151
|
Wang Y, Feng K, Yang H, Yuan Y, Yue T. Antifungal mechanism of cinnamaldehyde and citral combination against Penicillium expansum based on FT-IR fingerprint, plasma membrane, oxidative stress and volatile profile. RSC Adv 2018; 8:5806-5815. [PMID: 35539597 PMCID: PMC9078163 DOI: 10.1039/c7ra12191a] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Cinnamaldehyde (Cin) and citral (Cit) have been studied as antimicrobial agents and natural preservatives, but their action modes are controversial, and the knowledge of their antifungal mechanism against P. expansum is still incomplete.
Collapse
Affiliation(s)
- Yuan Wang
- Northwest University
- College of Food Science and Engineering
- Xi'an
- China
- Northwest A&F University
| | - Kewei Feng
- Northwest A&F University
- State Key Laboratory of Crop Stress Biology in Arid Areas
- College of Agronomy
- Yangling 712100
- China
| | - Haihua Yang
- Northwest A&F University
- College of Food Science and Engineering
- Yangling
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing)
| | - Yahong Yuan
- Northwest A&F University
- College of Food Science and Engineering
- Yangling
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing)
| | - Tianli Yue
- Northwest University
- College of Food Science and Engineering
- Xi'an
- China
- Northwest A&F University
| |
Collapse
|
152
|
Cardoso NNR, Alviano CS, Blank AF, Arrigoni-Blank MDF, Romanos MTV, Cunha MML, da Silva AJR, Alviano DS. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. PHARMACEUTICAL BIOLOGY 2017; 55:1380-1388. [PMID: 28317465 PMCID: PMC6130641 DOI: 10.1080/13880209.2017.1302483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Ocimum basilicum L. (Lamiaceae) has been used in folk medicine to treat headaches, kidney disorders, and intestinal worms. OBJECTIVE This study evaluates the anti-cryptococcal activity of ethanol crude extract and hexane fraction obtained from O. basilicum var. Maria Bonita leaves. MATERIALS AND METHODS The MIC values for Cryptococcus sp. were obtained according to Clinical and Laboratory Standards Institute in a range of 0.3-2500 μg/mL. The checkerboard assay evaluated the association of the substances tested (in a range of 0.099-2500 μg/mL) with amphotericin B and O. basilicum essential oil for 48 h. The ethanol extract, hexane fraction and associations in a range of 0.3-2500 μg/mL were tested for pigmentation inhibition after 7 days of treatment. The inhibition of ergosterol synthesis and reduction of capsule size were evaluated after the treatment with ethanol extract (312 μg/mL), hexane fraction (78 μg/mL) and the combinations of essential oil + ethanol extract (78 μg/mL + 19.5 μg/mL, respectively) and essential oil + hexane fraction (39.36 μg/mL + 10 μg/mL, respectively) for 24 and 48 h, respectively. RESULTS The hexane fraction presented better results than the ethanol extract, with a low MIC (156 μg/mL against C. neoformans T444 and 312 μg/mL against C. neoformans H99 serotype A and C. gattii WM779 serotype C). The combination of the ethanol extract and hexane fraction with amphotericin B and essential oil enhanced their antifungal activity, reducing the concentration of each substance needed to kill 100% of the inoculum. The substances tested were able to reduce the pigmentation, capsule size and ergosterol synthesis, which suggest they have important mechanisms of action. CONCLUSIONS These results provide further support for the use of ethanol extracts of O. basilicum as a potential source of antifungal agents.
Collapse
Affiliation(s)
- Nathalia N. R. Cardoso
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Plant Biotechnology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta S. Alviano
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Plant Biotechnology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arie F. Blank
- Department of Agronomy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Maria Teresa V. Romanos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcel M. L. Cunha
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Jorge R. da Silva
- Research Institute of Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela S. Alviano
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
153
|
Zhao L, Tian S, Wen E, Upur H. An ethnopharmacological study of aromatic Uyghur medicinal plants in Xinjiang, China. PHARMACEUTICAL BIOLOGY 2017; 55:1114-1130. [PMID: 28209076 PMCID: PMC6130679 DOI: 10.1080/13880209.2016.1270971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT An ethnobotanical survey was completed in a remote village and surrounding country of Xinjiang, where most Uyghur medicinal plants could be collected. This work clarifies and increases ethnobotanical data. OBJECTIVES We surveyed and organized aromatic medicinal plants that are commonly used in clinical settings to provide a significant reference for studying new medical activities. MATERIALS AND METHODS In the survey, informants who have traditional knowledge on aromatic Uyghur medicinal plants were interviewed between March 2014 and September 2014. Aromatic medicinal plant species and pertinent information were collected. Some therapeutic methods and modes of preparation of traditional aromatic medicinal plants were found. RESULTS A total of 86 aromatic medicinal plant species belonging to 36 families were included in our study. We identified 34 plant species introduced from different regions such as Europe, India and Mediterranean areas. Fruits and whole plants were the most commonly used parts of plant, and most aromatic medicinal plants could be applied as medicine and food. We assigned the medicinal plants a use value (UV). Knowing the UV of species is useful in determining the use reliability and pharmacological features of related plants. CONCLUSIONS Xinjiang is an area in which indigenous aromatic medicinal plants are diversely used and has therefore established a sound dimensional medical healthcare treatment system. Some aromatic Uyghur medicinal plants are on the verge of extinction. Hence, further strategies for the conservation of these aromatic medicinal plants should be prioritized.
