151
|
Roque H, Wainman A, Richens J, Kozyrska K, Franz A, Raff JW. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J Cell Sci 2012; 125:5881-6. [DOI: 10.1242/jcs.113506] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cep135/Bld10 is a conserved centriolar protein required for the formation of the central cartwheel, an early intermediate in centriole assembly. Surprisingly, Cep135/Bld10 is not essential for centriole duplication in Drosophila suggesting that either Cep135/Bld10 is not essential for cartwheel formation, or that the cartwheel is not essential for centriole assembly in flies. Using Electron Tomography and super-resolution microscopy we show that centrioles can form a cartwheel in the absence of Cep135/Bld10, but centriole width is increased and the cartwheel appears to disassemble over time. Using 3D structured illumination microscopy we show that Cep135/Bld10 is localised to a region between inner (SAS-6, Ana2) and outer (Asl, DSpd-2 and D-PLP) centriolar components, and the localisation of all these component is subtly perturbed in the absence of Cep135/Bld10, although the 9-fold symmetry of the centriole is maintained. Thus, in flies, Cep135/Bld10 is not essential for cartwheel assembly or for establishing the 9-fold symmetry of centrioles; rather, it appears to stabilise the connection between inner and outer centriole components.
Collapse
|
152
|
Hodges ME, Wickstead B, Gull K, Langdale JA. Conservation of ciliary proteins in plants with no cilia. BMC PLANT BIOLOGY 2011; 11:185. [PMID: 22208660 PMCID: PMC3268115 DOI: 10.1186/1471-2229-11-185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/30/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. RESULTS Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. CONCLUSIONS A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes.
Collapse
Affiliation(s)
- Matthew E Hodges
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Bill Wickstead
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| |
Collapse
|
153
|
Li S, Fernandez JJ, Marshall WF, Agard DA. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 2011; 31:552-62. [PMID: 22157822 PMCID: PMC3273388 DOI: 10.1038/emboj.2011.460] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 11/15/2011] [Indexed: 12/03/2022] Open
Abstract
The basal body, derived from the centriole, is a microtubule-organizing organelle that nucleates the cilium in non-dividing cells. Cryo-electron tomography reveals the overall structure of this organelle, and provides insights its biogenesis and function. Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body.
Collapse
Affiliation(s)
- Sam Li
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
154
|
Abstract
Although the mechanisms by which complex cellular features evolve constitute one of the great unsolved problems of evolutionary biology, it is clear that the emergence of new protein-protein interactions, often accompanied by the diversification of duplicate genes, is involved. Using information on the levels of protein multimerization in major phylogenetic groups as a guide to the patterns that must be explained and relying on results from population-genetic theory to define the relative plausibility of alternative evolutionary pathways, a framework for understanding the evolution of dimers is developed. The resultant theory demonstrates that the likelihoods of alternative pathways for the emergence of protein complexes depend strongly on the effective population size. Nonetheless, it is equally clear that further advancements in this area will require comparative studies on the fitness consequences of alternative monomeric and dimeric proteins.
Collapse
|
155
|
Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol 2011; 128:1207-1215.e1. [DOI: 10.1016/j.jaci.2011.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 11/21/2022]
|
156
|
Klingseisen A, Jackson AP. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 2011; 25:2011-24. [PMID: 21979914 DOI: 10.1101/gad.169037] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.
Collapse
Affiliation(s)
- Anna Klingseisen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
157
|
Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12:773-86. [PMID: 22086369 DOI: 10.1038/nrm3227] [Citation(s) in RCA: 648] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.
Collapse
Affiliation(s)
- Carsten Janke
- Department of Signalling, Neurobiology and Cancer, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay Cedex, France.
| | | |
Collapse
|
158
|
Tang CJC, Lin SY, Hsu WB, Lin YN, Wu CT, Lin YC, Chang CW, Wu KS, Tang TK. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J 2011; 30:4790-804. [PMID: 22020124 DOI: 10.1038/emboj.2011.378] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 09/27/2011] [Indexed: 12/28/2022] Open
Abstract
Centriole duplication involves the growth of a procentriole next to the parental centriole. Mutations in STIL and CPAP/CENPJ cause primary microcephaly (MCPH). Here, we show that human STIL has an asymmetric localization to the daughter centriole and is required for procentriole formation. STIL levels oscillate during the cell cycle. Interestingly, STIL interacts directly with CPAP and forms a complex with hSAS6. A natural mutation of CPAP (E1235V) that causes MCPH in humans leads to significantly lower binding to STIL. Overexpression of STIL induced the formation of multiple procentrioles around the parental centriole. STIL depletion inhibited normal centriole duplication, Plk4-induced centriole amplification, and CPAP-induced centriole elongation, and resulted in a failure to localize hSAS6 and CPAP to the base of the nascent procentriole. Furthermore, hSAS6 depletion hindered STIL targeting to the procentriole, implying that STIL and hSAS6 are mutually dependent for their centriolar localization. Together, our results indicate that the two MCPH-associated proteins STIL and CPAP interact with each other and are required for procentriole formation, implying a central role of centriole biogenesis in MCPH.
