151
|
Suh MJ, Fedorova ND, Cagas SE, Hastings S, Fleischmann RD, Peterson SN, Perlin DS, Nierman WC, Pieper R, Momany M. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome. Proteome Sci 2012; 10:30. [PMID: 22545825 PMCID: PMC3424117 DOI: 10.1186/1477-5956-10-30] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/30/2012] [Indexed: 11/14/2022] Open
Abstract
Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. Conclusions The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.
Collapse
Affiliation(s)
- Moo-Jin Suh
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Natalie D Fedorova
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Steven E Cagas
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Susan Hastings
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Scott N Peterson
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - David S Perlin
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - William C Nierman
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Rembert Pieper
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
152
|
Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging 2012; 39:1175-83. [PMID: 22526953 PMCID: PMC3369139 DOI: 10.1007/s00259-012-2110-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/02/2012] [Indexed: 01/09/2023]
Abstract
Purpose Invasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with 68Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising 68Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE). Methods Siderophores were labelled with 68Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic μPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo. Results 68Ga-siderophores were labelled with high radiochemical purity and specific activity. 68Ga-TAFC and 68Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, 68Ga-TAFC and 68Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by μPET with both compounds and increased with severity of the infection, correlating with abnormal CT images. Conclusion 68Ga-TAFC and 68Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging. Electronic supplementary material The online version of this article (doi:10.1007/s00259-012-2110-3) contains supplementary material, which is available to authorized users.
Collapse
|
153
|
Hagag S, Kubitschek-Barreira P, Neves GWP, Amar D, Nierman W, Shalit I, Shamir R, Lopes-Bezerra L, Osherov N. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant. PLoS One 2012; 7:e33604. [PMID: 22514608 PMCID: PMC3326020 DOI: 10.1371/journal.pone.0033604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/13/2012] [Indexed: 01/21/2023] Open
Abstract
Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.
Collapse
Affiliation(s)
- Shelly Hagag
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Israel
| | - Paula Kubitschek-Barreira
- Department of Cellular Biology, The Roberto Alcantara Gomes Institute of Biology, University of Estado Rio de Janeiro, Brazil
| | - Gabriela W. P. Neves
- Department of Cellular Biology, The Roberto Alcantara Gomes Institute of Biology, University of Estado Rio de Janeiro, Brazil
| | - David Amar
- Department of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - William Nierman
- The J. CraigVenter Institute, Rockville, Maryland, United States of America
| | - Itamar Shalit
- Sackler School of Medicine, Ramat Aviv, Tel-Aviv, Israel
| | - Ron Shamir
- Department of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Leila Lopes-Bezerra
- Department of Cellular Biology, The Roberto Alcantara Gomes Institute of Biology, University of Estado Rio de Janeiro, Brazil
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
154
|
Fuller KK, Rhodes JC. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway. Virulence 2012; 3:109-21. [PMID: 22460637 PMCID: PMC3396691 DOI: 10.4161/viru.19396] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diverse fungal species are the cause of devastating agricultural and human diseases. As successful pathogenesis is dependent upon the ability of the fungus to adapt to the nutritional and chemical environment of the host, the understanding of signaling pathways required for such adaptation will provide insights into the virulence of these pathogens and the potential identification of novel targets for antifungal intervention. The cAMP-PKA signaling pathway is well conserved across eukaryotes. In the nonpathogenic yeast, S. cerevisiae, PKA is activated in response to extracellular nutrients and subsequently regulates metabolism and growth. Importantly, this pathway is also a regulator of pathogenesis, as defects in PKA signaling lead to an attenuation of virulence in diverse plant and human pathogenic fungi. This review will compare and contrast PKA signaling in S. cerevisiae vs. various pathogenic species and provide a framework for the role of this pathway in regulating fungal virulence.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
155
|
Haas H. Iron - A Key Nexus in the Virulence of Aspergillus fumigatus. Front Microbiol 2012; 3:28. [PMID: 22347220 PMCID: PMC3272694 DOI: 10.3389/fmicb.2012.00028] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 01/01/2023] Open
Abstract