Collapse
Affiliation(s)
- Lu Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Shuge Tian
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - E. Wen
- College of TCM, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Halmuart Upur
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang, China
- CONTACT Halmuart UpurCentral Laboratory of Xinjiang Medical University, Urumqi, 830011, Xinjiang, P. R. China
| |
Collapse
|
154
|
Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem 2017; 234:62-67. [DOI: 10.1016/j.foodchem.2017.04.172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/03/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
|
155
|
Xu J, Shao X, Wei Y, Xu F, Wang H. iTRAQ Proteomic Analysis Reveals That Metabolic Pathways Involving Energy Metabolism Are Affected by Tea Tree Oil in Botrytis cinerea. Front Microbiol 2017; 8:1989. [PMID: 29075250 PMCID: PMC5643485 DOI: 10.3389/fmicb.2017.01989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Tea tree oil (TTO) is a volatile essential oil obtained from the leaves of the Australian tree Melaleuca alternifolia by vapor distillation. Previously, we demonstrated that TTO has a strong inhibitory effect on Botrytis cinerea. This study investigates the underlying antifungal mechanisms at the molecular level. A proteomics approach using isobaric tags for relative and absolute quantification (iTRAQ) was adopted to investigate the effects of TTO on B. cinerea. A total of 718 differentially expression proteins (DEPs) were identified in TTO-treated samples, 17 were markedly up-regulated and 701 were significantly down-regulated. Among the 718 DEPs, 562 were annotated and classified into 30 functional groups by GO (gene ontology) analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis linked 562 DEPs to 133 different biochemical pathways, involving glycolysis, the tricarboxylic acid cycle (TCA cycle), and purine metabolism. Additional experiments indicated that TTO destroys cell membranes and decreases the activities of three enzymes related to the TCA cycle. Our results suggest that TTO treatment inhibits glycolysis, disrupts the TCA cycle, and induces mitochondrial dysfunction, thereby disrupting energy metabolism. This study provides new insights into the mechanisms underlying the antifungal activity of essential oils.
Collapse
Affiliation(s)
- Jiayu Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yingying Wei
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Feng Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Hongfei Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
156
|
Padhan D, Pattnaik S, Behera AK. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1, 8 P-Mentha Diene) against Trichophyton rubrum (Microbial Type Culture Collection 296). Pharmacogn Mag 2017; 13:S555-S560. [PMID: 29142414 PMCID: PMC5669097 DOI: 10.4103/pm.pm_65_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Spilanthes acmella is used as a remedy in toothache complaints by the tribal people of Western part of Odisha, India. Objective: The objective of this study was to study the growth-arresting activity of an indigenous Acmella essential oil (EO) (S. acmella Murr, Asteraceae) and its isolated component, d-limonene against Trichophyton rubrum (microbial type culture collection 296). Materials and Methods: The EO was extracted from flowers of indigenous S. acmella using Clevenger's apparatus and analyzed by gas chromatography–mass spectrometry (GC-MS). High pressure liquid chromatography (HPLC) was carried out to isolate the major constituent. The isolated fraction was subjected to fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The antidermatophytic activity was screened for using “disc diffusion” and “slant dilution” method followed by optical, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The molecular dockings were made between d-limonene with cell wall synthesis-related key enzymes (14 methyl deaminase and monooxygenase). Results: The GC-MS analysis EO had inferred the presence of 7 number of major (≥2%) components. The component with highest peak area (%) was found to be 41.02. The HPLC-isolated fraction was identified as d-limonene (1,8 p-Mentha-diene) by FTIR and NMR. Qualitative and quantitative assays had suggested the growth inhibitory activity of Acmella EO and its component. Shrinkage, evacuation, cell wall puncture, and leakage of cellular constituents by the activity of Acmella oil and d-limonene were evidenced from optical, SEM, and TEM studies. The computer simulation had predicted the binding strengths of d-limonene and fluconazole with dermatophyte cell wall enzymes. Conclusion: There could have been synergistic action of all or some of compounds present in indigenous Acmella EO. SUMMARY There was presence of seven number of (d-limonene, ocimene, β-myrcene, cyclohexene, 3-(1, 5-dimethyl-4-hexenyl)-6-methylene, β-caryophyllene, and β-sesquiphellandrene and β-phellandrene) major components in the indigenous Acmella essential oil The d-limonene content was 41.02% in the indigenous oil The antidermatophytic activity of Acmella essential oil could have been attributable to its chemotypes.
Abbreviations used: °C: Degree centigrade; w/v: Weight/volume; TS: Transverse section; min: minute; Hz: hertz: h: Hr.
Collapse
Affiliation(s)
- Diptikanta Padhan
- Laboratory of Medical Microbiology, School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Smaranika Pattnaik
- Laboratory of Medical Microbiology, School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | | |
Collapse
|
157
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
158
|
Pandey AK, Singh P. The Genus Artemisia: a 2012-2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E68. [PMID: 28930281 PMCID: PMC5622403 DOI: 10.3390/medicines4030068] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023]
Abstract
Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012-2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.
Collapse
Affiliation(s)
- Abhay K Pandey
- Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University Gorakhpur, Uttar Pradesh 273009, India.
| | - Pooja Singh
- Bacteriology & Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University Gorakhpur, Uttar Pradesh 273009, India.
