151
|
Shahnazari M, Yao W, Wang B, Panganiban B, Ritchie RO, Hagar Y, Lane NE. Differential maintenance of cortical and cancellous bone strength following discontinuation of bone-active agents. J Bone Miner Res 2011; 26:569-81. [PMID: 20839286 PMCID: PMC3179292 DOI: 10.1002/jbmr.249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model. Six-month-old ovariectomized (OVX) rats were treated with placebo, alendronate (ALN, 2 µg/kg), parathyroid hormone [PTH(1-34); 20 µg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume (BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively (p < .001). The resulting bone strength was similar to that of the sham-OVX control group with ALN and RAL and higher (p < .001) with PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls (p < .001). The vertebral strength was higher than in the OVX group only in ALN-treated group (p < .05), whereas only the PTH-treated animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength (maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long-term effects on bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of osteoporosis.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Department of Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Fields AJ, Lee GL, Liu XS, Jekir MG, Guo XE, Keaveny TM. Influence of vertical trabeculae on the compressive strength of the human vertebra. J Bone Miner Res 2011; 26:263-9. [PMID: 20715186 PMCID: PMC3179351 DOI: 10.1002/jbmr.207] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebral strength, a key etiologic factor of osteoporotic fracture, may be affected by the relative amount of vertically oriented trabeculae. To better understand this issue, we performed experimental compression testing, high-resolution micro-computed tomography (µCT), and micro-finite-element analysis on 16 elderly human thoracic ninth (T(9)) whole vertebral bodies (ages 77.5 ± 10.1 years). Individual trabeculae segmentation of the µCT images was used to classify the trabeculae by their orientation. We found that the bone volume fraction (BV/TV) of just the vertical trabeculae accounted for substantially more of the observed variation in measured vertebral strength than did the bone volume fraction of all trabeculae (r(2) = 0.83 versus 0.59, p < .005). The bone volume fraction of the oblique or horizontal trabeculae was not associated with vertebral strength. Finite-element analysis indicated that removal of the cortical shell did not appreciably alter these trends; it also revealed that the major load paths occur through parallel columns of vertically oriented bone. Taken together, these findings suggest that variation in vertebral strength across individuals is due primarily to variations in the bone volume fraction of vertical trabeculae. The vertical tissue fraction, a new bone quality parameter that we introduced to reflect these findings, was both a significant predictor of vertebral strength alone (r(2) = 0.81) and after accounting for variations in total bone volume fraction in multiple regression (total R(2) = 0.93). We conclude that the vertical tissue fraction is a potentially powerful microarchitectural determinant of vertebral strength.
Collapse
Affiliation(s)
- Aaron J Fields
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Tang SY, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 2011; 44:330-6. [PMID: 21056419 PMCID: PMC3019296 DOI: 10.1016/j.jbiomech.2010.10.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/22/2023]
Abstract
The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk.
Collapse
Affiliation(s)
- S Y Tang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
154
|
Fields AJ, Lee GL, Keaveny TM. Mechanisms of initial endplate failure in the human vertebral body. J Biomech 2010; 43:3126-31. [PMID: 20817162 PMCID: PMC2991488 DOI: 10.1016/j.jbiomech.2010.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/29/2010] [Accepted: 08/01/2010] [Indexed: 01/16/2023]
Abstract
Endplate failure occurs frequently in osteoporotic vertebral fractures and may be related to the development of high tensile strain. To determine whether the highest tensile strains in the vertebra occur in the endplates, and whether such high tensile strains are associated with the material behavior of the intervertebral disc, we used micro-CT-based finite element analysis to assess tissue-level strains in 22 elderly human vertebrae (81.5 ± 9.6 years) that were compressed through simulated intervertebral discs. In each vertebra, we compared the highest tensile and compressive strains across the different compartments: endplates, cortical shell, and trabecular bone. The influence of Poisson-type expansion of the disc on the results was determined by compressing the vertebrae a second time in which we suppressed the Poisson expansion. We found that the highest tensile strains occurred within the endplates whereas the highest compressive strains occurred within the trabecular bone. The ratio of strain to assumed tissue-level yield strain was the highest for the endplates, indicating that the endplates had the greatest risk of initial failure. Suppressing the Poisson expansion of the disc decreased the amount of highly tensile-strained tissue in the endplates by 79.4 ± 11.3%. These results indicate that the endplates are at the greatest risk of initial failure due to the development of high tensile strains, and that such high tensile strains are associated with the Poisson expansion of the disc. We conclude that initial failure of the vertebra is associated with high tensile strains in the endplates, which in turn are influenced by the material behavior of the disc.
Collapse
Affiliation(s)
- Aaron J Fields
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
155
|
Abstract
Vertebral fractures (VFxs) are the most common osteoporotic fracture, and are a strong risk factor for future fracture. The presence of a VFx greatly increases the risk of sustaining subsequent VFxs-a phenomenon often referred to as the "vertebral fracture cascade." VFxs do not occur uniformly along the spine, but occur more often at the mid-thoracic and thoracolumbar regions than elsewhere. It is likely that both the vertebral fracture cascade and the bimodal distribution of VFx along the spine are attributable to biomechanical factors. VFxs occur when the forces applied to the vertebral body exceed its strength. Loading on the spine is primarily determined by a person's height, weight, muscle forces, and the task or movement performed, but can also be affected by other factors, such as spinal curvature and invertebral disk deterioration. Vertebral strength is determined mainly by bone size, shape, and bone mineral density, and secondarily by bone microarchitecture, collagen characteristics, and microdamage. Better understanding of VFx etiology is hampered by the fact that most VFxs do not come to clinical attention; therefore, the factors and activities that cause VFxs remain ill defined, including possible differences in the etiology of acute fractures versus those of slow onset. Additional research is needed to elucidate the precise mechanical, morphologic, and biological mechanisms that underlie VFx to improve strategies for assessing VFx risk and preventing the vertebral fracture cascade.
Collapse
|
156
|
Abstract
STUDY DESIGN In vitro compressive load-displacement experiments on intact rat lumbar vertebrae and on the same vertebrae after part of their trabecular bone was removed. OBJECTIVE To determine the contribution of the trabecular bone component to the stiffness and strength of rat lumbar vertebrae. SUMMARY OF BACKGROUND DATA Vertebral fractures are common in the aging population, possibly resulting from the deterioration of the mechanical properties of vertebral bone. Studies of the contribution of trabecular bone to the mechanical behavior of whole vertebra were published, but yielded mixed results. Here, we propose a novel optical metrology approach to address this important question. METHODS The bodies of intact rat lumbar vertebrae and the bodies of the same vertebrae after part of their trabecular bone was removed were loaded within their elastic region in a wet environment. The amount of trabecular bone removed was determined by micro-computer tomography scanning. Deformation maps of the dorsal vertebral surface of the intact and manipulated vertebrae were obtained using an optical metrology method, and compared. Intact and manipulated vertebrae were also loaded to failure in compression and their strengths and stiffness were compared. RESULTS The preferred trabecular orientation was found to be along the anterior-posterior axis, which is similar to humans. Removal of up to 42% of the trabecular tissue in the intact vertebrae did not significantly affect lumbar vertebral stiffness. However, removal of even smaller amounts of the intact trabecular tissue significantly reduced vertebral strength. CONCLUSION Trabeculae in rat lumbar vertebrae fulfill an important role in failure resistance (strength), but have little or no effect on the deformational behavior (stiffness) of the bone. These results differ from previous results we reported for rat femora, where removal of trabecular bone surprisingly increased the stiffness of the whole bone, and suggest that trabecular tissue may have different functions depending on anatomic location, bone function and morphology, and mode of loading.
Collapse
|
157
|
Nekkanty S, Yerramshetty J, Kim DG, Zauel R, Johnson E, Cody DD, Yeni YN. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies. Bone 2010; 47:783-9. [PMID: 20633709 PMCID: PMC3710658 DOI: 10.1016/j.bone.2010.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/14/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat-panel CT system and followed with axial compression testing with Wood's metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood's metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures.
Collapse
Affiliation(s)
- Srikant Nekkanty
- Bone and Joint Research Center, Department of Orthopaedics, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
158
|
Melton LJ, Riggs BL, Keaveny TM, Achenbach SJ, Kopperdahl D, Camp JJ, Rouleau PA, Amin S, Atkinson EJ, Robb RA, Therneau TM, Khosla S. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 2010; 25:1922-30. [PMID: 20533526 PMCID: PMC3153401 DOI: 10.1002/jbmr.150] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because they are not reliably discriminated by areal bone mineral density (aBMD) measurements, it is unclear whether minimal vertebral deformities represent early osteoporotic fractures. To address this, we compared 90 postmenopausal women with no deformity (controls) with 142 women with one or more semiquantitative grade 1 (mild) deformities and 51 women with any grade 2-3 (moderate/severe) deformities. aBMD was measured by dual-energy X-ray absorptiometry (DXA), lumbar spine volumetric bone mineral density (vBMD) and geometry by quantitative computed tomography (QCT), bone microstructure by high-resolution peripheral QCT at the radius (HRpQCT), and vertebral compressive strength and load-to-strength ratio by finite-element analysis (FEA) of lumbar spine QCT images. Compared with controls, women with grade 1 deformities had significantly worse values for many bone density, structure, and strength parameters, although deficits all were much worse for the women with grade 2-3 deformities. Likewise, these skeletal parameters were more strongly associated with moderate to severe than with mild deformities by age-adjusted logistic regression. Nonetheless, grade 1 vertebral deformities were significantly associated with four of the five main variable categories assessed: bone density (lumbar spine vBMD), bone geometry (vertebral apparent cortical thickness), bone strength (overall vertebral compressive strength by FEA), and load-to-strength ratio (45-degree forward bending ÷ vertebral compressive strength). Thus significantly impaired bone density, structure, and strength compared with controls indicate that many grade 1 deformities do represent early osteoporotic fractures, with corresponding implications for clinical decision making.
