Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM, Martinez ND, McLaughlin JP, Mouritsen KN, Poulin R, Reise K, Stouffer DB, Thieltges DW, Williams RJ, Zander CD. Parasites affect food web structure primarily through increased diversity and complexity.
PLoS Biol 2013;
11:e1001579. [PMID:
23776404 PMCID:
PMC3679000 DOI:
10.1371/journal.pbio.1001579]
[Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
Parasites primarily affect food web structure through changes to diversity and complexity. However, compared to free-living species, their life-history traits lead to more complex feeding niches and altered motifs.
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.
Food webs are networks of feeding interactions among species. Although parasites comprise a large proportion of species diversity, they have generally been underrepresented in food web data and analyses. Previous analyses of the few datasets that contain parasites have indicated that their inclusion alters network structure. However, it is unclear whether those alterations were a result of unique roles that parasites play, or resulted from the changes in diversity and complexity that would happen when any type of species is added to a food web. In this study, we analyzed many aspects of the network structure of seven highly resolved coastal estuary or marine food webs with parasites. In most cases, we found that including parasites in the analysis results in generic changes to food web structure that would be expected with increased diversity and complexity. However, in terms of specific patterns of links in the food web (“motifs”) and the breadth and contiguity of feeding niches, parasites do appear to alter structure in ways that result from unique traits—in particular, their close physical intimacy with their hosts, their complex life cycles, and their small body sizes. Thus, this study disentangles unique from generic effects of parasites on food web organization, providing better understanding of similarities and differences between parasites and free-living species in their roles as consumers and resources.
Collapse