| |
Collapse
|
159
|
Use of predictive model to describe sporicidal and cell viability efficacy of betel leaf (Piper betle L.) essential oil on Aspergillus flavus and Penicillium expansum and its antifungal activity in raw apple juice. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
160
|
Xu J, Shao X, Li Y, Wei Y, Xu F, Wang H. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea. Front Microbiol 2017; 8:1017. [PMID: 28634477 PMCID: PMC5459894 DOI: 10.3389/fmicb.2017.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Tea tree oil (TTO), a volatile essential oil, has been widely used as an antimicrobial agent. However, the mechanism underlying TTO antifungal activity is not fully understood. In this study, a comprehensive metabolomics survey was undertaken to identify changes in metabolite production in Botrytis cinerea cells treated with TTO. Significant differences in 91 metabolites were observed, including 8 upregulated and 83 downregulated metabolites in TTO-treated cells. The results indicate that TTO inhibits primary metabolic pathways through the suppression of the tricarboxylic acid (TCA) cycle and fatty acid metabolism. Further experiments show that TTO treatment decreases the activities of key enzymes in the TCA cycle and increases the level of hydrogen peroxide (H2O2). Membrane damage is also induced by TTO treatment. We hypothesize that the effect of TTO on B. cinerea is achieved mainly by disruption of the TCA cycle and fatty acid metabolism, resulting in mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo UniversityNingbo, China
| | | | | | | | | |
Collapse
|
161
|
Han J, Wang F, Gao P, Ma Z, Zhao S, Lu Z, Lv F, Bie X. Mechanism of action of AMP-jsa9, a LI-F-type antimicrobial peptide produced by Paenibacillus polymyxa JSa-9, against Fusarium moniliforme. Fungal Genet Biol 2017; 104:45-55. [PMID: 28512016 DOI: 10.1016/j.fgb.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
LI-F type peptides (AMP-jsa9) are a group of cyclic lipodepsipeptides that exhibit broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi. We sought to assess the toxicity of AMP-jsa9 and the mechanism of AMP-jsa9 action against Fusarium moniliforme. AMP-jsa9 exhibited weak hemolytic activity and weak cytotoxicity at antimicrobial concentrations (32μg/ml). Confocal laser microscopy, SEM, and TEM indicated that AMP-jsa9 primarily targets the cell wall, plasma membrane, and cytoskeleton, increases membranepermeability, and enhances cytoplasm leakage (e.g., K+, protein). Quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) detected a total of 162 differentially expressed proteins (59 up-regulated and 103 down-regulated) following treatment of F. moniliforme with AMP-jsa9. AMP-jsa9 treatment also led to reductions in chitin, ergosterol, NADH, NADPH, and ATP levels. Moreover, fumonisin B1 expression and biosynthesis was suppressed in AMP-jsa9-treated F. moniliforme. Our results provide a theoretical basis for the application of AMP-jsa9 as a natural and effective antifungal agent in the agricultural, food, and animal feed industries.
Collapse
Affiliation(s)
- Jinzhi Han
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fang Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Peng Gao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Shengming Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Nanjing 210095, People's Republic of China.
| |
Collapse
|
162
|
Lagrouh F, Dakka N, Bakri Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J Mycol Med 2017; 27:303-311. [PMID: 28506565 DOI: 10.1016/j.mycmed.2017.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
This review is based on a comprehensive literature search for existing knowledge about antifungal mechanisms of different secondary metabolites from plants. The secondary metabolites have been grouped into three major groups according to their biosynthetic origin. On another side, this review represents studies on antifungal activity of essential oils and extracts from Moroccan plants, against fungal species involved in human or plant diseases.
Collapse
Affiliation(s)
- F Lagrouh
- Département de biologie, laboratoire de biochimie-immunologie, faculté des sciences, université Mohamed V, Rabat, Morocco.
| | - N Dakka
- Département de biologie, laboratoire de biochimie-immunologie, faculté des sciences, université Mohamed V, Rabat, Morocco
| | - Y Bakri
- Département de biologie, laboratoire de biochimie-immunologie, faculté des sciences, université Mohamed V, Rabat, Morocco
| |
Collapse
|
163
|
Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol 2017; 85:114-122. [DOI: 10.1016/j.biocel.2017.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/20/2023]
|
164
|
Hu Y, Zhang J, Kong W, Zhao G, Yang M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem 2017; 220:1-8. [DOI: 10.1016/j.foodchem.2016.09.179] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
|
165
|
Ribes S, Fuentes A, Talens P, Barat JM, Ferrari G, Donsì F. Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against Aspergillus niger. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
166
|
Belewa V, Baijnath H, Frost C, Somai BM. Tulbaghia violacea Harv. plant extract affects cell wall synthesis in Aspergillus flavus. J Appl Microbiol 2017; 122:921-931. [PMID: 28132403 DOI: 10.1111/jam.13405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/14/2016] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
AIMS This study investigates the effect that aqueous extracts of Tulbaghia violacea Harv. harbouring plant saponins, phenolics and tannins have on Aspergillus flavus β-(1,3) glucan and chitin synthesis. METHODS AND RESULTS Aspergillus flavus was treated with various subinhibitory concentrations of an aqueous T. violacea plant extract and the β-(1,3) glucan and chitin content was determined together with glucan synthase and chitin synthase production respectively. CONCLUSIONS The aqueous extract caused a significant decline (P < 0·05) in β-glucan production in A. flavus in a dose-dependent manner when compared to the untreated sample. Further investigations showed a decrease in β-glucan synthase production as the concentration of the plant extract was increased. A significant reduction in total chitin content corresponding to a decrease in chitin synthase production in the presence of the plant extract was also found. SIGNIFICANCE AND IMPACT OF THE STUDY The broad spectrum activity and the efficacy of aqueous T. violacea plant extract on both β-glucan and chitin synthesis may limit the potential of the fungus developing resistance towards it and therefore the extract is an ideal candidate for use as a potential antifungal agent.