Collapse
Affiliation(s)
- L Joseph Melton
- Division of Epidemiology, Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Remodelling of vertebral endplate subchondral bone in scoliosis: a micro-CT analysis in a porcine model. Clin Biomech (Bristol, Avon) 2010; 25:636-41. [PMID: 20605291 DOI: 10.1016/j.clinbiomech.2010.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disc degeneration has been correlated with alteration of bone density of adjacent vertebral bodies. Abnormal mechanical loading appears in scoliosis as compared to normal spines. How vertebral endplate was remodelled in scoliosis is not well understood. METHODS We conducted a micro-CT analysis of subchondral bone of the vertebral endplate at the curve apex in a porcine scoliosis model. Two adjacent thoracic T(5)-T(6) and lumbar L(1)-L(2) levels were instrumented in six four-week-old pigs with a custom offset implant connected by a flexible stainless steel wire. Two months after implantation, three cylindrical specimens were harvested into the vertebral endplate of each of the scoliosis levels: centre, convexity and concavity, and from the dorsal T(9)-T(10) vertebral units obtained from nine three-month-old non-instrumented pigs used as controls. Micro-CT analysis was carried out on each specimen. FINDINGS In the concavity of the scoliotic spine, bone volume fraction, trabecular thickness, and trabecular separation significantly increased whereas in the convexity, only trabecular separation increased. Connectivity index and trabecular number decreased significantly. INTERPRETATION This was the first micro-CT study of subchondral bone microarchitecture of the scoliotic vertebral end plate. At the curve apex, increased compression in the concavity induced an osteogenic process. In the convexity, diminished compression caused an osteolytic process with a local resorption. Clinically, the unbalanced tissue remodelling could play a role in the convective and diffusive transports into the end plate, which is of prime importance for the segment homeostasis in scoliosis treatment with or without surgery.
Collapse
|
160
|
Briot K, Kolta S, Fechtenbaum J, Said-Nahal R, Benhamou CL, Roux C. Increase in vertebral body size in postmenopausal women with osteoporosis. Bone 2010; 47:229-34. [PMID: 20381650 DOI: 10.1016/j.bone.2010.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 11/27/2022]
Abstract
Bone geometry plays a prominent role in bone strength. Cross-sectional studies have shown that advancing age is associated with increasing diameter of long bones, related to both periostal apposition and endosteal resorption. However, there are few data provided by prospective studies, especially concerning the changes in vertebral body dimensions. The objective of this prospective study was to measure the changes occurring in the vertebral body size of women with postmenopausal osteoporosis. Three-year data from placebo groups of the SOTI and TROPOS trials, performed in women with postmenopausal osteoporosis, were used for this study. In these trials, patients underwent lateral radiographs of the thoracic and lumbar spine at baseline and annually over 3 years, according to standardized procedures. Six-point digitization method was used: the four corner points of the vertebral body from T4 to L4 are marked, as well as an additional point in the middle of the upper and lower endplates. From these 6 points, the vertebral body perimeter, area and depth were measured at baseline and at 3 years. The analysis excluded all vertebrae with prevalent or incident fracture. A total of 2017 postmenopausal women (mean age 73.4+/-6.1 years) with a mean lumbar spine T score of -3.1+/-1.5, and a mean femoral neck T score of -3.0+/-0.7 are included in the analysis. Vertebral body dimensions increased over 3 years, by 2.1+/-5.5% (mean depth+/-SD), by 1.7+/-8.3% (mean area+/-SD) and by 1.5+/-4.9% (mean perimeter+/-SD) at the thoracic level (T4 to T12). At the lumbar level (L1 to L4), these dimensions increased as well: 1.4+/-3.6% (mean depth+/-SD), 1.4+/-5.7% (mean area+/-SD), 0.7+/-2.9% (mean perimeter+/-SD). A significant increase in vertebral body size was observed for each vertebral level from T5 to L4 for each of these parameters (p<0.01). These prospective results demonstrate that vertebral body dimensions increase over 3 years in women with postmenopausal osteoporosis.
Collapse
Affiliation(s)
- K Briot
- Paris Descartes University, Rheumatology Department, Cochin Hospital, Paris, France
| | | | | | | | | | | |
Collapse
|
161
|
Alwood JS, Yumoto K, Mojarrab R, Limoli CL, Almeida EAC, Searby ND, Globus RK. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone 2010; 47:248-55. [PMID: 20466089 DOI: 10.1016/j.bone.2010.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022]
Abstract
Astronauts are exposed to both musculoskeletal disuse and heavy ion radiation in space. Disuse alters the magnitude and direction of forces placed upon the skeleton causing bone remodeling, while energy deposited by ionizing radiation causes free radical formation and can lead to DNA strand breaks and oxidative damage to tissues. Radiation and disuse each result in a net loss of mineralized tissue in the adult, although the combined effects, subsequent consequences for mechanical properties and potential for recovery may differ. First, we examined how a high dose (2 Gy) of heavy ion radiation ((56)Fe) causes loss of mineralized tissue in the lumbar vertebrae of skeletally mature (4 months old), male, C57BL/6 mice using microcomputed tomography and determined the influence of structural changes on mechanical properties using whole bone compression tests and finite element analyses. Next, we tested if a low dose (0.5 Gy) of heavy particle radiation prevents skeletal recovery from a 14-day period of hindlimb unloading. Irradiation with a high dose of (56)Fe (2 Gy) caused bone loss (-14%) in the cancellous-rich centrum of the fourth lumbar vertebra (L4) 1 month later, increased trabecular stresses (+27%), increased the propensity for trabecular buckling and shifted stresses to the cortex. As expected, hindlimb unloading (14 days) alone adversely affected microarchitectural and mechanical stiffness of lumbar vertebrae, although the reduction in yield force was not statistically significant (-17%). Irradiation with a low dose of (56)Fe (0.5 Gy) did not affect vertebrae in normally loaded mice, but significantly reduced compressive yield force in vertebrae of unloaded mice relative to sham-irradiated controls (-24%). Irradiation did not impair the recovery of trabecular bone volume fraction that occurs after hindlimb unloaded mice are released to ambulate normally, although microarchitectural differences persisted 28 days later (96% increase in ratio of rod- to plate-like trabeculae). In summary, (56)Fe irradiation (0.5 Gy) of unloaded mice contributed to a reduction in compressive strength and partially prevented recovery of cancellous microarchitecture from adaptive responses of lumbar vertebrae to skeletal unloading. Thus, irradiation with heavy ions may accelerate or worsen the loss of skeletal integrity triggered by musculoskeletal disuse.
Collapse
Affiliation(s)
- J S Alwood
- Department of Aeronautics and Astronautics, 496 Lomita Mall, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
162
|
Chevalier Y, Pahr D, Zysset PK. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. J Biomech Eng 2010; 131:111003. [PMID: 20353254 DOI: 10.1115/1.3212097] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical finite element (FE) models can estimate vertebral stiffness and strength with much lower computational costs than muFE analyses, but the accuracy of these models rely on calibrated material properties that are not necessarily consistent with experimental results. In general, trabecular bone material properties are scaled with computer tomography (CT) density alone, without accounting for local variations in anisotropy or micro-architecture. Moreover, the cortex is often omitted or assigned with a constant thickness. In this work, voxel FE models, as well as surface-based homogenized FE models with topologically-conformed geometry and assigned with experimentally validated properties for bone, were developed from a series of 12 specimens tested up to failure. The effects of changing from a digital mesh to a smooth mesh, including a cortex of variable thickness and/or including heterogeneous trabecular fabric, were investigated. In each case, FE predictions of vertebral stiffness and strength were compared with the experimental gold-standard, and changes in elastic strain energy density and damage distributions were reported. The results showed that a smooth mesh effectively removed zones of artificial damage locations occurring in the ragged edges of the digital mesh. Adding an explicit cortex stiffened and strengthened the models, unloading the trabecular centrum while increasing the correlations to experimental stiffness and strength. Further addition of heterogeneous fabric improved the correlations to stiffness (R(2)=0.72) and strength (R(2)=0.89) and moved the damage locations closer to the vertebral endplates, following the local trabecular orientations. It was furthermore demonstrated that predictions of vertebral stiffness and strength of homogenized FE models with topologically-conformed cortical shell and heterogeneous trabecular fabric correlated well with experimental measurements, after assigning purely experimental data for bone without further calibration of material laws at the macroscale of bone. This study successfully demonstrated the limitations of current classical FE methods and provided valuable insights into the damage mechanisms of vertebral bodies.
Collapse
Affiliation(s)
- Yan Chevalier
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Austria.
| | | | | |
Collapse
|
163
|
Genant HK, Engelke K, Hanley DA, Brown JP, Omizo M, Bone HG, Kivitz AJ, Fuerst T, Wang H, Austin M, Libanati C. Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density. Bone 2010; 47:131-9. [PMID: 20399288 DOI: 10.1016/j.bone.2010.04.594] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/25/2010] [Accepted: 04/09/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bone strength is determined by both cortical and trabecular bone compartments and can be evaluated radiologically through measurement of bone density and geometry. Quantitative computed tomography (QCT) separately assesses cortical and trabecular bone reliably at various sites, including the distal radius where there is a gradation of cortical and trabecular bone. We evaluated the effect of denosumab, a fully human monoclonal antibody that inhibits RANK ligand, on distal radius QCT in women with low bone mass to assess the impact of this novel therapy separately on trabecular and cortical bone. METHODS Postmenopausal women (n=332) with spine areal bone mineral density (BMD) T-scores between -1.0 and -2.5 received denosumab 60 mg or placebo every 6 months during the 24-month study. QCT measurements along the distal radius were made using a whole-body computed tomography scanner and were used to determine the percentage change from baseline in volumetric BMD; volumetric bone mineral content (BMC); cortical thickness; volume; circumference; and density-weighted polar moment of inertia (PMI), a derived index of bone strength. RESULTS Denosumab treatment significantly increased total BMD and BMC along the radius (proximal, distal, and ultradistal sections). At 24 months, the ultradistal region had the greatest percentage increase in total BMD (4.7% [95% CI, 3.6-5.7]; P<0.001) and total BMC (5.7% [95% CI, 4.8-6.6]; P<0.001) over placebo. When cortical and trabecular bone at the proximal and distal regions were separately assessed, cortical bone had significant (P<0.001) increases in BMD, BMC, and thickness, and trabecular bone had a significant increase in BMD relative to placebo (P<0.05). Bone strength, estimated by density-weighted PMI, significantly increased compared with placebo after 6 months of treatment, with the largest percentage increase occurring at 24 months in the ultradistal region (6.6% [95% CI, 5.6-7.6]; P<0.0001). CONCLUSIONS QCT measurements demonstrated that denosumab significantly increased BMD, BMC, and PMI along the radius over 24 months. Additionally, denosumab prevented the decrease in QCT-measured cortical thickness observed in the placebo group. These data extend the evidence from previous dual-energy X-ray absorptiometry studies for a positive effect of denosumab on both the cortical and trabecular bone compartments and propose a possible mechanism for the reduction in fracture risk achieved with denosumab therapy.
