induced apoptosis: differences between WT EATC and MDR EATC resting on differing expression levels of type-1 porin/VDAC in cell membranes? Am J Physiol Cell Physiol 2010; 298:C1276. [DOI: 10.1152/ajpcell.00032.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
186
|
Reina S, Palermo V, Guarnera A, Guarino F, Messina A, Mazzoni C, De Pinto V. Swapping of the N-terminus of VDAC1 with VDAC3 restores full activity of the channel and confers anti-aging features to the cell. FEBS Lett 2010; 584:2837-44. [DOI: 10.1016/j.febslet.2010.04.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 12/23/2022]
|
187
|
Abstract
The VDAC (voltage-dependent anion channel) is proposed to control metabolic cross-talk between mitochondria and the cytosol, as well as apoptotic cell death. It has been suggested that apoptosis is modulated by the oxidation state of VDAC. Since cysteine residues are the major target for oxidation/reduction, we verified whether one or both VDAC1 cysteine residues are involved in VDAC1-mediated transport or apoptosis activities. To assess the function of VDAC1 cysteine residues in channel activity and to probe cysteine topology with respect to facing the pore or the bilayer, we used thiol-modifying agents, namely membrane-permeable NEM (N-ethylmaleimide), bulky charged 5-FM (fluorescein-5-maleimide) and the cross-linking reagent BMOE [bis(maleimido)ethane]. Bilayer-reconstituted VDAC conductance was decreased by 5-FM, but not by NEM, whereas 5-FM had no effect on NEM-labelled VDAC conductance. BMOE caused the formation of dimeric VDAC1, suggesting that one of the two VDAC1 cysteine residues is exposed and available for cross-linking. The results thus suggest that one of the VDAC1 cysteine residues faces the VDAC pore, whereas the second is oriented towards the lipid bilayer. Mutated rat VDAC1 in which the two cysteine residues, Cys127 and Cys232, were replaced by alanine residues showed channel activity like native VDAC1 and, when expressed in cells, was localized to mitochondria. Human VDAC1-shRNA (small hairpin RNA)- or -siRNA (small interfering RNA)-treated cells, expressing low levels of endogenous human VDAC1 together with native or cysteine-less rat VDAC1, undergo apoptosis as induced by overexpression of these VDAC1 or upon treatment with reactive oxygen species-producing agents, H2O2, As2O3 or selenite, suggesting that the two cysteine residues are not required for apoptosis or VDAC1 oligomerization.
Collapse
|
188
|
Salilew-Wondim D, Hölker M, Rings F, Ghanem N, Ulas-Cinar M, Peippo J, Tholen E, Looft C, Schellander K, Tesfaye D. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol Genomics 2010; 42:201-18. [PMID: 20388838 DOI: 10.1152/physiolgenomics.00047.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant gene expression in the uterine endometrium and embryo has been the major causes of pregnancy failure in cattle. However, selecting cows having adequate endometrial receptivity and embryos of better developmental competence based on the gene expression pattern has been a greater challenge. To investigate whether pretransfer endometrial and embryo gene expression pattern has a direct relation with upcoming pregnancy success, we performed a global endometrial and embryo transcriptome analysis using endometrial and embryo biopsy technology and the pregnancy outcome information. For this, endometrial samples were collected from Simmental heifers at day 7 and 14 of the estrous cycle, one cycle prior to embryo transfer. In the next cycle, blastocyst stage embryos were transferred to recipients at day 7 of the estrous cycle after taking 30-40% of the blastocyst as a biopsy for transcriptome analysis. The results revealed that at day 7 of the estrous cycle, the endometrial gene expression pattern of heifers whose pregnancy resulting in calf delivery was significantly different compared with those resulting in no pregnancy. These differences were accompanied by qualitative and quantitative alteration of major biological process and molecular pathways. However, the transcriptome difference was minimal between the two groups of animals at day 14 of the estrous cycle. Similarly, the transcriptome analysis between embryos biopsies that resulted in calf delivery and those resulted in no pregnancy revealed a total of 70 differentially expressed genes. Among these, the transcript levels of 32 genes including SPAG17, PF6, UBE2D3P, DFNB31, AMD1, DTNBP1, and ARL8B were higher in embryo biopsies resulting in calf delivery. Therefore, the present study highlights the potential of pretransfer endometrial and embryo gene expression patterns as predictors of pregnancy success in cattle.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 585] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
190
|
Shoshan-Barmatz V, Keinan N, Abu-Hamad S, Tyomkin D, Aram L. Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1281-91. [PMID: 20214874 DOI: 10.1016/j.bbabio.2010.03.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/09/2010] [Accepted: 03/02/2010] [Indexed: 01/28/2023]