Collapse
Affiliation(s)
- Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Coyne RS, Hannick L, Shanmugam D, Hostetler JB, Brami D, Joardar VS, Johnson J, Radune D, Singh I, Badger JH, Kumar U, Saier M, Wang Y, Cai H, Gu J, Mather MW, Vaidya AB, Wilkes DE, Rajagopalan V, Asai DJ, Pearson CG, Findly RC, Dickerson HW, Wu M, Martens C, Van de Peer Y, Roos DS, Cassidy-Hanley DM, Clark TG. Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biol 2011; 12:R100. [PMID: 22004680 PMCID: PMC3341644 DOI: 10.1186/gb-2011-12-10-r100] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/15/2011] [Accepted: 10/17/2011] [Indexed: 01/09/2023] Open
Abstract
Background Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members. Indeed, it is closely related to the model organism Tetrahymena thermophila. Genomic studies represent a promising strategy to reduce the impact of this disease and to understand the evolutionary transition to parasitism. Results We report the sequencing, assembly and annotation of the Ich macronuclear genome. Compared with its free-living relative T. thermophila, the Ich genome is reduced approximately two-fold in length and gene density and three-fold in gene content. We analyzed in detail several gene classes with diverse functions in behavior, cellular function and host immunogenicity, including protein kinases, membrane transporters, proteases, surface antigens and cytoskeletal components and regulators. We also mapped by orthology Ich's metabolic pathways in comparison with other ciliates and a potential host organism, the zebrafish Danio rerio. Conclusions Knowledge of the complete protein-coding and metabolic potential of Ich opens avenues for rational testing of therapeutic drugs that target functions essential to this parasite but not to its fish hosts. Also, a catalog of surface protein-encoding genes will facilitate development of more effective vaccines. The potential to use T. thermophila as a surrogate model offers promise toward controlling 'white spot' disease and understanding the adaptation to a parasitic lifestyle.
Collapse
Affiliation(s)
- Robert S Coyne
- Genomic Medicine, J Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 2011; 7:e1002217. [PMID: 22022256 PMCID: PMC3192815 DOI: 10.1371/journal.pcbi.1002217] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023] Open
Abstract
Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology. Intracellular compartmentalisation via membrane-delimited organelles is a fundamental feature of the eukaryotic cell. Understanding its origins and specialisation into functionally distinct compartments is a major challenge in evolutionary cell biology. We focus on the Rab enzymes, critical organisers of the trafficking pathways that link the endomembrane system. Rabs form a large family of evolutionarily related proteins, regulating distinct steps in vesicle transport. They mark pathways and organelles due to their specific subcellular and tissue localisation. We propose a solution to the problem of identifying and annotating Rabs in hundreds of sequenced genomes. We developed an accurate bioinformatics pipeline that is able to take into account pre-existing and often inconsistent, manual annotations. We made it available to the community in form of a web tool, as well as a database containing thousands of Rabs assigned to sub-families, which yields clear functional predictions. Thousands of Rabs allow for a new level of analysis. We illustrate this by characterising for the first time the global evolutionary dynamics of the Rab family. We dated the emergence of subfamilies and suggest that the Rab family expands by duplicates acquiring new functions.
Collapse
Affiliation(s)
- Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (YD); (JBPL)
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Marc Gouw
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Miguel C. Seabra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
161
|
Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci U S A 2011; 108:E845-53. [PMID: 21930914 DOI: 10.1073/pnas.1106178108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The axoneme forms the essential and conserved core of cilia and flagella. We have used cryo-electron tomography of Chlamydomonas and sea urchin flagella to answer long-standing questions and to provide information about the structure of axonemal doublet microtubules (DMTs). Solving an ongoing controversy, we show that B-tubules of DMTs contain exactly 10 protofilaments (PFs) and that the inner junction (IJ) and outer junction between the A- and B-tubules are fundamentally different. The outer junction, crucial for the initiation of doublet formation, appears to be formed by close interactions between the tubulin subunits of three PFs with unusual tubulin interfaces; other investigators have reported that this junction is weakened by mutations affecting posttranslational modifications of tubulin. The IJ consists of an axially periodic ladder-like structure connecting tubulin PFs of the A- and B-tubules. The recently discovered microtubule inner proteins (MIPs) on the inside of the A- and B-tubules are more complex than previously thought. They are composed of alternating small and large subunits with periodicities of 16 and/or 48 nm. MIP3 forms arches connecting B-tubule PFs, contrary to an earlier report that MIP3 forms the IJ. Finally, the "beak" structures within the B-tubules of Chlamydomonas DMT1, DMT5, and DMT6 are clearly composed of a longitudinal band of proteins repeating with a periodicity of 16 nm. These findings, discussed in relation to genetic and biochemical data, provide a critical foundation for future work on the molecular assembly and stability of the axoneme, as well as its function in motility and sensory transduction.