Collapse
Affiliation(s)
- H K Genant
- Dept. of Radiology, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Sievänen H. Bone densitometry and true BMD accuracy for predicting fractures: what are the alternatives? ACTA ACUST UNITED AC 2010. [DOI: 10.2217/ijr.10.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
165
|
Engelke K, Fuerst T, Dasic G, Davies RY, Genant HK. Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 2010; 46:1626-32. [PMID: 20226286 DOI: 10.1016/j.bone.2010.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
In the published placebo-controlled Ibandronate Quality (IQ) study, 12 months of once-monthly oral ibandronate increased femoral and vertebral integral and trabecular bone mineral density (BMD) measured by quantitative computed tomography (QCT). Ibandronate showed significant improvements versus placebo in finite element analysis of femoral and vertebral strength. This post hoc analysis examined QCT BMD changes in novel superior and inferior vertebral volumes of interest (VOIs) and femoral and vertebral subcortical, extended cortical, and extended trabecular VOIs. Ninety-three postmenopausal women (BMD(a)T-scores< or =-2.0 at lumbar spine, total hip, or femoral neck) received ibandronate 150 mg/month (n=47) or placebo (n=46) for 12 months. QCT with Medical Imaging Analysis Framework (MIAF)-Spine and MIAF-Femur used automated segmentation and coordinate system-based identification of integral, cortical, subcortical, and trabecular VOIs and combinations (extended cortical=cortical+subcortical; extended trabecular=trabecular+subcortical). Between-group differences in mean percentage changes from baseline were determined by treatment- and center-adjusted analysis of variance. P values were post hoc, exploratory, descriptive, and unadjusted for multiple comparisons. Ibandronate increased vertebral superior and inferior trabecular and extended cortical midsection BMD (4.9%, p=0.032; 4.6%, p=0.055; 3.9%, p=0.014, respectively) versus placebo. Femoral BMD treatment differences (ibandronate versus placebo) were significant in total hip (extended trabecular 4.0%, p=0.005; extended cortical 1.5%, p=0.047; subcortical 3.7%, p=0.009), trochanter (extended trabecular 5.2%, p=0.007; extended cortical 2.4%, p=0.01), and extended trabecular femoral neck (4.0%, p=0.02). Monthly oral ibandronate for 12 months improved QCT BMD versus placebo in the vertebral periphery, subcortical total hip, and all femoral extended trabecular regions.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Germany.
| | | | | | | | | |
Collapse
|
166
|
Kennedy OD, Brennan O, Rackard SM, O'Brien FJ, Taylor D, Lee TC. Variation of trabecular microarchitectural parameters in cranial, caudal and mid-vertebral regions of the ovine L3 vertebra. J Anat 2010; 214:729-35. [PMID: 19438766 DOI: 10.1111/j.1469-7580.2009.01054.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The lumbar vertebrae are major load-bearing structures within the spinal column. The current understanding of the microstructure of these bodies and their full role in load-bearing is incomplete. There is a need to develop our understanding of these issues to improve fracture prediction in musculoskeletal diseases such as osteoporosis. The lumbar vertebrae consist primarily of trabecular bone enclosed in a thin cortical shell, but little is known about how microstructural parameters vary within these structures, particularly in relation to the trabecular compartment. The specific aim of this study was to use micro-computed tomography to characterize the trabecular microarchitecture of the ovine L3 vertebra in cranial, mid-vertebra and caudal regions. The L3 vertebra was obtained from skeletally mature ewes (n = 18) more than 4 years old. Three-dimensional reconstructions of three pre-defined regions were obtained and microarchitectural parameters were calculated. Whereas there was no difference in bone volume fraction or structural model index between regions, trabecular number, thickness, spacing, connectivity density, degree of anisotropy and bone mineral density all displayed significant regional variations. The observed differences were consistent with the biomechanical hypothesis that in vivo loads are distributed differently at the endplates compared with the mid-vertebra. Thus, a more integrative approach combining biomechanical theory and anatomical features may improve fracture risk assessment in the future.
Collapse
Affiliation(s)
- Oran D Kennedy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
167
|
Shahnazari M, Yao W, Dai W, Wang B, Ionova-Martin SS, Ritchie RO, Heeren D, Burghardt AJ, Nicolella DP, Kimiecik MG, Lane NE. Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone 2010; 46:1267-74. [PMID: 19931661 PMCID: PMC3003226 DOI: 10.1016/j.bone.2009.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/30/2009] [Accepted: 11/16/2009] [Indexed: 12/16/2022]
Abstract
We report the results of a series of experiments designed to determine the effects of ibandronate (Ibn) and risedronate (Ris) on a number of bone quality parameters in aged osteopenic rats to explain how bone material and bone mass may be affected by the dose of bisphosphonates (BP) and contribute to their anti-fracture efficacy. Eighteen-month old female rats underwent either ovariectomy or sham surgery. The ovariectomized (OVX) groups were left untreated for 2 months to develop osteopenia. Treatments started at 20 months of age as follows: sham and OVX control (treated with saline), OVX + risedronate 30 and 90 (30 or 90 microg/kg/dose), and OVX + ibandronate 30 and 90 (30 or 90 microg/kg/dose). The treatments were given monthly for 4 months by subcutaneous injection. At sacrifice at 24 months of age the 4th lumbar vertebra was used for microCT scans (bone mass, architecture, and degree of mineralization of bone, DMB) and histomorphometry, and the 6th lumbar vertebra, tibia, and femur were collected for biomechanical testing to determine bone structural and material strength, cortical fracture toughness, and tissue elastic modulus. The compression testing of the vertebral bodies (LVB6) was simulated using finite-element analysis (FEA) to also estimate the bone structural stiffness. Both Ibn and Ris dose-dependently increased bone mass and improved vertebral bone microarchitecture and mechanical properties compared to OVX control. Estimates of vertebral maximum stress from FEA were correlated with vertebral maximum load (r=0.5, p<0.001) and maximum stress (r=0.4, p<0.005) measured experimentally. Tibial bone bending modulus and cortical strength increased compared to OVX with both BP but no dose-dependent effect was observed. DMB and elastic modulus of trabecular bone were improved with Ibn 30 compared to OVX but were not affected in other BP-treated groups. DMB of tibial cortical bone showed no change with BP treatments. The fracture toughness examined in midshaft femurs did not change with BP even with the higher doses. In summary, the anti-fracture efficacy of BP is largely due to their preservation of bone mass and while the higher doses further improve the bone structural properties do not improve the localized bone material characteristics such as tissue strength, elastic modulus, and cortical toughness.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| | - WeiWei Dai
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| | - Bob Wang
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| | - Sophi S. Ionova-Martin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Robert O. Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel Heeren
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| | - Andrew J. Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158
| | - Daniel P. Nicolella
- Mechanical and Materials Engineering Division, Southwest Research Institute, San Antonio, TX, 78245
| | - Michael G. Kimiecik
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Nancy E. Lane
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA 95817
| |
Collapse
|
168
|
Briggs AM, Perilli E, Parkinson IH, Wrigley TV, Fazzalari NL, Kantor S, Wark JD. Novel assessment of subregional bone mineral density using DXA and pQCT and subregional microarchitecture using micro-CT in whole human vertebrae: applications, methods, and correspondence between technologies. J Clin Densitom 2010; 13:161-74. [PMID: 20347368 DOI: 10.1016/j.jocd.2010.01.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
In the clinical environment dual-energy X-ray absorptiometry (DXA) is the current tool of first choice for assessing and monitoring skeletal integrity. A major drawback of standard DXA is that the bone mineral density (BMD) data cannot be used with certainty to predict who will sustain a vertebral fracture. However, measurement of BMD within vertebral subregions, instead of relying on a gross estimate of vertebral BMD, may improve diagnostic sensitivity. The aim of this article was to describe a validation study for subregional BMD measurement using lateral-projection DXA and to present preliminary data. Concurrent validity of measuring subregional BMD with DXA was established against measures of volumetric subregional BMD from peripheral quantitative computed tomography (pQCT) and subregional bone volume fraction from microCT at the L2 vertebral body in 8 cadaver spine specimens. The novel approaches for measuring subregional parameters with each imaging modality are described. Significant differences in bone parameters between vertebral subregions were observed for each imaging modality (p<0.05). Correspondence ranged from R(2)=0.01-0.79 and R(2)=0.06-0.80 between "DXA vs. pQCT" and "DXA vs. micro-CT," respectively. For both imaging modalities, correspondence with DXA was high for centrally and anteriorly positioned subregions. These data provide a basis for larger studies to examine the biological significance of heterogeneity in vertebral BMD.