Iron is an essential but, in excess, toxic nutrient. Therefore, fungi evolved fine-tuned mechanisms for uptake and storage of iron, such as the production of siderophores (low-molecular mass iron-specific chelators). In Aspergillus fumigatus, iron starvation causes extensive transcriptional remodeling involving two central transcription factors, which are interconnected in a negative transcriptional feed-back loop: the GATA-factor SreA and the bZip-factor HapX. During iron sufficiency, SreA represses iron uptake, including reductive iron assimilation and siderophore-mediated iron uptake, to avoid toxic effects. During iron starvation, HapX represses iron-consuming pathways, including heme biosynthesis and respiration, to spare iron and activates synthesis of ribotoxin AspF1 and siderophores, the latter partly by ensuring supply of the precursor, ornithine. In accordance with the expression pattern and mode of action, detrimental effects of inactivation of SreA and HapX are confined to growth during iron sufficiency and iron starvation, respectively. Deficiency in HapX, but not SreA, attenuates virulence of A. fumigatus in a murine model of aspergillosis, which underlines the crucial role of adaptation to iron limitation in virulence. Consistently, production of both extra and intracellular siderophores is crucial for virulence of A. fumigatus. Recently, the sterol regulatory element binding protein SrbA was found to be essential for adaptation to iron starvation, thereby linking regulation of iron metabolism, ergosterol biosynthesis, azole drug resistance, and hypoxia adaptation.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University Innsbruck, Austria
| |
Collapse
|
156
|
Tang WH, Zhang Y, Duvick J. The application of laser microdissection to profiling fungal pathogen gene expression in planta. Methods Mol Biol 2012; 835:219-36. [PMID: 22183657 DOI: 10.1007/978-1-61779-501-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Laser microdissection (LM) of plant tissues infected with a fluorescent protein-tagged fungus is a useful method for obtaining samples highly enriched in fungal RNA for downstream analysis such as hybridization to a microarray. This paper outlines the requirements for successful LM of infected tissues and details a set of protocols for (1) preparing and sectioning infected tissue samples under conditions that preserve both RNA integrity and cytological features; (2) capturing fungal structures via LM; and (3) extraction and amplification of transcripts for further analysis.
Collapse
Affiliation(s)
- Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
157
|
Abstract
Cutaneous models allow researchers to dynamically monitor infection by visually determining changes in skin lesion dimensions over time. We present a nonlethal cutaneous model of invasive aspergillosis (IA) in nude BALB/c mice and describe its use to determine altered virulence in Aspergillus strains and response to antifungal drugs. In addition, as an example of the versatility of this model, we show how the cutaneous model can be used to assess the effect of IA on angiogenesis in vivo.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Disease Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,
| | | |
Collapse
|
158
|
Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M. Correlation of gene expression and protein production rate - a system wide study. BMC Genomics 2011; 12:616. [PMID: 22185473 PMCID: PMC3266662 DOI: 10.1186/1471-2164-12-616] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. RESULTS We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. CONCLUSIONS Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).
Collapse
Affiliation(s)
- Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Tiina Pakula
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Bart Smit
- NIZO food research, Kernhemseweg 2, 6718ZB Ede, the Netherlands
| | - Jari Rautio
- Plexpress, Viikinkaari 6, 00790 Helsinki, Finland
| | | | - Paula Jouhten
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Erno Lindfors
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| |
Collapse
|
159
|
Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc Natl Acad Sci U S A 2011; 109:E497-504. [PMID: 22106303 DOI: 10.1073/pnas.1106399108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is the most common airborne fungal pathogen for humans. In this mold, iron starvation induces production of the siderophore triacetylfusarinine C (TAFC). Here we demonstrate a link between TAFC and ergosterol biosynthetic pathways, which are both critical for virulence and treatment of fungal infections. Consistent with mevalonate being a limiting prerequisite for TAFC biosynthesis, we observed increased expression of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase (Hmg1) under iron starvation, reduced TAFC biosynthesis following lovastatin-mediated Hmg1 inhibition, and increased TAFC biosynthesis following Hmg1 overexpression. We identified enzymes, the acyl-CoA ligase SidI and the enoyl-CoA hydratase SidH, linking biosynthesis of mevalonate and TAFC, deficiency of which under iron starvation impaired TAFC biosynthesis, growth, oxidative stress resistance, and murine virulence. Moreover, inactivation of these enzymes alleviated TAFC-derived biosynthetic demand for mevalonate, as evidenced by increased resistance to lovastatin. Concordant with bilateral demand for mevalonate, iron starvation decreased the ergosterol content and composition, a phenotype that is mitigated in TAFC-lacking mutants.