Collapse
|
162
|
Kotov NV, Bates DG, Gizatullina AN, Gilaziev B, Khairullin RN, Chen MZQ, Drozdov I, Umezawa Y, Hundhausen C, Aleksandrov A, Yan XG, Spurgeon SK, Smales CM, Valeyev NV. Computational modelling elucidates the mechanism of ciliary regulation in health and disease. BMC SYSTEMS BIOLOGY 2011; 5:143. [PMID: 21920041 PMCID: PMC3224258 DOI: 10.1186/1752-0509-5-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/15/2011] [Indexed: 12/23/2022]
Abstract
Background Ciliary dysfunction leads to a number of human pathologies, including primary ciliary dyskinesia, nephronophthisis, situs inversus pathology or infertility. The mechanism of cilia beating regulation is complex and despite extensive experimental characterization remains poorly understood. We develop a detailed systems model for calcium, membrane potential and cyclic nucleotide-dependent ciliary motility regulation. Results The model describes the intimate relationship between calcium and potassium ionic concentrations inside and outside of cilia with membrane voltage and, for the first time, describes a novel type of ciliary excitability which plays the major role in ciliary movement regulation. Our model describes a mechanism that allows ciliary excitation to be robust over a wide physiological range of extracellular ionic concentrations. The model predicts the existence of several dynamic modes of ciliary regulation, such as the generation of intraciliary Ca2+ spike with amplitude proportional to the degree of membrane depolarization, the ability to maintain stable oscillations, monostable multivibrator regimes, all of which are initiated by variability in ionic concentrations that translate into altered membrane voltage. Conclusions Computational investigation of the model offers several new insights into the underlying molecular mechanisms of ciliary pathologies. According to our analysis, the reported dynamic regulatory modes can be a physiological reaction to alterations in the extracellular environment. However, modification of the dynamic modes, as a result of genetic mutations or environmental conditions, can cause a life threatening pathology.
Collapse
Affiliation(s)
- Nikolay V Kotov
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 2011; 194:165-75. [PMID: 21788366 PMCID: PMC3144413 DOI: 10.1083/jcb.201011152] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/29/2011] [Indexed: 12/28/2022] Open
Abstract
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Collapse
Affiliation(s)
| | - Juliette Azimzadeh
- Department of Biochemistry and Biophysics, UCSF Mission Bay, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
164
|
de Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 2011; 10:2255-62. [PMID: 21654194 DOI: 10.4161/cc.10.14.16494] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
165
|
Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CCL, Davids BJ, Shah SA, Yates JR, Gillin FD. Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 2011; 41:1079-92. [PMID: 21723868 DOI: 10.1016/j.ijpara.2011.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/27/2022]
Abstract
Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhoea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterised by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signalling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localisation in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localise with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localise to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signalling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles.
Collapse
Affiliation(s)
- Tineke Lauwaet
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Hatch E, Stearns T. The life cycle of centrioles. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:425-31. [PMID: 21502410 DOI: 10.1101/sqb.2010.75.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.
Collapse
Affiliation(s)
- E Hatch
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
167
|
Pike AN, Fisk HA. Centriole assembly and the role of Mps1: defensible or dispensable? Cell Div 2011; 6:9. [PMID: 21492451 PMCID: PMC3094359 DOI: 10.1186/1747-1028-6-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022] Open
Abstract
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.
Collapse
Affiliation(s)
- Amanda N Pike
- Department of Molecular Genetics, The Ohio State University, 484 W, 12th Avenue, Columbus OH 43210-1292, USA.
| | | |
Collapse
|
168
|
New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella. PLoS One 2011; 6:e16725. [PMID: 21340037 PMCID: PMC3038932 DOI: 10.1371/journal.pone.0016725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022] Open
Abstract
Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.