Collapse
Affiliation(s)
- Andrew M Briggs
- School of Physiotherapy and Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Western Australia
| | | | | | | | | | | | | |
Collapse
|
169
|
Charlebois M, Jirásek M, Zysset PK. A nonlocal constitutive model for trabecular bone softening in compression. Biomech Model Mechanobiol 2010; 9:597-611. [DOI: 10.1007/s10237-010-0200-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
170
|
Roux J, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res 2010; 25:356-61. [PMID: 19653808 PMCID: PMC6956704 DOI: 10.1359/jbmr.090803] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/30/2009] [Accepted: 07/30/2009] [Indexed: 01/23/2023]
Abstract
Whereas there is clear evidence for a strong influence of bone quantity (i.e., bone mass or bone mineral density) on vertebral mechanical behavior, there are fewer data addressing the relative influence of cortical and trabecular bone microarchitecture. The aim of this study was to determine the relative contributions of bone mass, trabecular microarchitecture, and cortical thickness and curvature to the mechanical behavior of human lumbar vertebrae. Thirty-one L3 vertebrae (16 men, 15 women, aged 75 +/- 10 years and 76 +/- 10 years, respectively) were obtained. Bone mineral density (BMD) of the vertebral body was assessed by lateral dual energy X-ray absorptiometry (DXA), and 3D trabecular microarchitecture and anterior cortical thickness and curvature was assessed by micro-computed tomography (microCT). Then compressive stiffness, work to failure, and failure load were measured on the whole vertebral body. BMD was correlated with compressive stiffness (r = 0.60), failure load (r = 0.70), and work to failure (r = 0.55). Except for the degree of anisotropy, all trabecular and cortical parameters were correlated with mechanical behavior (r = 0.36 to 0.58, p = .05 to .001, and r = 0.36 to 0.61, p = .05 to .0001, respectively). Stepwise and multiple regression analyses indicated that the best predictor of (1) failure load was the combination of BMD, structural model index (SMI), and trabecular thickness (Tb.Th) (R = 0.80), (2) stiffness was the combination of BMD, Tb.Th, and curvature of the anterior cortex (R = 0.82), and (3) work to failure was the combination of anterior cortical thickness and BMD (R = 0.68). Our data imply that measurements of cortical thickness and curvature may enhance prediction of vertebral fragility and that therapies that improve both vertebral cortical and trabecular bone properties may provide a greater reduction in fracture risk.
Collapse
Affiliation(s)
- Jean‐Paul Roux
- INSERM Research Unit 831, Université de Lyon, Lyon, France
| | - Julien Wegrzyn
- INSERM Research Unit 831, Université de Lyon, Lyon, France
- Department of Orthopedic Surgery, Pavillon T, Hôpital Edouard Herriot, Lyon, France
| | | | - Olivier Guyen
- Department of Orthopedic Surgery, Pavillon T, Hôpital Edouard Herriot, Lyon, France
| | | | | | - Mary L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
171
|
Harrison NM, McHugh PE. Comparison of trabecular bone behavior in core and whole bone samples using high-resolution modeling of a vertebral body. Biomech Model Mechanobiol 2010; 9:469-80. [PMID: 20066462 DOI: 10.1007/s10237-009-0188-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/23/2009] [Indexed: 11/26/2022]
Abstract
Computational analysis of trabecular bone normally involves the modeling of (experimental tests of) cored samples. However, the lack of constraint on the sides of the extracted trabecular bone samples limits the information that can be inferred regarding true in situ behavior. Here, the element-by-element voxel-based finite element method was applied via, a custom-written software suite (FEEBE), to a 72 microm resolution model of an ovine vertebra. The difference between the apparent modulus of eight concentric core cylinders when modeled as part of the whole bone (containing 84 x 10(6) degrees of freedom) and independent of the whole bone was investigated. The results showed that cored trabecular bone apparent modulus depended significantly on the core diameter when modeled as an extracted core (r (2) = 0.975) and as part of a whole bone (r (2) = 0.986). The cause of this result was separated into the side-artifact effect and bone volume fraction (BV/TV) effect. For the independently modeled cores, the apparent modulus of an inner core region of interest varied with increasing thickness of the outer annulus. This was attributed to the side-artifact effect, given that the BV/TV of the core region was constant. Within the whole trabecular structure, the side artifact was eliminated as the entire bone structure was modeled. However, a BV/TV effect influenced the apparent modulus depending on the size of the core selected for determining apparent modulus. Changing the size of the core varied the overall BV/TV of the core, and this significantly (r (2) = 0.999) influences the apparent modulus. Therefore, determining a 'true' apparent modulus for trabecular bone was not achievable. The independently modeled cores consistently under-predict the in vivo apparent modulus. It is recommended that if a 'true' apparent modulus is required, the BV/TV at which it is required needs to be first determined. Apparent modeling of entire bones at microscale resolution allowed regions of low and high tissue strains to be identified, consistent with patterns of trabecular bone remodeling and resorption reported in literature. The basivertebral vein cavity underwent the highest strains within the entire vertebral body, suggesting that failure might initiate here, despite containing visibly thicker struts and plate trabeculae. Although computationally expensive, analysis of the entire vertebral body provided a full picture of in situ trabecular bone deformation.
Collapse
Affiliation(s)
- Noel M Harrison
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|
172
|
Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Res Treat 2010; 124:111-9. [PMID: 20066491 DOI: 10.1007/s10549-009-0712-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Breast cancer patients commonly develop metastases in the spine, which compromises its mechanical stability and can lead to skeletal related events. The current clinical standard of treatment includes the administration of systemic bisphosphonates (BP) to reduce metastatically induced bone destruction. However, response to BPs can vary both within and between patients, which motivates the need for additional treatment options for spinal metastasis. Photodynamic therapy (PDT) has been shown to be effective at treating metastatic lesions secondary to breast cancer in an athymic rat model, and is proposed as a treatment for spinal metastasis. The objective of this study was to determine the effect of PDT, alone or in combination with previously administered systemic BPs, on the structural and mechanical integrity of both healthy and metastatically involved vertebrae. Human breast carcinoma cells (MT-1) were inoculated into athymic rats (day 0). At 14 days, a single PDT treatment was administered, with and without previous BP treatment at day 7. In addition to causing tumor necrosis in metastatically involved vertebrae, PDT significantly reduced bone loss, resulting in strengthening of the vertebrae compared to untreated controls. Combined treatment with BP + PDT further enhanced bone architecture and strength in both metastatically involved and healthy bone. Overall, the ability of PDT to both ablate malignant tissue and improve the structural integrity of vertebral bone motivates its consideration as a local minimally invasive treatment for spinal metastasis secondary to breast cancer.
Collapse
|
173
|
Cotter MM, Simpson SW, Latimer BM, Hernandez CJ. Trabecular microarchitecture of hominoid thoracic vertebrae. Anat Rec (Hoboken) 2009; 292:1098-106. [PMID: 19554642 DOI: 10.1002/ar.20932] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spontaneous vertebral fractures are a common occurrence in modern humans, yet these fractures are not documented in other hominoids. Differences in vertebral bone strength between humans and apes associated with trabecular bone microarchitecture may contribute to differences in fracture incidence. We used microcomputed tomography to examine trabecular bone microarchitecture in the T8 vertebra of extant young adult hominoids. Scaled volumes of interest from the anterior vertebral body were analyzed at a resolution of 46 microm, and bone volume fraction, trabecular thickness, trabecular number, trabecular separation, structure model index, and degree of anisotropy were compared among species. As body mass increased, so did trabecular thickness, but bone volume fraction, structure model index, and degree of anisotropy were independent of body mass. Bone volume fraction was not significantly different between the species. Degree of anisotropy was not significantly different among the species, suggesting similarity of loading patterns in the T8 vertebra due to similar anatomical and postural relationships within each species' spine. Degree of anisotropy was negatively correlated with bone volume fraction (r(2) = 0.85, P < 0.05) in humans, whereas the apes demonstrated no such relationship. This suggested that less dense human trabecular bone was more preferentially aligned to habitual loading. Furthermore, we theorize that trabeculae in ape thoracic vertebrae would not be expected to become preferentially aligned if bone volume fraction was decreased. The differing relationship between bone volume fraction and degree of anisotropy in humans and apes may cause less dense human bone to be more fragile than less dense ape bone.
Collapse
Affiliation(s)
- Meghan M Cotter
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
174
|
Abstract
The role of trabecular microarchitecture in whole-vertebral biomechanical behavior remains unclear, and its influence may be obscured by such factors as overall bone mass, bone geometry, and the presence of the cortical shell. To address this issue, 22 human T(9) vertebral bodies (11 female; 11 male; age range: 53-97 yr, 81.5 +/- 9.6 yr) were scanned with microCT and analyzed for measures of trabecular microarchitecture, BMC, cross-sectional area, and cortical thickness. Sixteen of the vertebrae were biomechanically tested to measure compressive strength. To estimate vertebral compressive stiffness with and without the cortical shell for all 22 vertebrae, two high-resolution finite element models per specimen-one intact model and one with the shell removed-were created from the microCT scans and virtually compressed. Results indicated that BMC and the structural model index (SMI) were the individual parameters most highly associated with strength (R(2) = 0.57 each). Adding microarchitecture variables to BMC in a stepwise multiple regression model improved this association (R(2) = 0.85). However, the microarchitecture variables in that regression model (degree of anisotropy, bone volume fraction) differed from those when BMC was not included in the model (SMI, mean trabecular thickness), and the association was slightly weaker for the latter (R(2) = 0.76). The finite element results indicated that the physical presence of the cortical shell did not alter the relationships between microarchitecture and vertebral stiffness. We conclude that trabecular microarchitecture is associated with whole-vertebral biomechanical behavior and that the role of microarchitecture is mediated by BMC but not by the cortical shell.
Collapse
|
175
|
Nelson ES, Lewandowski B, Licata A, Myers JG. Development and validation of a predictive bone fracture risk model for astronauts. Ann Biomed Eng 2009; 37:2337-59. [PMID: 19707874 DOI: 10.1007/s10439-009-9779-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/04/2009] [Indexed: 01/04/2023]
Abstract
There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture.