Collapse
|
160
|
Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 2011; 93:467-72. [PMID: 22094977 DOI: 10.1007/s00253-011-3689-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/12/2011] [Accepted: 10/28/2011] [Indexed: 11/27/2022]
Abstract
Gliotoxin (GT) is the prototype of the epidithiodioxopiperazine (ETP)-type fungal toxins. GT plays a critical role in the pathobiology of Aspergillus fumigatus. It modulates the immune response and induces apoptosis in different cell types. The toxicity has been attributed to the unusual intramolecular disulfide bridge, which is the functional motif of all ETPs. Because of the extraordinary structure and activity of GT, this fungal metabolite has been the subject of many investigations. The biosynthesis of GT involves unprecedented reactions catalysed by recently discovered enzymes. Here, we summarize the recent progress in elucidating the GT biosynthetic pathway and its role in virulence.
Collapse
Affiliation(s)
- Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
161
|
OmniMapFree: a unified tool to visualise and explore sequenced genomes. BMC Bioinformatics 2011; 12:447. [PMID: 22085540 PMCID: PMC3251307 DOI: 10.1186/1471-2105-12-447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/15/2011] [Indexed: 11/11/2022] Open
Abstract
• Background Acquiring and exploring whole genome sequence information for a species under investigation is now a routine experimental approach. On most genome browsers, typically, only the DNA sequence, EST support, motif search results, and GO annotations are displayed. However, for many species, a growing volume of additional experimental information is available but this is rarely searchable within the landscape of the entire genome. • Results We have developed a generic software which permits users to view a single genome in entirety either within its chromosome or supercontig context within a single window. This software permits the genome to be displayed at any scales and with any features. Different data types and data sets are displayed onto the genome, which have been acquired from other types of studies including classical genetics, forward and reverse genetics, transcriptomics, proteomics and improved annotation from alternative sources. In each display, different types of information can be overlapped, then retrieved in the desired combinations and scales and used in follow up analyses. The displays generated are of publication quality. • Conclusions OmniMapFree provides a unified, versatile and easy-to-use software tool for studying a single genome in association with all the other datasets and data types available for the organism.
Collapse
|
162
|
Hartmann T, Cairns TC, Olbermann P, Morschhäuser J, Bignell EM, Krappmann S. Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 2011; 82:917-35. [DOI: 10.1111/j.1365-2958.2011.07868.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
163
|
Feng X, Krishnan K, Richie DL, Aimanianda V, Hartl L, Grahl N, Powers-Fletcher MV, Zhang M, Fuller KK, Nierman WC, Lu LJ, Latgé JP, Woollett L, Newman SL, Cramer RA, Rhodes JC, Askew DS. HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLoS Pathog 2011; 7:e1002330. [PMID: 22028661 PMCID: PMC3197630 DOI: 10.1371/journal.ppat.1002330] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacAi, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireAΔ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus. Aspergillus fumigatus is the predominant mold pathogen of humans, responsible for life-threatening infections in patients with depressed immunity. The fungus is highly adapted for secretion, a feature that it uses to extract nutrients from the host environment. High rates of protein secretion can overwhelm the protein folding capacity of the endoplasmic reticulum (ER). The resulting ER stress is alleviated by the unfolded protein response (UPR), a signaling pathway that is triggered by the ER-membrane sensor IreA and executed by the downstream transcription factor HacA. This paper uncovers a novel role for IreA in the expression of multiple adaptive traits that allow the fungus to cope with stress conditions that are encountered during infection. Gene expression profiling of ΔireA and ΔhacA mutants revealed that IreA signals predominantly through the canonical IreA-HacA UPR pathway under extreme conditions of ER stress, but has unexpected HacA-dependent and HacA-independent functions even in the absence of ER stress. These findings establish IreA as an important regulator of A. fumigatus pathogenicity and suggest that therapeutic targeting of the dual functions of this protein could be an effective antifungal strategy.
Collapse
Affiliation(s)
- Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Daryl L. Richie
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Lukas Hartl
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Nora Grahl
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Margaret V. Powers-Fletcher
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Minlu Zhang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Kevin K. Fuller
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - William C. Nierman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Long Jason Lu
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Laura Woollett
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Simon L. Newman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Robert A. Cramer
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Judith C. Rhodes
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
164
|
Nitsche BM, Crabtree J, Cerqueira GC, Meyer V, Ram AFJ, Wortman JR. New resources for functional analysis of omics data for the genus Aspergillus. BMC Genomics 2011; 12:486. [PMID: 21974739 PMCID: PMC3217955 DOI: 10.1186/1471-2164-12-486] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/05/2011] [Indexed: 11/17/2022] Open
Abstract
Background Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus Aspergillus comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely A. nidulans. Results Based on protein homology, we mapped 97% of the 3,498 GO annotated A. nidulans genes to at least one of seven other Aspergillus species: A. niger, A. fumigatus, A. flavus, A. clavatus, A. terreus, A. oryzae and Neosartorya fischeri. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all Aspergillus species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (http://www.broadinstitute.org/fetgoat/index.html). To demonstrate the value of those new resources for functional analysis of omics data for the genus Aspergillus, we performed two case studies analyzing microarray data recently published for A. nidulans, A. niger and A. oryzae. Conclusions We mapped A. nidulans GO annotation to seven other Aspergilli. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus Aspergillus. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.