Collapse
|
169
|
Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC, Flückiger I, Gönczy P, Steinmetz MO. Structural basis of the 9-fold symmetry of centrioles. Cell 2011; 144:364-75. [PMID: 21277013 PMCID: PMC3089914 DOI: 10.1016/j.cell.2011.01.008] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/11/2023]
Abstract
The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles.
Collapse
Affiliation(s)
- Daiju Kitagawa
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Vakonakis
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Natacha Olieric
- Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Manuel Hilbert
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Debora Keller
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Miriam Bortfeld
- Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Michèle C. Erat
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Isabelle Flückiger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Michel O. Steinmetz
- Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
170
|
Gogendeau D, Hurbain I, Raposo G, Cohen J, Koll F, Basto R. Sas-4 proteins are required during basal body duplication in Paramecium. Mol Biol Cell 2011; 22:1035-44. [PMID: 21289083 PMCID: PMC3069007 DOI: 10.1091/mbc.e10-11-0901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study investigated the role of Sas-4 in basal body duplication in Paramecium and found that Sas-4 proteins are required to assemble and stabilize the germinative disk and cartwheel, which suggests that Sas-4 plays an essential role in basal body duplication. Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues.
Collapse
|
171
|
van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B. Structures of SAS-6 suggest its organization in centrioles. Science 2011; 331:1196-9. [PMID: 21273447 DOI: 10.1126/science.1199325] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.
Collapse
Affiliation(s)
- Mark van Breugel
- Medical Research Council-Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Centrioles are conserved microtubule-based organelles that lie at the core of the animal centrosome and play a crucial role in nucleating the formation of cilia and flagella in most eukaryotes. Centrioles have a complex ultrastructure with ninefold symmetry and a well-defined length. This structure is assembled from a host of proteins, including a variety of disease gene products. Over a century after the discovery of centrioles, the mechanisms underlying the assembly of these fascinating organelles, in particular the establishment of ninefold symmetry and the control of centriole length, are now starting to be uncovered.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
173
|
The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A 2010; 107:21517-22. [PMID: 21068373 DOI: 10.1073/pnas.1013728107] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Long-lived microtubules found in ciliary axonemes, neuronal processes, and migrating cells are marked by α-tubulin acetylation on lysine 40, a modification that takes place inside the microtubule lumen. The physiological importance of microtubule acetylation remains elusive. Here, we identify a BBSome-associated protein that we name αTAT1, with a highly specific α-tubulin K40 acetyltransferase activity and a catalytic preference for microtubules over free tubulin. In mammalian cells, the catalytic activity of αTAT1 is necessary and sufficient for α-tubulin K40 acetylation. Remarkably, αTAT1 is universally and exclusively conserved in ciliated organisms, and is required for the acetylation of axonemal microtubules and for the normal kinetics of primary cilium assembly. In Caenorhabditis elegans, microtubule acetylation is most prominent in touch receptor neurons (TRNs) and MEC-17, a homolog of αTAT1, and its paralog αTAT-2 are required for α-tubulin acetylation and for two distinct types of touch sensation. Furthermore, in animals lacking MEC-17, αTAT-2, and the sole C. elegans K40α-tubulin MEC-12, touch sensation can be restored by expression of an acetyl-mimic MEC-12[K40Q]. We conclude that αTAT1 is the major and possibly the sole α-tubulin K40 acetyltransferase in mammals and nematodes, and that tubulin acetylation plays a conserved role in several microtubule-based processes.
Collapse
|
174
|
Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T. Cep152 interacts with Plk4 and is required for centriole duplication. ACTA ACUST UNITED AC 2010; 191:721-9. [PMID: 21059850 PMCID: PMC2983069 DOI: 10.1083/jcb.201006049] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cep152, the orthologue of Drosophila Asterless, is a Plk4 target that functions with Plk4 in centriole assembly. Centrioles are microtubule-based structures that organize the centrosome and nucleate cilia. Centrioles duplicate once per cell cycle, and duplication requires Plk4, a member of the Polo-like kinase family; however, the mechanism linking Plk4 activity and centriole formation is unknown. In this study, we show in human and frog cells that Plk4 interacts with the centrosome protein Cep152, the orthologue of Drosophila melanogaster Asterless. The interaction requires the N-terminal 217 residues of Cep152 and the crypto Polo-box of Plk4. Cep152 and Plk4 colocalize at the centriole throughout the cell cycle. Overexpression of Cep152 (1–217) mislocalizes Plk4, but both Cep152 and Plk4 are able to localize to the centriole independently of the other. Depletion of Cep152 prevents both normal centriole duplication and Plk4-induced centriole amplification and results in a failure to localize Sas6 to the centriole, an early step in duplication. Cep152 can be phosphorylated by Plk4 in vitro, suggesting that Cep152 acts with Plk4 to initiate centriole formation.