Collapse
Affiliation(s)
- Emily S Nelson
- Bioscience and Technology Branch, NASA Glenn Research Center, Cleveland, OH 44135, USA.
| | | | | | | |
Collapse
|
176
|
Kummari SR, Davis AJ, Vega LA, Ahn N, Cassinelli EH, Hernandez CJ. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading. Calcif Tissue Int 2009; 85:127-33. [PMID: 19488669 DOI: 10.1007/s00223-009-9257-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 05/03/2009] [Indexed: 11/30/2022]
Abstract
Microscopic tissue damage has been observed in otherwise healthy cancellous bone in humans and is believed to contribute to bone fragility and increased fracture risk. Animal models to study microscopic tissue damage and repair in cancellous bone would be useful, but it is currently not clear how loads applied to a whole animal bone are related to the amount and type of resulting microdamage in cancellous bone. In the current study we determine the relationship between applied cyclic compressive overloading and the resulting amount of microdamage in isolated rat tail vertebrae, a bone that has been used previously for in vivo loading experiments. Rat caudal vertebrae (C7-C9, n = 22) were potted in bone cement and subjected to cyclic compressive loading from 0 to 260 N. Loading was terminated in the secondary and tertiary phases of the creep-fatigue curve using custom data-monitoring software. In cancellous bone, trabecular microfracture was the primary form of microdamage observed with few microcracks. Trabecular microfracture prevalence increased with the amount of cyclic loading and occurred in nine out of 10 specimens loaded into the tertiary phase. Only small amounts of microdamage were observed in the cortical shell of the vertebrae, demonstrating that, under axial cyclic loading, damage occurs primarily in regions of cancellous bone before overt fracture of the bone (macroscopic cracks in the cortical shell). These experiments in isolated rat tail vertebrae suggest that it may be possible to use an animal model to study the generation and repair of microscopic tissue damage in cancellous bone.
Collapse
Affiliation(s)
- S R Kummari
- Department of Mechanical and Aerospace Engineering, Musculoskeletal Mechanics and Materials Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
177
|
Forwood MR, Vashishth D. Translational aspects of bone quality--vertebral fractures, cortical shell, microdamage and glycation: a tribute to Pierre D. Delmas. Osteoporos Int 2009; 20 Suppl 3:S247-53. [PMID: 19430876 DOI: 10.1007/s00198-008-0791-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Among vertebral deformities, the prevalence of wedge fractures is about twice that of endplate (biconcave) deformities, both of which are greater than that of crush deformities. The anterior cortex is, therefore, a site of interest for understanding mechanisms of vertebral fracture. Despite its importance to vertebral mechanics, there are limited data describing the role of cortical shell, microdamage, and bone matrix parameters in vertebral fragility. This review of literature emphasizes the translational aspects of bone quality and demonstrates that a greater understanding of bone fractures will be gained through bone quality parameters related to both cortical and cancellous compartments as well as from microdamage and bone matrix parameters. In the context of vertebral fractures, measures of cortical shell and bone matrix parameters related to the organic matrix (advanced glycation products and alpha/beta CTX ratio) are independent of BMD measurements and can therefore provide an additional estimate of fracture risk in older patients.
Collapse
Affiliation(s)
- M R Forwood
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
178
|
Tommasini SM, Hu B, Nadeau JH, Jepsen KJ. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae. J Bone Miner Res 2009; 24:606-20. [PMID: 19063678 PMCID: PMC2659510 DOI: 10.1359/jbmr.081224] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/01/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022]
Abstract
Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Steven M Tommasini
- New York Center for Biomedical Engineering, CUNY Graduate Center, Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Bin Hu
- Leni & Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, New York, USA
| | - Joseph H Nadeau
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Karl J Jepsen
- Leni & Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
179
|
Eswaran SK, Bevill G, Nagarathnam P, Allen MR, Burr DB, Keaveny TM. Effects of suppression of bone turnover on cortical and trabecular load sharing in the canine vertebral body. J Biomech 2009; 42:517-23. [PMID: 19181318 PMCID: PMC2888284 DOI: 10.1016/j.jbiomech.2008.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/28/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The relative biomechanical effects of antiresorptive treatment on cortical thickness vs. trabecular bone microarchitecture in the spine are not well understood. To address this, T-10 vertebral bodies were analyzed from skeletally mature female beagle dogs that had been treated with oral saline (n=8 control) or a high dose of oral risedronate (0.5mg/kg/day, n=9 RIS-suppressed) for 1 year. Two linearly elastic finite element models (36-mum voxel size) were generated for each vertebral body-a whole-vertebra model and a trabecular-compartment model-and subjected to uniform compressive loading. Tissue-level material properties were kept constant to isolate the effects of changes in microstructure alone. Suppression of bone turnover resulted in increased stiffness of the whole vertebra (20.9%, p=0.02) and the trabecular compartment (26.0%, p=0.01), while the computed stiffness of the cortical shell (difference between whole-vertebra and trabecular-compartment stiffnesses, 11.7%, p=0.15) was statistically unaltered. Regression analyses indicated subtle but significant changes in the relative structural roles of the cortical shell and the trabecular compartment. Despite higher average cortical shell thickness in RIS-suppressed vertebrae (23.1%, p=0.002), the maximum load taken by the shell for a given value of shell mass fraction was lower (p=0.005) for the RIS-suppressed group. Taken together, our results suggest that-in this canine model-the overall changes in the compressive stiffness of the vertebral body due to suppression of bone turnover were attributable more to the changes in the trabecular compartment than in the cortical shell. Such biomechanical studies provide an unique insight into higher-scale effects such as the biomechanical responses of the whole vertebra.
Collapse
Affiliation(s)
- Senthil K. Eswaran
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Grant Bevill
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Prem Nagarathnam
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Orthopaedics, Indiana University, Indianapolis, IN 46202, USA
| | - Tony M. Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
180
|
Ostertag A, Cohen-Solal M, Audran M, Legrand E, Marty C, Chappard D, de Vernejoul MC. Vertebral fractures are associated with increased cortical porosity in iliac crest bone biopsy of men with idiopathic osteoporosis. Bone 2009; 44:413-7. [PMID: 19071239 DOI: 10.1016/j.bone.2008.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/05/2008] [Accepted: 11/06/2008] [Indexed: 11/30/2022]
Abstract
In men, vertebral fractures are poorly associated with bone density, and both cortical and trabecular micro-architectural changes could contribute to bone fragility. Bone histomorphometry makes it possible to investigate both the thickness and porosity of cortical bone, which has been reported to have a major impact on the biomechanical properties of bone. We therefore conducted a cross sectional study using iliac crest biopsies to investigate the trabecular and cortical bone structure in men with or without vertebral fractures. We selected 93 bone biopsies from men with idiopathic osteoporosis (defined as a T-score <-2.5), between 40 and 70 years of age. Patients were divided into two groups on the basis of the presence (n=46) or absence (n=47) of prevalent vertebral fracture (VFX). We measured micro-architectural indices in trabecular and cortical bone by histomorphometry at the iliac crest. Patients with VFX had lower trabecular bone volume (BV/TV: 12.4+/-3.8 versus 14.7+/-3.1 % (m+/-SD)), p<0.01), higher trabecular separation (Tb.Sp: 871+/-279 versus 719+/-151 microm, p<0.01), and higher marrow star volume (V*(m.space): 1.617+/-1.257 versus 0.945+/-0.466 mm(3), p<0.01). Cortical thickness (Ct.Th) was the same in patients with or without VFX, whereas cortical porosity (Ct.Po) was higher in patients with VFX (6.5+/-2.6 versus 5.0+/-2.0 %, p<0.01), because their Haversian canals had higher mean areas (8291+/-4135 versus 5438+/-2809 microm(2), p<0.001). There was no correlation between any trabecular and cortical micro-architectural parameters. Using a logistic regression model, we evaluated the VFX as a function of the V*(m.space) and Ct.Po, adjusted for age. The odds-ratio of having a VFX was 3.89 (95% CI 1.19-12.7, p=0.02) for the third tertile of V*(m.space) (adjusted on age and Ct.Po), and 4.07 (95% CI 1.25-13.3, p=0.02) for the third tertile of Ct.Po (adjusted on age and V*(m.space)). Our data show that both trabecular and cortical bone microarchitecture contribute independently to vertebral fractures in men with idiopathic osteoporosis. In contrast to data reported in women, in men it is cortical porosity, and not cortical width, that is associated with vertebral fractures. This suggests that the cortical deficit is different in men and in women with fragility fractures.
Collapse
Affiliation(s)
- Agnès Ostertag
- INSERM, U606, and Université Paris Diderot, Centre Viggo Petersen, Hôpital Lariboisière, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
181
|
Pahr DH, Zysset PK. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput Methods Biomech Biomed Engin 2009. [DOI: 10.1080/10255840802144105] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
182
|
Mawatari T, Miura H, Hamai S, Shuto T, Nakashima Y, Okazaki K, Kinukawa N, Sakai S, Hoffmann PF, Iwamoto Y, Keaveny TM. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial. ACTA ACUST UNITED AC 2009; 58:3340-9. [PMID: 18975334 DOI: 10.1002/art.23988] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Finite element analysis of clinical computed tomography (CT) scans provides a noninvasive means of assessing vertebral strength that is superior to dual x-ray absorptiometry (DXA)-measured areal bone mineral density. The present study was undertaken to compare strength changes, measured using this newer method, in rheumatoid arthritis (RA) patients who were treated with alendronate (ALN) versus those who were not. METHODS Thirty female RA patients without radiologic signs of L3 compression fractures or a history of osteoporosis medication were enrolled in a prospective randomized clinical trial. Patients were randomly assigned to the ALN group (5 mg orally, once daily) or the control group not receiving antiresorptive treatment. All patients were evaluated by DXA and quantitative CT at baseline and reevaluated after a mean of 12.2 months. Nonlinear finite element analysis was performed on the CT scans (n = 29 available for analysis) to compute an estimate of vertebral compressive strength and to assess strength changes associated with changes in the trabecular compartment and the outer 2 mm of bone (peripheral compartment). RESULTS On average, vertebral strength was significantly decreased from baseline in the control group (n = 15) (median change -10.6%; P = 0.008) but was maintained in the ALN group (n = 14) (median change +0.4%; P = 0.55), with a significant difference between the 2 groups (P < 0.01). Strength decreased more rapidly within the trabecular bone, and ALN treatment was much more effective in the peripheral than the trabecular compartment. CONCLUSION Our results indicate that patients with RA can lose a substantial amount of vertebral strength over a relatively short period of time, and this loss can be prevented by ALN, primarily via its positive effect on the outer 2 mm of vertebral bone.