Abstract
Mitochondria, central to basic life functions due to their generation of cellular energy, also serve as the venue for cellular decisions leading to apoptosis. A key protein in mitochondria-mediated apoptosis is the voltage-dependent anion channel (VDAC), which also mediates the exchange of metabolites and energy between the cytosol and the mitochondria. In this study, the functions played by the N-terminal region of VDAC1 and by VDAC1 oligomerization in the release of cytochrome c, Smac/Diablo and apoptosis-inducing factor (AIF) and subsequent apoptosis were addressed. We demonstrate that cells undergoing apoptosis induced by STS or cisplatin and expressing N-terminally truncated VDAC1 do not release cytochrome c, Smac/Diablo or AIF. Ruthenium red (RuR), AzRu, DIDS and hexokinase-I (HK-I), all known to interact with VDAC, inhibited the release of cytochrome c, Smac/Diablo and AIF, while RuR-mediated inhibition was not observed in cells expressing RuR-insensitive E72Q-VDAC1. These findings suggest that VDAC1 is involved in the release of not only cytochrome c but also of Smac/Diablo and AIF. We also demonstrate that apoptosis induction is associated with VDAC oligomerization, as revealed by chemical cross-linking and monitoring in living cells using Bioluminescence Resonance Energy Transfer. Apoptosis induction by STS, H2O2 or selenite augmented the formation of VDAC oligomers several fold. The results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the functions of VDAC1 oligomerization in apoptosis and of the VDAC1 N-terminal domain in the release of apoptogenic proteins as well as into regulation of VDAC by anti-apoptotic proteins, such as HK and Bcl2.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
191
|
Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange A. Die native Konformation des N-Terminus des humanen spannungsabhängigen Anionenkanals VDAC1. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
192
|
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31. [PMID: 20098416 DOI: 10.1038/ncb2012] [Citation(s) in RCA: 2209] [Impact Index Per Article: 147.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/09/2009] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage, ubiquitylation and autophagy in non-neuronal and neuronal cells. PINK1 kinase activity and its mitochondrial localization sequence are prerequisites to induce translocation of the E3 ligase Parkin to depolarized mitochondria. Subsequently, Parkin mediates the formation of two distinct poly-ubiquitin chains, linked through Lys 63 and Lys 27. In addition, the autophagic adaptor p62/SQSTM1 is recruited to mitochondrial clusters and is essential for the clearance of mitochondria. Strikingly, we identified VDAC1 (voltage-dependent anion channel 1) as a target for Parkin-mediated Lys 27 poly-ubiquitylation and mitophagy. Moreover, pathogenic Parkin mutations interfere with distinct steps of mitochondrial translocation, ubiquitylation and/or final clearance through mitophagy. Thus, our data provide functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinson's disease.
Collapse
|
193
|
Arbel N, Shoshan-Barmatz V. Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 2009; 285:6053-62. [PMID: 20037155 DOI: 10.1074/jbc.m109.082990] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The antiapoptotic proteins of the Bcl-2 family are expressed at high levels in many types of cancer. However, the mechanism by which Bcl-2 family proteins regulate apoptosis is not fully understood. Here, we demonstrate the interaction of Bcl-2 with the outer mitochondrial membrane protein, voltage-dependent anion channel 1 (VDAC1). A direct interaction of Bcl-2 with bilayer-reconstituted purified VDAC was demonstrated, with Bcl-2 decreasing channel conductance. Expression of Bcl-2-GFP prevented apoptosis in cells expressing native but not certain VDAC1 mutants. VDAC1 sequences and amino acid residues important for interaction with Bcl-2 were defined through site-directed mutagenesis. Synthetic peptides corresponding to the VDAC1 N-terminal region and selected sequences bound specifically, in a concentration- and time-dependent manner, to immobilized Bcl-2, as revealed by the real-time surface plasmon resonance. Moreover, expression of the VDAC1-based peptides in cells over-expressing Bcl-2 prevented Bcl-2-mediated protection against staurosporine-induced apoptotic cell death. Similarly, a cell-permeable VDAC1-based synthetic peptide was also found to prevent Bcl-2-GFP-mediated protection against apoptosis. These results point to Bcl-2 as promoting tumor cell survival through binding to VDAC1, thereby inhibiting cytochrome c release and apoptotic cell death. Moreover, these findings suggest that interfering with the binding of Bcl-2 to mitochondria by VDAC1-based peptides may serve to potentiate the efficacy of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|