Collapse
Affiliation(s)
- Emily M Hatch
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
175
|
Fritz-Laylin LK, Cande WZ. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci 2010; 123:4024-31. [PMID: 21045110 DOI: 10.1242/jcs.077453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naegleria gruberi is a single-celled eukaryote best known for its remarkable ability to form an entire microtubule cytoskeleton de novo during its metamorphosis from an amoeba into a flagellate, including basal bodies (equivalent to centrioles), flagella and a cytoplasmic microtubule array. Our publicly available full-genome transcriptional analysis, performed at 20-minute intervals throughout Naegleria differentiation, reveals vast transcriptional changes, including the differential expression of genes involved in metabolism, signaling and the stress response. Cluster analysis of the transcriptional profiles of predicted cytoskeletal genes reveals a set of 55 genes enriched in centriole components (induced early) and a set of 82 genes enriched in flagella proteins (induced late). The early set includes genes encoding nearly every known conserved centriole component, as well as eight previously uncharacterized, highly conserved genes. The human orthologs of at least five genes localize to the centrosomes of human cells, one of which (here named Friggin) localizes specifically to mother centrioles.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
176
|
Abstract
Polo-like kinase 4 (PLK4) is a unique member of the Polo-like family of kinases that shares little homology with its siblings and has an essential role in centriole duplication. The turn-over of this kinase must be strictly controlled to prevent centriole amplification. This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 autophosphorylates residues in a PEST sequence located carboxy-terminal to its catalytic domain. Phosphorylated PLK4 is subsequently recognized by the SCF complex, ubiquitinylated and targeted to the proteasome for degradation. Recent data have also shown that active PLK4 is restricted to the centrosome, a mechanism that could serve to prevent aberrant centriole assembly elsewhere in the cell. While significant advances have been made in understanding how PLK4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of centriole duplication. Here, we overview past and present data discussing the regulation and functions of PLK4.
Collapse
|
177
|
Bettencourt-Dias M. Mónica Bettencourt-Dias: centered on centrioles. Interview by Ben Short. J Cell Biol 2010; 190:710-1. [PMID: 20819929 PMCID: PMC2935566 DOI: 10.1083/jcb.1905pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bettencourt-Dias studies the structures underlying both cilia and the mitotic spindle.
Collapse
|
178
|
Pearson CG, Winey M. Plk4/SAK/ZYG-1 in the regulation of centriole duplication. F1000 BIOLOGY REPORTS 2010; 2:58. [PMID: 21173875 PMCID: PMC2990628 DOI: 10.3410/b2-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Centrioles organize both centrosomes and cilia. Centriole duplication is tightly regulated and coordinated with the cell cycle to limit duplication to only once per cell cycle. Defects in centriole number and structure are commonly found in cancer. Plk4/SAK and the functionally related Caenorhabditis elegans ZYG-1 kinases initiate centriole duplication. Several recent studies have elucidated the regulated activity of these kinases and potential downstream targets for centriole assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Molecular, Cellular and Developmental Biology Porter Biosciences #416, CB0347, Boulder, CO 80309-0347 USA
| | | |
Collapse
|
179
|
Sinden RE, Talman A, Marques SR, Wass MN, Sternberg MJE. The flagellum in malarial parasites. Curr Opin Microbiol 2010; 13:491-500. [PMID: 20566299 DOI: 10.1016/j.mib.2010.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 12/19/2022]
Abstract
The malarial parasites assemble flagella exclusively during the formation of the male gamete in the midgut of the female mosquito vector. The observation of gamete formation ex vivo reported by Laveran (Laveran MA: De la nature parasitaire des accidents de l'impaludisme. Comptes Rendues De La Societe de Biologie. Paris 1881, 93:627-630) was seminal to the discovery of the parasite itself. Following ingestion of malaria-infected blood by the mosquito, microgamete formation from the terminally arrested gametocytes is exceptionally rapid, completing three mitotic divisions in just a few minutes, and is precisely regulated. This review attempts to draw together the diverse original observations with subsequent electron microscopic studies, and recent work on the signalling pathways regulating sexual development, together with transcriptomic and proteomic studies that are paving the way to new understandings of the molecular mechanisms involved and the potential they offer for effective interventions to block the transmission of the parasites in natural communities.
Collapse
Affiliation(s)
- R E Sinden
- The Malaria Centre, The Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
180
|
Filament-associated TSGA10 protein is expressed in professional antigen presenting cells and interacts with vimentin. Cell Immunol 2010; 265:120-6. [DOI: 10.1016/j.cellimm.2010.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/09/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
|