Collapse
Affiliation(s)
- Taro Mawatari
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Lewiecki EM, Keaveny TM, Kopperdahl DL, Genant HK, Engelke K, Fuerst T, Kivitz A, Davies RY, Fitzpatrick LA. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 2009; 94:171-80. [PMID: 18840641 DOI: 10.1210/jc.2008-1807] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Bone strength and fracture resistance are determined by bone mineral density (BMD) and structural, mechanical, and geometric properties of bone. DESIGN, SETTING, AND OBJECTIVES: This randomized, double-blind, placebo-controlled outpatient study evaluated effects of once-monthly oral ibandronate on hip and lumbar spine BMD and calculated strength using quantitative computed tomography (QCT) with finite element analysis (FEA) and dual-energy x-ray absorptiometry (DXA) with hip structural analysis (HSA). PARTICIPANTS Participants were women aged 55-80 yr with BMD T-scores -2.0 or less to -5.0 or greater (n = 93). INTERVENTION Oral ibandronate 150 mg/month (n = 47) or placebo (n = 46) was administered for 12 months. OUTCOME MEASURES The primary end point was total hip QCT BMD change from baseline; secondary end points included other QCT BMD sites, FEA, DXA, areal BMD, and HSA. All analyses were exploratory, with post hoc P values. RESULTS Ibandronate increased integral total hip QCT BMD and DXA areal BMD more than placebo at 12 months (treatment differences: 2.2%, P = 0.005; 2.0%, P = 0.003). FEA-derived hip strength to density ratio and femoral, peripheral, and trabecular strength increased with ibandronate vs. placebo (treatment differences: 4.1%, P < 0.001; 5.9%, P < 0.001; 2.5%, P = 0.011; 3.5%, P = 0.003, respectively). Ibandronate improved vertebral, peripheral, and trabecular strength and anteroposterior bending stiffness vs. placebo [7.1% (P < 0.001), 7.8% (P < 0.001), 5.6% (P = 0.023), and 6.3% (P < 0.001), respectively]. HSA-estimated femoral narrow neck cross-sectional area and moment of inertia and outer diameter increased with ibandronate vs. placebo (respectively 3.6%, P = 0.003; 4.0%, P = 0.052; 2.2%, P = 0.049). CONCLUSIONS Once-monthly oral Ibandronate for 12 months improved hip and spine BMD measured by QCT and DXA and strength estimated by FEA of QCT scans.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak Street NE, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Yeni YN, Kim DG, Divine GW, Johnson EM, Cody DD. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties. Bone 2009; 44:130-6. [PMID: 18848654 PMCID: PMC2667817 DOI: 10.1016/j.bone.2008.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 11/27/2022]
Abstract
Increase of trabecular stress variability with loss of bone mass has been implicated as a mechanism for increased cancellous bone fragility with age and disease. In the current study, a previous observation that trabecular shear stress estimates vary along the human spine such that the cancellous tissue from the thoracic 12 (T12)-lumbar 1 (L1) junction experiences the highest trabecular stresses for a given load was tested as a formal hypothesis using multiple human spines. Thoracic 4, T5, T7, T9, T10, T12, L1, L2, L4 and L5 vertebrae from 10 human cadaver spines were examined. One specimen in the central anterior region was cored in the supero-inferior (SI) direction and another in the postero-lateral region was cored in the transverse (TR) direction from each vertebra. Micro-CT-based large-scale finite element models were constructed for each specimen and compression in the long axis of the cylindrical specimens was simulated. Cancellous bone modulus and the mean, the standard deviation, variability and amplification of trabecular von Mises stresses were computed. Bone volume fraction, trabecular number, trabecular thickness, trabecular separation, connectivity density and degree of anisotropy were calculated using 3D stereology. The results were analyzed using a mixed model in which spine level was modeled using a quadratic polynomial. The maximum of trabecular shear stress amplification and minimum of bone volume fraction were found in the cancellous tissue from the T12-L1 location when results from the samples of the same vertebra were averaged. When groups were separated, microstructure and trabecular stresses varied with spine level, extrema being at the T12-L1 levels, for the TR specimens only. SI/TR ratio of measured parameters also had quadratic relationships with spine level, the extrema being located at T12-L1 levels for most parameters. For microstructural parameters, these ratios approached to a value of one at the T12-L1 level, suggesting that T12-L1 vertebrae have more uniform cancellous tissue properties than other levels. The mean intercept length in the secondary principal direction of trabecular orientation could account for the variation of all mechanical parameters with spine level. Our results support that cancellous tissue from T12-L1 levels is unique and may explain, in part, the higher incidence of vertebral fractures at these levels.
Collapse
Affiliation(s)
- Yener N. Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI,
| | - Do-Gyoon Kim
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI,
| | - George W. Divine
- Biostatistics & Research Epidemiology, Henry Ford Hospital, Detroit, MI,
| | - Evan M. Johnson
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX,
| | - Dianna D. Cody
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX,
| |
Collapse
|
185
|
Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech 2008; 42:249-56. [PMID: 19101672 DOI: 10.1016/j.jbiomech.2008.10.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/17/2022]
Abstract
Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and progression in human vertebral trabecular bone. Fifteen human vertebral trabecular bone samples were imaged using micro computed tomography (microCT), and segmented using ITS into individual plates and rods by orientation (longitudinal, oblique, and transverse). Nonlinear FE analysis was conducted to perform a compression simulation for each sample up to 1% apparent strain. The apparent and relative trabecular number and tissue fraction of failed trabecular plates and rods were recorded during loading and data were stratified by trabecular orientation. More trabecular rods (both in number and tissue fraction) failed at the initiation of compression (0.1-0.2% apparent strain) while more plates failed around the apparent yield point (>0.7% apparent strain). A significant correlation between plate bone volume fraction (pBV/TV) and apparent yield strength was found (r(2)=0.85). From 0.3% to 1% apparent strain, significantly more longitudinal trabecular plate and transverse rod failed than other types of trabeculae. While failure initiates at rods and rods fail disproportionally to their number, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume. The relative failed number and tissue fraction at apparent yield point indicate homogeneous local failure in plates and rods of different orientations.
Collapse
Affiliation(s)
- X Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
186
|
van Lenthe GH, Müller R. CT-based visualization and quantification of bone microstructure in vivo. ACTA ACUST UNITED AC 2008. [DOI: 10.1138/20080348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
187
|
Chevalier Y, Charlebois M, Pahr D, Varga P, Heini P, Schneider E, Zysset P. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Engin 2008; 11:477-87. [PMID: 18608338 DOI: 10.1080/10255840802078022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
188
|
Abstract
For the clinician, predicting the fracture risk for individual patients is mainly restricted to the quantitative analysis of bone density. Several studies have shown that bone strength, an indicator for bone fracture risk, is only predicted moderately by bone density, indicating that there are other factors influencing bone competence. However, the relative importance of "bone quantity" and "bone quality" remains poorly understood. The objectives of this article are to describe some of the techniques used to measure the microarchitectural aspects of bone quality, how they can be quantified, and how these quantitative endpoints can be used in the assessment of bone competence. Special focus will be on the distal radius, a site with a high fracture incidence. With the introduction of high-resolution in vivo bone imaging systems, a new generation of imaging instruments has entered the arena allowing the reconstruction of the 3-dimensional microarchitecture of the bones at the wrist, thereby giving researchers and clinicians a powerful tool for the quantitative assessment of bone microstructure. In combination with large-scale finite element modeling, these methodologies have reached a level that it is now becoming possible to assess bone stiffness and strength in humans in a clinical setting. The procedure can help improve predictions of fracture risk, clarify the pathophysiology of skeletal diseases, and monitor the response to therapy.
Collapse
|
189
|
Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Spine (Phila Pa 1976) 2008; 33:1722-30. [PMID: 18628704 DOI: 10.1097/brs.0b013e31817c750b] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Collapse
|
190
|
Lochmüller EM, Pöschl K, Würstlin L, Matsuura M, Müller R, Link TM, Eckstein F. Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density? Osteoporos Int 2008; 19:537-45. [PMID: 17912574 DOI: 10.1007/s00198-007-0478-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Trabecular bone microstructure was studied in 6 mm bone biopsies taken from the 10th thoracic and 2nd lumbar vertebra of 165 human donors and shown to not differ significantly between these sites. Microstructural parameters at the locations examined provided only marginal additional information to quantitative computed tomography in predicting experimental failure strength. INTRODUCTION It is unknown whether trabecular microstructure differs between thoracic and lumbar vertebrae and whether it adds significant information in predicting the mechanical strength of vertebrae in combination with QCT-based bone density. METHODS Six mm cylindrical biopsies taken at mid-vertebral level, anterior to the center of the thoracic vertebra (T) 10 and the lumbar vertebra (L) 2 were studied with micro-computed tomography (microCT) in 165 donors (age 52 to 99 years). The segment T11-L1 was examined with QCT and tested to failure using a testing machine. RESULTS The correlation of microstructural properties was moderate between T10 and L2 (r <or= 0.5). No significant differences were observed in the microstructural properties between the thoracic and lumbar spine, nor were sex differences at T10 or L2 observed. Cortical/subcortical density of T12 (r(2)=48%) was more strongly correlated with vertebral failure stress than trabecular density (r(2)=32%). BV/TV (of T10) improved the prediction by 52% (adjusted r(2)) in a multiple regression model. CONCLUSION Microstructural properties of trabecular bone biopsies displayed a high degree of heterogeneity between vertebrae but did not differ significantly between the thoracic and lumbar spine. At the locations examined, bone microstructure only marginally improved the prediction of structural vertebral strength beyond QCT-based bone density.