Collapse
Affiliation(s)
- V Belewa
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, Eastern Cape, South Africa
| | - H Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Frost
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, Eastern Cape, South Africa
| | - B M Somai
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, Eastern Cape, South Africa
| |
Collapse
|
167
|
Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans. Appl Microbiol Biotechnol 2017; 101:3335-3345. [DOI: 10.1007/s00253-017-8146-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
168
|
Pavela R, Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. TRENDS IN PLANT SCIENCE 2016; 21:1000-1007. [PMID: 27789158 DOI: 10.1016/j.tplants.2016.10.005] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 05/04/2023]
Abstract
Recently, a growing number of plant essential oils (EOs) have been tested against a wide range of arthropod pests with promising results. EOs showed high effectiveness, multiple mechanisms of action, low toxicity on non-target vertebrates and potential for the use of byproducts as reducing and stabilizing agents for the synthesis of nanopesticides. However, the number of commercial biopesticides based on EOs remains low. We analyze the main strengths and weaknesses arising from the use of EO-based biopesticides. Key challenges for future research include: (i) development of efficient stabilization processes (e.g., microencapsulation); (ii) simplification of the complex and costly biopesticide authorization requirements; and (iii) optimization of plant growing conditions and extraction processes leading to EOs of homogeneous chemical composition.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Czech Republic
| | - Giovanni Benelli
- Department of Agriculture, Food, and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
169
|
Tian J, Wang Y, Lu Z, Sun C, Zhang M, Zhu A, Peng X. Perillaldehyde, a Promising Antifungal Agent Used in Food Preservation, Triggers Apoptosis through a Metacaspase-Dependent Pathway in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7404-7413. [PMID: 27622540 DOI: 10.1021/acs.jafc.6b03546] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the present study, we provide detailed insights into perillaldehyde (PAE)'s mechanisms of action on Aspergillus flavus and offer evidence in favor of the induction of an apoptosis-like phenotype. Specifically, PAE's antifungal mode of action was investigated through the detection of mitochondrial membrane potential (MtΔψ) and phosphatidylserine (PS) exposure, as well as intracellular Ca2+ level, reactive oxygen species accumulation, and metacaspase activation. This was done by way of fluorometry, measuring DNA fragmentation, and condensation by fluorescent microscopy. Furthermore, we searched for phenotypic changes characteristic of apoptosis by transmission electron microscopy and flow cytometry, determining the amount of cytochrome c released using Western blotting. Results indicated that cultivation of A. flavus in the presence of PAE caused depolarization of MtΔψ, rapid DNA condensation, large-scale DNA fragmentation, and an elevation of intracellular Ca2+ level. The percentage of early apoptotic cells with exposure of PS were 27.4% and 48.7%, respectively, after 9 h incubations with 0.25 and 0.5 μL/mL of PAE. The percentage of stained cells with activated intracellular metacaspases exposed to PAE at concentrations of 0.25 and 0.5 μL/mL compared with control subjects were increased by 28.4 ± 3.25% and 37.9 ± 4.24%, respectively. The above results has revealed that PAE induces fungal apoptosis through a caspase-dependent mitochondrial pathway. In all, our findings provide a novel mechanism for exploring a possible antifungal agent used in food preservation.
Collapse
Affiliation(s)
- Jun Tian
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
- Key Lab for New Drug Research of TCM and Shenzhen Branch, State R&D Centre for Viro-Biotech, Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057, Guangdong, People's Republic of China
| | - Yanzhen Wang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Zhaoqun Lu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Chunhui Sun
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Man Zhang
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Aihua Zhu
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Xue Peng
- College of Life Science, Jiangsu Normal University , Xuzhou 221116, Jiangsu Province, People's Republic of China
| |
Collapse
|
170
|
Liu S, Shao X, Wei Y, Li Y, Xu F, Wang H. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System. Front Microbiol 2016; 7:1179. [PMID: 27531994 PMCID: PMC4970490 DOI: 10.3389/fmicb.2016.01179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
This study investigated the anti-fungal properties of Solidago canadensis L. essential oil (SCLEO) against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not, however, stimulate phenylalanin ammonia-lyase, polyphenol oxidase, or chitinase, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.
Collapse
Affiliation(s)
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo UniversityNingbo, China
| | | | | | | | | |
Collapse
|
171
|
Reis M, Carvalho C, Andrade F, Fernandes O, Arruda W, Silva M. Fisetin as a promising antifungal agent against Cryptocococcus neoformans
species complex. J Appl Microbiol 2016; 121:373-9. [DOI: 10.1111/jam.13155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 12/01/2022]
Affiliation(s)
- M.P.C. Reis
- Instituto de Patologia Tropical e Saúde Pública; Universidade Federal de Goiás; Goiânia Goiás Brazil
| | - C.R.C. Carvalho
- Instituto de Patologia Tropical e Saúde Pública; Universidade Federal de Goiás; Goiânia Goiás Brazil
| | - F.A. Andrade
- Instituto de Patologia Tropical e Saúde Pública; Universidade Federal de Goiás; Goiânia Goiás Brazil
| | - O.F.L. Fernandes
- Instituto de Patologia Tropical e Saúde Pública; Universidade Federal de Goiás; Goiânia Goiás Brazil
| | - W. Arruda
- Instituto de Ciências Biológicas; Departamento de Morfologia; Universidade Federal de Goiás; Goiânia Goiás Brazil
| | - M.R.R. Silva
- Instituto de Patologia Tropical e Saúde Pública; Universidade Federal de Goiás; Goiânia Goiás Brazil
| |
Collapse
|
172
|
TOMAZONI ELISAZ, PANSERA MÁRCIAR, PAULETTI GABRIELF, MOURA SIDNEI, RIBEIRO RUTET, SCHWAMBACH JOSÉLI. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates. ACTA ACUST UNITED AC 2016; 88:999-1010. [DOI: 10.1590/0001-3765201620150019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/15/2015] [Indexed: 11/22/2022]
Abstract
Several volatile natural compounds produced by plant secondary metabolism have been proven to present antimicrobial action, enabling their use in phytopathogen control. They also present low environmental impact when compared to conventional pesticides. Essential oils contain these compounds and can be found in several plant species, such as Lippia alba (Mill.) N.E. Brown (Verbenaceae). Essential oils of four chemotypes of L. alba, characterized by their major compounds, namely camphor, citral, linalool and camphor/1,8-cineole, were tested against the phytopathogen Alternaria solani Sorauer (Pleosporaceae), which causes early blight on tomatoes and is responsible for great economic losses regarding production. Essential oils antifungal action was tested in vitro using potato dextrose agar medium with essential oil concentrations at 0.1, 0.5, 1.0, 1.5 and 2.0 µL mL-1. The chemotype that had the best performance was citral, showing significant inhibition compared to the others, starting at the 0.5 µL mL-1 concentration. The essential oil belonging to the linalool chemotype was efficient starting at the 1.5 µL mL-1 concentration. Conversely, the camphor chemotype did not show any action against the phytopathogen. Moreover, the essential oils had no remarkable effect on tomato germination and growth. In conclusion, these essential oils presented fungicidal action against A. solani.
Collapse
|
173
|
Shen Q, Zhou W, Li H, Hu L, Mo H. ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide. PLoS One 2016; 11:e0155647. [PMID: 27196096 PMCID: PMC4872997 DOI: 10.1371/journal.pone.0155647] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023] Open
Abstract
Aspergillus flavus is a well-known pathogenic fungus for both crops and human beings. The acquisition of resistance to azoles by A. flavus is leading to more failures occurring in the prevention of infection by A. flavus. In this study, we found that thymol, one of the major chemical constituents of the essential oil of Monarda punctate, had efficient fungicidal activity against A. flavus and led to sporular lysis. Further studies indicated that thymol treatment induced the generation of both ROS and NO in spores, whereas NO accumulation was far later than ROS accumulation in response to thymol. By blocking ROS production with the inhibitors of NADPH oxidase, NO generation was also significantly inhibited in the presence of thymol, which indicated that ROS induced NO generation in A. flavus in response to thymol treatment. Moreover, the removal of either ROS or NO attenuated lysis and death of spores exposed to thymol. The addition of SNP (exogenous NO donor) eliminated the protective effects of the inhibitors of NADPH oxidase on thymol-induced lysis and death of spores. Taken together, it could be concluded that ROS is involved in spore death induced by thymol via the induction of NO.
Collapse
Affiliation(s)
- Qingshan Shen
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Wei Zhou
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongbo Li
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Haizhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
174
|
Singh S, Fatima Z, Hameed S. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans. Arch Microbiol 2016; 198:459-72. [DOI: 10.1007/s00203-016-1205-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
|
175
|
Poudyal S, Zheljazkov VD, Cantrell CL, Kelleners T. Coal-Bed Methane Water Effects on Dill and Its Essential Oils. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:728-733. [PMID: 27065421 DOI: 10.2134/jeq2015.05.0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic method of methane extraction. The water that is pumped out is known as "coal-bed methane water" (CBMW), which is high in sodium and other salts. In the past 25 yr, the United States has seen a 16-fold increase in the production of coal bed methane gas, and trillions of cubic meters are yet to be extracted. There is no sustainable disposal method for CBMW, and there are very few studies investigating the effects of this water on plants and their secondary metabolites and on soil properties. This study was conducted to determine the effects of CBMW on soil chemical properties and on the biomass and essential oil yield and composition of dill ( L.). This crop was grown in a greenhouse and was subjected to different levels of CBMW treatment: tap water only; 25% CBMW, 75% tap water; 50% CBMW, 50% tap water; 75% CBMW, 25% tap water; and 100% CBMW. The major dill oil constituents, limonene and α-phellandrene, were not affected by the treatments; however, the concentration of dill ether increased with increasing CBMW levels, whereas the concentration of carvone decreased. In soil, sodium level significantly increased with increasing level of treatment, but pH and cation exchange capacity were not much affected. Coal bed methane water could be used for irrigation of dill for one growing season, but longer-term studies may be needed to clarify the long-term effects on soil and plant.
Collapse
|
176
|
Affiliation(s)
- Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Alan D. W. Dobson
- Microbiology Department and Environmental Research Institute, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
177
|
Ghosh P, Roy A, Hess D, Ghosh A, Das S. Deciphering the mode of action of a mutant Allium sativum Leaf Agglutinin (mASAL), a potent antifungal protein on Rhizoctonia solani. BMC Microbiol 2015; 15:237. [PMID: 26502719 PMCID: PMC4623900 DOI: 10.1186/s12866-015-0549-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background Mutant Allium sativum leaf agglutinin (mASAL) is a potent, biosafe, antifungal protein that exhibits fungicidal activity against different phytopathogenic fungi, including Rhizoctonia solani. Methods The effect of mASAL on the morphology of R.solani was monitored primarily by scanning electron and light microscopic techniques. Besides different fluorescent probes were used for monitoring various intracellular changes associated with mASAL treatment like change in mitochondrial membrane potential (MMP), intracellular accumulation of reactive oxygen species (ROS) and induction of programmed cell death (PCD). In addition ligand blot followed by LC-MS/MS analyses were performed to detect the putative interactors of mASAL. Results Knowledge on the mode of function for any new protein is a prerequisite for its biotechnological application. Detailed morphological analysis of mASAL treated R. solani hyphae using different microscopic techniques revealed a detrimental effect of mASAL on both the cell wall and the plasma membrane. Moreover, exposure to mASAL caused the loss of mitochondrial membrane potential (MMP) and the subsequent intracellular accumulation of reactive oxygen species (ROS) in the target organism. In conjunction with this observation, evidence of the induction of programmed cell death (PCD) was also noted in the mASAL treated R. solani hyphae. Furthermore, we investigated its interacting partners from R. solani. Using ligand blots followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses, we identified different binding partners including Actin, HSP70, ATPase and 14-3-3 protein. Conclusions Taken together, the present study provides insight into the probable mode of action of the antifungal protein, mASAL on R. solani which could be exploited in future biotechnological applications. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0549-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Amit Roy
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India. .,Present address: Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, SE-230 53, Sweden.
| | - Daniel Hess
- The Protein Analysis Facility, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
178
|
Yu D, Wang J, Shao X, Xu F, Wang H. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J Appl Microbiol 2015; 119:1253-62. [PMID: 26294100 DOI: 10.1111/jam.12939] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022]
Abstract
AIMS The essential oil of Melaleuca alternifolia (tea tree) has been evaluated as a potential eco-friendly antifungal agent against Botrytis cinerea. In this study, we investigated the antifungal activity and mode of action of tea tree oil (TTO) and its components against B. cinerea. METHODS AND RESULTS Of the components we tested in contact phase, terpinen-4-ol had the highest antifungal activity, followed by TTO, α-terpineol, terpinolene, then 1,8-cineole. As one of characteristic components of TTO, terpinen-4-ol treatment led to pronounced alterations in mycelial morphology, cellular ultrastructure, membrane permeability under scanning electron microscope, transmission electron microscope and fluorescent microscope, and also reduced the ergosterol content of fungi. As another characteristic component, 1,8-cineole caused serious intracellular damage but only slightly affected B. cinerea otherwise. When terpinen-4-ol and 1,8-cineole were used together, the synergistic antifungal activity was significantly higher than either component by itself. CONCLUSIONS The results of our study confirmed that terpinen-4-ol and 1,8-cineole act mainly on the cell membranes and organelles of B. cinerea, respectively, and when combined are similar to TTO in antifungal activity due to their differences. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the mechanism of terpinen-4-ol and 1,8-cineole antifungal action to B. cinerea is helpful for investigation on their synergistic effect and explaining antifungal action modes of TTO.