Collapse
|
191
|
Yeni YN, Zelman EA, Divine GW, Kim DG, Fyhrie DP. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture. Bone 2008; 42:591-6. [PMID: 18180212 PMCID: PMC2276462 DOI: 10.1016/j.bone.2007.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/26/2007] [Accepted: 11/20/2007] [Indexed: 11/15/2022]
Abstract
Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were examined in order to establish the relationship between stress distribution parameters and trabecular architecture. Eighty cancellous bone specimens were cored from the anterior region of thoracic 12 and donor-matched lumbar 1 vertebrae from a randomly selected population of 40 cadavers. The specimens were scanned at 21-microm voxel size using microcomputed tomography (microCT) and reconstructed at 50microm. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), bone surface-to-volume ratio (BS/BV), degree of anisotropy (MIL1/MIL3), and connectivity density (-#Euler/Vol) were calculated directly from micro-CT images. Large-scale finite element models were constructed and superoinferior compressive loading was simulated. Apparent cancellous modulus (EFEM) was calculated. The average trabecular von Mises stress generated per uniaxial apparent stress (sigma (-)VM / sigmaapp) and coefficient of variation of trabecular von Mises stresses (COV) were calculated as measures of the magnitude and variability of shear stresses in the trabeculae. Mixed-models and regression were used for analysis. sigma(-)VM / sigmaapp and COV were not different between genders and vertebrae. Both sigma(-)VM / sigmaapp and COV increased with age accompanied by a decrease in BV/TV. Strong relationship of sigma(-)VM / sigmaapp with BV/TV was found whereas COV was strongly related to EFEM/(BV/TV). The results from T12 and L1 were not different and highly correlated with each other. The relationship of sigma(-)VM / sigmaapp with COV was observed to be different between males and females. This difference could not be explained by architectural parameters considered in this study. Our results support the relevance of trabecular shear stress amplification and variability in age-related vertebral bone fragility. The relationships found are expected to help understand the micro-mechanisms by which cancellous bone mass and mechanical properties are modulated through a collection of local stress parameters.
Collapse
Affiliation(s)
- Yener N. Yeni
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI,
| | - Eric A. Zelman
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI,
| | - George W. Divine
- Biostatistics & Research Epidemiology, Henry Ford Hospital, Detroit, MI,
| | - Do-Gyoon Kim
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI,
| | - David P. Fyhrie
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, CA,
| |
Collapse
|
192
|
Eser P, Cook J, Black J, Iles R, Daly RM, Ptasznik R, Bass SL. Interaction between playing golf and HRT on vertebral bone properties in post-menopausal women measured by QCT. Osteoporos Int 2008; 19:311-9. [PMID: 17938985 DOI: 10.1007/s00198-007-0467-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/26/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED We investigated the effect of playing regular golf and HRT on lumbar and thoracic vertebral bone parameters (measured by QCT) in 72 post-menopausal women. The main finding of this study was that there was positive interaction between golf and HRT on vertebral body CSA and BMC at the thoracic 12 and lumbar 2 vertebra but not the third and seventh thoracic vertebras. INTRODUCTION Identifying specific exercises that load the spine sufficiently to be osteogenic is an important component of primary osteoporosis prevention. The aim of this study was to determine if in postmenopausal women regular participation in golf resulted in greater paravertebral muscle mass and improved vertebral bone strength. METHODS Forty-seven postmenopausal women who played golf regularly were compared to 25 controls. Bone parameters at the mid-vertebral body were determined by QCT at spinal levels T3, T7, T12 and L2 (cross-sectional area (CSA), total volumetric BMD (vBMD), trabecular vBMD of the central 50% of total CSA, BMC and cortical rim thickness). At T7 and L2, CSA of trunk muscles was determined. RESULTS There was a positive interaction between golf and HRT for vertebral CSA and BMC at T12 and L2, but not at T3 or T7 (p ranging < 0.02 to 0.07). Current HRT use was associated with a 10-15% greater total and trabecular vBMD at all measured vertebral levels. Paravertebral muscle CSA did not differ between groups. Vertebral CSA was the bone parameter significantly related to muscle CSA. CONCLUSION These findings provide preliminary evidence that playing golf may improve lower spine bone strength in postmenopausal women who are using HRT.
Collapse
Affiliation(s)
- P Eser
- Centre for Physical Activity and Nutrition Research, Deakin University, 221 Burwood Hwy, Burwood, Victoria 3125, Australia
| | | | | | | | | | | | | |
Collapse
|
193
|
Kolta S, Quiligotti S, Ruyssen-Witrand A, Amido A, Mitton D, Bras AL, Skalli W, Roux C. In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method. Osteoporos Int 2008; 19:185-92. [PMID: 17846861 DOI: 10.1007/s00198-007-0447-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
UNLABELLED We used a standard DXA device equipped with a C-arm to do in vivo reconstruction of human vertebrae from two orthogonal scans. This new technique, called 3D-XA (three-dimensional X-ray absorptiometry), allows the direct measurement of geometric parameters of the vertebrae with a good accuracy and precision. INTRODUCTION Geometric parameters are predictors of bone strength. A technique called three-dimensional X-ray absorptiometry (3D-XA) allows 3D reconstruction of bones from DXA scans. We used the 3D-XA method to reconstruct human vertebrae and to evaluate the method's in vitro accuracy and in vivo precision. METHODS A standard DXA device equipped with a C-arm was used. Calibration of its environment and identification of different anatomical landmarks of the vertebrae allows personalized 3D geometric reconstruction of vertebrae. Accuracy was calculated by reconstructing 16 dry human vertebrae by 3D-XA and CT scanner. In vivo inter-observer precision was calculated using 20 human spines. RESULTS The mean difference between 3D reconstruction by CT and 3D-XA was -0.2 +/- 1.3 mm. The in vivo mean difference of the 3D-XA method between the two rheumatologists was -0.1 +/- 0.8 mm. For geometric parameters, mean difference ranged from 0.4 to 0.9 mm. For cross-sectional area and vertebral body volume, it was 2.9% and 3.2%, respectively. CONCLUSION This study shows the good accuracy and precision of 3D-XA using a standard DXA device. It yields complementary information on bone geometry. Further studies are needed to evaluate if, coupled with bone density, it improves vertebral fracture risk prediction.
Collapse
Affiliation(s)
- S Kolta
- Paris-Descartes University, Medicine Faculty, UPRES-EA 4058, AP-HP, Cochin Hospital, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Melton LJ, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S. Structural determinants of vertebral fracture risk. J Bone Miner Res 2007; 22:1885-92. [PMID: 17680721 DOI: 10.1359/jbmr.070728] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Vertebral fractures are more strongly associated with specific bone density, structure, and strength parameters than with areal BMD, but all of these variables are correlated. INTRODUCTION It is unclear whether the association of areal BMD (aBMD) with vertebral fracture risk depends on bone density per se, bone macro- or microstructure, overall bone strength, or spine load/bone strength ratios. MATERIALS AND METHODS From an age-stratified sample of Rochester, MN, women, we identified 40 with a clinically diagnosed vertebral fracture (confirmed semiquantitatively) caused by moderate trauma (cases; mean age, 78.6 +/- 9.0 yr) and compared them with 40 controls with no osteoporotic fracture (mean age, 70.9 +/- 6.8 yr). Lumbar spine volumetric BMD (vBMD) and geometry were assessed by central QCT, whereas microstructure was evaluated by high-resolution pQCT at the ultradistal radius. Vertebral failure load ( approximately strength) was estimated from voxel-based finite element models, and the factor-of-risk (phi) was determined as the ratio of applied spine loads to failure load. RESULTS Spine loading (axial compressive force on L3) was similar in vertebral fracture cases and controls (e.g., for 90 degrees forward flexion, 2639 versus 2706 N; age-adjusted p = 0.173). However, fracture cases had inferior values for most bone density and structure variables. Bone strength measures were also reduced, and the factor-of-risk (phi) was 35-37% greater (worse) among women with a vertebral fracture. By age-adjusted logistic regression, relative risks for the strongest fracture predictor in each of the five main variable categories were bone density (total lumbar spine vBMD: OR per SD change, 2.2; 95% CI, 1.1-4.3), bone geometry (vertebral apparent cortical thickness: OR, 2.1; 95% CI, 1.1-4.1), bone microstructure (none significant); bone strength ("cortical" [outer 2 mm] compressive strength: OR, 2.5; 95% CI, 1.3-4.8), and factor-of-risk (phi for 90 degrees forward flexion/overall vertebral compressive strength: OR, 3.2; 95% CI, 1.4-7.5). These variables were correlated with spine aBMD (partial r, -0.32 to 0.75), but each was a stronger predictor of fracture in the logistic regression analyses. CONCLUSIONS The association of aBMD with vertebral fracture risk is explained by its correlation with more specific bone density, structure, and strength parameters. These may allow deeper insights into fracture pathogenesis.
Collapse
Affiliation(s)
- L Joseph Melton
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 2007; 41:946-57. [PMID: 17913613 DOI: 10.1016/j.bone.2007.08.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Vertebral fractures may result in pain, loss of height, spinal instability, kyphotic deformity and ultimately increased morbidity. Fracture risk can be estimated by vertebral bone mineral density (BMD). However, vertebral fractures may be better defined by more selective methods that account for micro-architecture. Our aim was to quantify regional variations in bone architecture parameters (BAPs) and to assess the degree with which regional variations in BAPs affect vertebral fracture strength. The influence of disc health and endplate thickness on fracture strength was also determined. The soft tissue and posterior elements of 20 human functional spine units (FSU) were removed (T9 to L5, mean 74.45+/-4.25 years). After micro-CT scanning of the entire FSU, the strength of the specimens was determined using a materials testing system. Specimens were loaded in compression to failure. BAPs were assessed for 10 regions of the vertebral cancellous bone. Disc health (glycosaminoglycan content of the nucleus pulposus) was determined using the degree of binding with Alcian Blue. Vertebrae were not morphologically homogeneous. Posterior regions of the vertebrae had greater bone volume, more connections, reduced trabecular separation and more plate-like isotropic structures than their corresponding anterior regions. Significant heterogeneity also exists between posterior superior and inferior regions (BV/TV: posterior superior 12.6+/-2.8%, inferior 14.6+/-3%; anterior superior 10.5+/-2.2%, inferior 10.7+/-2.4%). Of the two endplates that abutted a common disc, the cranial inferior endplate was thicker (0.44+/-0.15 mm) than the caudal superior endplate (0.37+/-0.13 mm). Our study found good correlations between BV/TV, connective density and yield strength. Fracture risk prediction, using BV/TV multiplied by the cross sectional area of the endplate, can be improved through regional analysis of the underlying cancellous bone of the endplate of interest (R(2) 0.78) rather than analysis of the entire vertebra (R(2) 0.65) or BMD (R(2) 0.47). Degenerated discs lack a defined nucleus. A negative linear relationship between disc health and vertebral strength (R(2) 0.70) was observed, likely due to a shift in loading from the weaker anterior vertebral region to the stronger posterior region and cortical shell. Our results show the importance of considering regional variations in cancellous BAPs and disc health when assessing fracture risk.