Collapse
Affiliation(s)
- D Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - J Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - X Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - F Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - H Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
179
|
Wang Y, Zeng X, Zhou Z, Xing K, Tessema A, Zeng H, Tian J. Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
180
|
Azizkhani M, Tooryan F, Azizkhani M. Inhibitory Potential of S
alvia sclarea
and O
cimum basilicum
against Chemical and Microbial Spoilage in Cheese. J Food Saf 2015. [DOI: 10.1111/jfs.12218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary Medicine; Amol University of Special Modern Technologies; Amol Iran
| | - Fahimeh Tooryan
- Department of Food Hygiene, Faculty of Veterinary Medicine; Amol University of Special Modern Technologies; Amol Iran
| | - Mohammad Azizkhani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
181
|
Ma B, Ban X, Huang B, He J, Tian J, Zeng H, Chen Y, Wang Y. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed. PLoS One 2015; 10:e0131733. [PMID: 26133771 PMCID: PMC4489822 DOI: 10.1371/journal.pone.0131733] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.
Collapse
Affiliation(s)
- Bingxin Ma
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Xiaoquan Ban
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Bo Huang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Jingsheng He
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Jun Tian
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Zeng
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yuxin Chen
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
| | - Youwei Wang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P.R. China
- * E-mail:
| |
Collapse
|
182
|
Tian J, Wang Y, Zeng H, Li Z, Zhang P, Tessema A, Peng X. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. Int J Food Microbiol 2015; 202:27-34. [DOI: 10.1016/j.ijfoodmicro.2015.02.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
183
|
Milisavljevic M, Zivkovic S, Pekmezovic M, Stankovic N, Vojnovic S, Vasiljevic B, Senerovic L. Control of human and plant fungal pathogens using pentaene macrolide 32, 33-didehydroroflamycoin. J Appl Microbiol 2015; 118:1426-34. [PMID: 25810243 DOI: 10.1111/jam.12811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to address the toxicity of recently described polyene macrolide 32, 33-didehydroroflamycoin (DDHR) on a wide range of fungal pathogens and its potential to control plant fungal diseases. METHODS AND RESULTS The antifungal activity of DDHR in vitro was examined against common human and plant pathogenic fungi using a broth microdilution assay and a disk diffusion assay. Minimum inhibitory concentrations ranged from 12·5 to 35 μg ml(-1) . A radial growth inhibition assay showed that DDHR inhibited mycelia growth, inducing mycelial necrosis and affecting sporulation. During the in vivo assay on apple fruits administration of DDHR 1 h before fungal inoculation inhibited spreading of the infection. Importantly, DDHR exhibited no phytotoxic effects on the model plant, Capsicum annum, verified by the plant growth rate and chlorophyll content. CONCLUSIONS DDHR inhibits growth of various plant pathogens in vitro with the strongest activity against Alternaria alternata, Colletotrichum acutatum and Penicillium expansum, and protects apple fruits from decay. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the inhibitory effect of DDHR on important pathogenic fungal isolates. DDHR could be a good scaffold for developing new antifungal agents for fruit and vegetable protection.
Collapse
Affiliation(s)
- M Milisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - S Zivkovic
- Institute for Plant Protection and the Environment, Belgrade, Serbia
| | - M Pekmezovic
- National Reference Medical Mycology Laboratory, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - S Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - B Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - L Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
184
|
Zheng S, Jing G, Wang X, Ouyang Q, Jia L, Tao N. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem 2015; 178:76-81. [PMID: 25704686 DOI: 10.1016/j.foodchem.2015.01.077] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.
Collapse
Affiliation(s)
- Shiju Zheng
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Guoxing Jing
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.
| | - Xiao Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Lei Jia
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
185
|
Tian J, Zeng X, Lü A, Zhu A, Peng X, Wang Y. Perillaldehyde, a potential preservative agent in foods: Assessment of antifungal activity against microbial spoilage of cherry tomatoes. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
186
|
Zeng H, Chen X, Liang J. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J Med Microbiol 2014; 64:93-103. [PMID: 25351709 DOI: 10.1099/jmm.0.077768-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.
Collapse
Affiliation(s)
- Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources, College of Life Science, Tarim University, Alar, 843300, Xinjiang, PR China
| | - Xinping Chen
- Key Laboratory of Protection and Utilization of Biological Resources, College of Life Science, Tarim University, Alar, 843300, Xinjiang, PR China
| | - Jingnan Liang
- Instrument Center, Institute of Microbiology, Chinese Academy of Sciences, 100000 Beijing, PR China
| |
Collapse
|
187
|
Gemeda N, Woldeamanuel Y, Asrat D, Debella A. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: a potential source of botanical food preservative. Asian Pac J Trop Biomed 2014; 4:S373-81. [PMID: 25183114 DOI: 10.12980/apjtb.4.2014c857] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/01/2014] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production. METHOD In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species. RESULTS Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations. CONCLUSIONS In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi.
Collapse
Affiliation(s)
- Negero Gemeda
- Traditional & Modern Medicine Research Directorate, Ethiopian Health & Nutrition Research Institute, Addis Ababa, Ethiopia
| | | | - Daniel Asrat
- Dipartment of Microbiology Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asfaw Debella
- Traditional & Modern Medicine Research Directorate, Ethiopian Health & Nutrition Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
188
|
Drosera peltata Smith var. lunata (Buch.-Ham.) C. B. Clarke as a feasible source of plumbagin: phytochemical analysis and antifungal activity assay. World J Microbiol Biotechnol 2014; 30:737-45. [PMID: 24078108 DOI: 10.1007/s11274-013-1495-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Drosera peltata Smith var. lunata (Buch.-Ham.) C. B. Clarke (DPVL) fractions and plumbagin were tested via broth microdilution techniques on Rhizopus oryzae, Aspergillus flavus, Aspergillus niger, Aspergillus oryzae, Penicillium citrinum. All of the test substances [petroleum ether, chloroform, ethyl acetate, n-butanol fraction and aqueous residue (AR)] except for the AR were active against all the tested strains. The petroleum ether fraction (PEF) was the most active (MIC = 5.86-46.88 μg/ml, MFC = 23.44-93.75 μg/ml) of the five tested substances and therefore, was selected for further analysis. Based on antifungal activity, bioactivity-guided fractionation of the PEF led to the isolation of plumbagin. The structure of plumbagin was elucidated by ¹H and ¹³C NMR. Using HPLC, DPVL was found to be a new source of plumbagin. Reversed-phase HPLC was performed using a mobile phase of water and methanol, and peaks were detected at 254 nm. Plumbagin showed a good linear relationship at concentrations ranging from 0.625 to 10 μg/ml. Both the intraday and the interday precision showed that the method was precise, with RSDs of at least 3% at different concentrations. Recovery rates ranging from 97.86 to 99.94% were observed, which indicate that the method is accurate. The specificity of the method was established by checking the peak purity of plumbagin. For six independent measurements, the average plumbagin content in DPVL was 11.05 ± 0.31 mg/g of dried material. The validated HPLC method provides a new basis for assessing DPVL quality.
Collapse
|
189
|
Ferreira P, Cardoso T, Ferreira F, Fernandes-Ferreira M, Piper P, Sousa MJ. Mentha piperitaessential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Res 2014; 14:1006-14. [DOI: 10.1111/1567-1364.12189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/04/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Patrícia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Teresa Cardoso
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Filipa Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| | - Manuel Fernandes-Ferreira
- CITAB; Centre for the Research and Technology of Agro-Environmental and Biological Sciences; Porto Portugal
- Department of Biology; Faculty of Science; University of Porto; Porto Portugal
- MAPPROD Lda; Braga Portugal
| | - Peter Piper
- Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield UK
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga Portugal
| |
Collapse
|
190
|
Tao N, OuYang Q, Jia L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.01.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
191
|
Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar Drugs 2014; 12:3838-51. [PMID: 24979270 PMCID: PMC4113801 DOI: 10.3390/md12073838] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022] Open
Abstract
Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA) as well as on the potato dextrose broth (PDB) medium. Moreover, BDDE decreases the incidence of fruit decay and severity of strawberries infected with B. cinerea. Further studies have revealed that BDDE decreases the germination rate and inhibits the mycelial growth of B. cinerea. The inhibition mechanisms are related to the disruption of the cell membrane integrity in B. cinerea spores and newly formed germ tubes. This study also suggests that BDDE possibly interacts with DNA via intercalation and minor groove binding. The studies provide evidence that BDDE has potential application in the control of gray mold after fruit harvest and the compound could serve as a candidate or lead template for rational drug design and for the development of antifungal agents.
Collapse
|
192
|
Effect of Cymbopogon martinii, Foeniculum vulgare, and Trachyspermum ammi Essential Oils on the Growth and Mycotoxins Production by Aspergillus Species. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:874135. [PMID: 26904653 PMCID: PMC4745540 DOI: 10.1155/2014/874135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022]
Abstract
This study was performed to investigate effect of essential oils on Aspergillus spore germination, growth, and mycotoxin production. In vitro antifungal and antiaflatoxigenic activities of Cymbopogon martinii, Foeniculum vulgare, and Trachyspermum ammi essential oils were carried out on toxigenic strains of Aspergillus species. Plant materials were hydrodistilled for 4-5 h in Clevenger apparatus. 0.25 μL/mL, 0.5 μL/mL, 1 μL/mL, 2 μL/mL, and 4 μL/mL concentrations of each essential oil were prepared in 0.1% Tween 80 (V/V). T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 μL/mL by essential oils of T. ammi. The oil also showed complete inhibition of spore germination at a concentration of 2 μL/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting toxin production from A. niger and A. flavus at 0.5 and 0.75 μL/mL, respectively. C. martinii, F. vulgare, and T. ammi oils as antifungals were found superior over synthetic preservative. Moreover, a concentration of 5336.297 μL/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity. In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by Aspergillus species.
Collapse
|
193
|
Effects of nitric oxide on growth of Fusarium sulphureum and its virulence to potato tubers. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2180-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
194
|
Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 2014; 6:77-90. [DOI: 10.4155/fmc.13.189] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections are associated with very high mortality rates ranging from 20–90% for opportunistic fungal pathogens such as Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungal resistance to antimycotic treatment can be genotypic (due to resistant strains) as well as phenotypic (due to more resistant fungal lifestyles, such as biofilms). With regard to the latter, biofilms are considered to be critical in the development of invasive fungal infections. However, there are only very few antimycotics, such as miconazole (azoles), echinocandins and liposomal formulations of amphotericin B (polyenes), which are also effective against fungal biofilms. Interestingly, these antimycotics all induce reactive oxygen species (ROS) in fungal (biofilm) cells. This review provides an overview of the different classes of antimycotics and novel antifungal compounds that induce ROS in fungal planktonic and biofilm cells. Moreover, different strategies to further enhance the antibiofilm activity of such ROS-inducing antimycotics will be discussed.
Collapse
|
195
|
Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. ScientificWorldJournal 2013; 2013:230795. [PMID: 24453813 PMCID: PMC3884799 DOI: 10.1155/2013/230795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/10/2013] [Indexed: 12/04/2022] Open
Abstract
The antifungal efficacy of nerol (NEL) has been proved against Aspergillus flavus by using in vitro and in vivo tests. The mycelial growth of A. flavus was completely inhibited at concentrations of 0.8 μL/mL and 0.1 μL/mL NEL in the air at contact and vapor conditions, respectively. The NEL also had an evident inhibitory effect on spore germination in A. flavus along with NEL concentration as well as time-dependent kinetic inhibition. The NEL presented noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B1 (AFB1) by A. flavus, totally restraining AFB1 production at 0.6 μL/mL. In real food system, the efficacy of the NEL on resistance to decay development in cherry tomatoes was investigated in vivo by exposing inoculated and control fruit groups to NEL vapor at different concentration. NEL vapors at 0.1 μL/mL air concentration significantly reduced artificially contaminated A. flavus and a broad spectrum of fungal microbiota. Results obtained from presented study showed that the NEL had a great antifungal activity and could be considered as a benefit and safe tool to control food spoilage.