Collapse
Affiliation(s)
- P A Hulme
- MEM Research Center, University of Bern, Stauffacherstrasse 78, CH 3014, Bern, Switzerland.
| | | | | |
Collapse
|
196
|
Davis KA, Burghardt AJ, Link TM, Majumdar S. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 2007; 81:364-71. [PMID: 17952361 DOI: 10.1007/s00223-007-9076-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 09/07/2007] [Indexed: 11/30/2022]
Abstract
This study evaluates in vivo methods for calculating cortical thickness (Ct.Th) with respect to sensitivity to tissue-level changes in mineralization and the ability to predict whole-bone mechanical properties. Distal radial and tibial images obtained from normal volunteers using high-resolution peripheral quantitative computed tomography (HR-pQCT) were segmented using three thresholds including the manufacturer default and +/-5% in terms of equivalent mineral density. Ct.Th was determined in two ways: using a direct three-dimensional (3D) method and using an annular method, where cortical bone volume is divided by periosteal surface area. D(comp) (mg HA/cm(3)) was calculated based on the mean density-calibrated linear attenuation values of the cortical compartment. Finite element analysis was performed to evaluate the predictive ability of the annular and direct Ct.Th methods. Using the direct 3D method, a +/-5% change in threshold resulted in a 2% mean difference in Ct.Th for both the radius and tibia. An average difference of 5% was found using the annular method. The change in threshold produced changes in D(comp) ranging 0.50-1.56% for both the tibia and radius. Annular Ct.Th correlated more strongly with whole-bone apparent modulus (R(2)=0.64 vs. R(2)=0.41). Both thickness calculation methods and threshold selection have a direct impact on cortical parameters derived from HR-pQCT images. Indirectly, these results suggest that moderate changes in tissue-level mineralization can affect cortical measures. Furthermore, while the direct 3D Ct.Th method is less sensitive to threshold effects, both methods are moderate predictors of mechanical strength, with the annular method being the stronger correlate.
Collapse
Affiliation(s)
- Kevin A Davis
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, CA, USA.
| | | | | | | |
Collapse
|
197
|
Hulme PA, Ferguson SJ, Boyd SK. Determination of vertebral endplate deformation under load using micro-computed tomography. J Biomech 2007; 41:78-85. [PMID: 17915227 DOI: 10.1016/j.jbiomech.2007.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
Endplate strength plays an important role in preventing vertebral failure of normal vertebrae and in cases where surgical intervention has replaced the disc with an implant or has altered the vertebral loading. We have developed a non-contact method based on the principles of image guided failure analysis, mechanical testing, and micro-computed tomography analysis, which allows for in vitro quantification of endplate deformation under axial load. The method allows for the implementation of a repeated measures experimental design, each specimen acting as its own control. Our methodology was validated using cadaveric functional spine units, loaded stepwise from 200 N to a maximum of 2000 N. The loading protocol was repeated over two days, allowing time for recovery of the disc mechanical properties. We found no meaningful difference in measured force, stiffness, and endplate deformation between day 1 and day 2. The mean fiducial registration error was less than 0.015 mm for all three axes. Endplate deformation could be reproducibly estimated. The root mean squared error was 0.03 mm, which is the effective precision of the method. Using this micro-CT based method, the effect of interbody implants, grafts, disc replacement strategies, and surgical procedures such as nucleotomy and vertebral cement augmentation on endplate mechanical behaviour can be ascertained.
Collapse
Affiliation(s)
- P A Hulme
- MEM Research Center, University of Bern, Stauffacherstrasse 78, CH 3014, Bern, Switzerland.
| | | | | |
Collapse
|
198
|
Eswaran SK, Gupta A, Keaveny TM. Locations of bone tissue at high risk of initial failure during compressive loading of the human vertebral body. Bone 2007; 41:733-9. [PMID: 17643362 PMCID: PMC2082110 DOI: 10.1016/j.bone.2007.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 04/27/2007] [Accepted: 05/16/2007] [Indexed: 11/19/2022]
Abstract
Knowledge of the location of initial regions of failure within the vertebra - cortical shell, cortical endplates vs. trabecular bone, as well as anatomic location--may lead to improved understanding of the mechanisms of aging, disease and treatment. The overall objective of this study was to identify the location of the bone tissue at highest risk of initial failure within the vertebral body when subjected to compressive loading. Toward this end, micro-CT-based 60-micron voxel-sized, linearly elastic, finite element models of a cohort of thirteen elderly (age range: 54-87 years, 75+/-9 years) female whole vertebrae without posterior elements were virtually loaded in compression through a simulated disc. All bone tissues within each vertebra having either the maximum or minimum principal strain beyond its 90th percentile were defined as the tissue at highest risk of initial failure within that particular vertebral body. Our results showed that such high-risk tissue first occurred in the trabecular bone and that the largest proportion of the high-risk tissue also occurred in the trabecular bone. The amount of high-risk tissue was significantly greater in and adjacent to the cortical endplates than in the mid-transverse region. The amount of high-risk tissue in the cortical endplates was comparable to or greater than that in the cortical shell regardless of the assumed Poisson's ratio of the simulated disc. Our results provide new insight into the micromechanics of failure of trabecular and cortical bone within the human vertebra, and taken together, suggest that, during strenuous compressive loading of the vertebra, the tissue near and including the endplates is at the highest risk of initial failure.
Collapse
Affiliation(s)
- Senthil K. Eswaran
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Atul Gupta
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Tony M. Keaveny
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
199
|
Gallagher S, Marras WS, Litsky AS, Burr D, Landoll J, Matkovic V. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting. Spine (Phila Pa 1976) 2007; 32:1832-9. [PMID: 17762290 DOI: 10.1097/01.brs.0000259812.75138.c0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Survival analysis techniques were used to compare the fatigue failure responses of elderly motion segments to a middle-aged sample. OBJECTIVES To compare fatigue life of a middle-aged sample of lumbosacral motion segments to a previously tested elderly cohort. An additional objective was to evaluate the influence of bone mineral content on cycles to failure. SUMMARY OF BACKGROUND DATA A previous investigation evaluated fatigue failure responses of 36 elderly lumbosacral motion segments (average age, 81 +/- 8 years) subjected to spinal loads estimated when lifting a 9-kg load in 3 torso flexion angles (0 degrees, 22.5 degrees, and 45 degrees). Results demonstrated rapid fatigue failure with increased torso flexion; however, a key limitation of this study was the old age of the specimens. METHODS Each lumbosacral spine was dissected into 3 motion segments (L1-L2, L3-L4, and L5-S1). Motion segments within each spine were randomly assigned to a spinal loading condition corresponding to lifting 9 kg in 3 torso flexion angles (0 degrees, 22.5 degrees, or 45 degrees). Motion segments were statically loaded and allowed to creep for 15 minutes, then cyclically loaded at 0.33 Hz. Fatigue life was taken as the number of cycles to failure (10 mm displacement after creep loading). RESULTS Compared with the older sample of spines, the middle-aged sample exhibited increased fatigue life (cycles to failure) in all the torso flexion conditions. Increased fatigue life of the middle-aged specimens was associated with the increased bone mineral content (BMC) in younger motion segments (mean +/- SD, 30.7 +/- 11.1 g per motion segment vs. 27.8 +/- 9.4 g). Increasing bone mineral content had a protective influence with each additional gram increasing survival times by approximately 12%. CONCLUSION Younger motion segments survive considerably longer when exposed to similar spine loading conditions that simulate repetitive lifting in neutral and flexed torso postures, primarily associated with the increased bone mineral content possessed by younger motion segments. Cycles to failure of young specimens at 22.5 degrees flexion were similar to that of older specimens at 0 degrees flexion, and survivorship of young specimens at 45 degrees flexion was similar to the older cohort at 22.5 degrees.
Collapse
Affiliation(s)
- Sean Gallagher
- NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA 15236-0070, USA.
| | | | | | | | | | | |
Collapse
|
200
|
MacNeil JA, Boyd SK. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone 2007; 41:129-37. [PMID: 17442649 DOI: 10.1016/j.bone.2007.02.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 01/12/2007] [Accepted: 02/28/2007] [Indexed: 11/23/2022]
Abstract
A 3D high resolution peripheral quantitative computed tomography scanner (HR-pQCT) (XtremeCT, Scanco Medical, voxel size 82 microm) has been recently developed that can perform in vivo human measurements on peripheral sites, including the wrist and tibia. The goals of this study were to use HR-pQCT measurements to determine the ability of morphological and density measurements to predict bone apparent stiffness and apparent Young's modulus in the distal radius and tibia, to determine the relative importance of cortical and trabecular bone in carrying load in the human distal radius and tibia. Furthermore, the ability of a sub-volume of trabecular bone apparent Young's modulus to predict the Young's modulus of a whole radius and tibia section was determined. A total of 25 measurements of the radius and 12 measurements of the tibia were used for morphological and finite element analyses of sections, and sub-volume cubes of trabecular bone from the distal radius and tibia. The subjects were chosen to obtain a large variation in age ranges and bone architecture and density. By combining multiple measurements, a strong ability to predict bone apparent stiffness and apparent Young's modulus was found for morphological and density measurements in the radius and tibia (R(2)>0.80). The relative importance of the trabecular and cortical bone in carrying load was also found to vary consistently with location in the sample for both the radius and the tibia. This indicates that measurements of the cortical and trabecular bone are required for assessing fracture risk. A cubic section of trabecular bone was found to be insufficient to accurately represent the apparent bone Young's modulus of a radius or tibia section. Morphological and density measurements of the distal radius and tibia have been shown in this study to predict bone apparent Young's modulus and apparent stiffness, and may indicate when a more time consuming finite element analysis is warranted. It should be noted that these results may be an overestimation of the predictive ability of structural parameters, as the influence of bone density is removed from the finite element analyses, and the results were only influenced by bone structure. A measurement of bone apparent Young's modulus is independent of subject size (as opposed to reaction force), and may provide the ability to distinguish between two patients that have similar mean morphological and density measurements; but different overall structures, and therefore, different fracture risk.
Collapse
Affiliation(s)
- Joshua A MacNeil
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|