Collapse
|
196
|
Barbu EM, Shirazi F, McGrath DM, Albert N, Sidman RL, Pasqualini R, Arap W, Kontoyiannis DP. An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-mediated apoptosis. PLoS One 2013; 8:e76981. [PMID: 24098573 PMCID: PMC3789667 DOI: 10.1371/journal.pone.0076981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
The incidence of mucormycosis has dramatically increased in immunocompromised patients. Moreover, the array of cellular targets whose inhibition results in fungal cell death is rather limited. Mitochondria have been mechanistically identified as central regulators of detoxification and virulence in fungi. Our group has previously designed and developed a proteolytically-resistant peptidomimetic motif D(KLAKLAK)2 with pleiotropic action ranging from targeted (i.e., ligand-directed) activity against cancer and obesity to non-targeted activity against antibiotic resistant gram-negative rods. Here we evaluated whether this non-targeted peptidomimetic motif is active against Mucorales. We show that D(KLAKLAK)2 has marked fungicidal action, inhibits germination, and reduces hyphal viability. We have also observed cellular changes characteristic of apoptosis in D(KLAKLAK)2-treated Mucorales cells. Moreover, the fungicidal activity was directly correlated with vacuolar injury, mitochondrial swelling and mitochondrial membrane depolarization, intracellular reactive oxygen species accumulation (ROS), and increased caspase-like enzymatic activity. Finally, these apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine indicating mechanistic pathway specificity. Together, these findings indicate that D(KLAKLAK)2 makes Mucorales exquisitely susceptible via mitochondrial injury-induced apoptosis. This prototype may serve as a candidate drug for the development of translational applications against mucormycosis and perhaps other fungal infections.
Collapse
Affiliation(s)
- E. Magda Barbu
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Fazal Shirazi
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Danielle M. McGrath
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Nathaniel Albert
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard L. Sidman
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Renata Pasqualini
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| | - Wadih Arap
- David H. Koch Center, Department of Genitourinary Medical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, the University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DPK); (WA); (RP)
| |
Collapse
|
197
|
Altshuler O, Abu-Abied M, Chaimovitsh D, Shechter A, Frucht H, Dudai N, Sadot E. Enantioselective effects of (+)- and (-)-citronellal on animal and plant microtubules. JOURNAL OF NATURAL PRODUCTS 2013; 76:1598-1604. [PMID: 23947826 DOI: 10.1021/np4002702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Citronellal is a major component of Corymbia citriodora and Cymbopogon nardus essential oils. Herein it is shown that whereas (+)-citronellal (1) is an effective microtubule (MT)-disrupting compound, (-)-citronellal (2) is not. Quantitative image analysis of fibroblast cells treated with 1 showed total fluorescence associated with fibers resembling that in cells treated with the MT-disrupting agents colchicine and vinblastine; in the presence of 2, the fluorescence more closely resembled that in control cells. The distribution of tubulin in soluble and insoluble fractions in the presence of 1 also resembled that in the presence of colchicine, whereas similar tubulin distribution was obtained in the presence of 2 and in control cells. In vitro polymerization of MTs was inhibited by 1 but not 2. Measurements of MT dynamics in plant cells showed similar MT elongation and shortening rates in control and 2-treated cells, whereas in the presence of 1, much fewer and shorter MTs were observed and no elongation or shrinkage was detected. Taken together, the MT system is suggested to be able to discriminate between different enantiomers of the same compound. In addition, the activity of essential oils rich in citronellal is affected by the relative content of the two enantiomers of this monoterpenoid.
Collapse
Affiliation(s)
- Osnat Altshuler
- The Institute of Plant Sciences, ARO , Volcani Center, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
198
|
Xiong ZQ, Tu XR, Wei SJ, Huang L, Li XH, Lu H, Tu GQ. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS One 2013; 8:e73884. [PMID: 23951364 PMCID: PMC3741153 DOI: 10.1371/journal.pone.0073884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Antifungalmycin 702, a new polyene macrolide antibiotic produced by Streptomycespadanus JAU4234, has a broad antifungal activity and may have potential future agricultural and/or clinical applications. However, the mechanism of antifungal action of antifungalmycin 702 remains unknown. Antifungalmycin 702 strongly inhibited mycelial growth and sclerotia formation/germination of Rhizoctonia solani. When treated with antifungalmycin 702, the hyphae morphology of R. solani became more irregular. The membrane and the cellular organelles were disrupted and there were many vacuoles in the cellular space. The lesion in the plasma membrane was detected through the increase of membrane permeability, lipid peroxidation and leakage of cell constituents. In summary, antifungalmycin 702 may exert its antifungal activity against R. solani by changing the structure of cell membranes and the cytoskeleton and interacting with the organelles.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (Z-QX); (G-QT)
| | - Xiao-Rong Tu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Sai-Jin Wei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Lin Huang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xun-Hang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Hui Lu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Guo-Quan Tu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (Z-QX); (G-QT)
| |
Collapse
|
199
|
Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 2013; 62:1175-1183. [DOI: 10.1099/jmm.0.055467-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO.
Collapse
Affiliation(s)
- Yuxin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, 843300, Xinjiang, PR China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jun Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xiaoquan Ban
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Bingxin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Youwei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
200
|
Effects of Heracleum persicum ethyl acetate extract on the growth, hyphal ultrastructure and aflatoxin biosynthesis in Aspergillus parasiticus. Mycotoxin Res 2013; 29:261-9. [DOI: 10.1007/s12550-013-0171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022]
|