Collapse
Affiliation(s)
- Benjamin M Nitsche
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
165
|
Cagas SE, Jain MR, Li H, Perlin DS. The proteomic signature of Aspergillus fumigatus during early development. Mol Cell Proteomics 2011; 10:M111.010108. [PMID: 21825280 DOI: 10.1074/mcp.m111.010108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is a saprophytic fungus that causes a range of diseases in humans including invasive aspergillosis. All forms of disease begin with the inhalation of conidia, which germinate and develop. Four stages of early development were evaluated using the gel free system of isobaric tagging for relative and absolute quantitation to determine the full proteomic profile of the pathogen. A total of 461 proteins were identified at 0, 4, 8, and 16 h and fold changes for each were established. Ten proteins including the hydrophobin rodlet protein RodA and a protein involved in melanin synthesis Abr2 were found to decrease relative to conidia. To generate a more comprehensive view of early development, a whole genome microarray analysis was performed comparing conidia to 8 and 16 h of growth. A total of 1871 genes were found to change significantly at 8 h with 1001 genes up-regulated and 870 down-regulated. At 16 h, 1235 genes changed significantly with 855 up-regulated and 380 down-regulated. When a comparison between the proteomics and microarray data was performed at 8 h, a total of 22 proteins with significant changes also had corresponding genes that changed significantly. When the same comparison was performed at 16 h, 12 protein and gene combinations were found. This study, the most comprehensive to date, provides insights into early pathways activated during growth and development of A. fumigatus. It reveals a pathogen that is gearing up for rapid growth by building translation machinery, generating ATP, and is very much committed to aerobic metabolism.
Collapse
Affiliation(s)
- Steven E Cagas
- Public Health Research Institute, New Jersey Medical School - University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
166
|
Blatzer M, Binder U, Haas H. The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol 2011; 48:1027-33. [PMID: 21840411 PMCID: PMC3188701 DOI: 10.1016/j.fgb.2011.07.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/10/2023]
Abstract
Aspergillus fumigatus employs two high affinity iron uptake mechanisms, siderophore mediated iron uptake and reductive iron assimilation (RIA). The A. fumigatus genome encodes 15 putative metalloreductases (MR) but the ferrireductases involved in RIA remained elusive so far. Expression of the MR FreB was found to be transcriptionally repressed by iron via SreA, a repressor of iron acquisition during iron sufficiency, indicating a role in iron metabolism. FreB-inactivation by gene deletion was phenotypically largely inconspicuous unless combined with inactivation of the siderophore system, which then decreased growth rate, surface ferrireductase activity and oxidative stress resistance during iron starvation. This study also revealed that loss of copper-independent siderophore-mediated iron uptake increases sensitivity of A. fumigatus to copper starvation due to copper-dependence of RIA.
Collapse
Affiliation(s)
- Michael Blatzer
- Division of Molecular Biology/Biocenter, Fritz-Pregl-Str. 3, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
167
|
Schrettl M, Haas H. Iron homeostasis--Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 2011; 14:400-5. [PMID: 21724450 PMCID: PMC3162135 DOI: 10.1016/j.mib.2011.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/16/2022]
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus adapts to iron limitation by upregulation of iron uptake mechanisms including siderophore biosynthesis and downregulation of iron-consuming pathways to spare iron. These metabolic changes depend mainly on the transcription factor HapX. Consistent with the crucial role of iron in pathophysiology, genetic inactivation of either HapX or the siderophore system attenuates virulence of A. fumigatus in a murine model of aspergillosis. The differences in iron handling between mammals and fungi might serve to improve therapy and diagnosis of fungal infections.
Collapse
|
168
|
Kniemeyer O. Proteomics of eukaryotic microorganisms: The medically and biotechnologically important fungal genus Aspergillus. Proteomics 2011; 11:3232-43. [DOI: 10.1002/pmic.201100087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/26/2011] [Accepted: 04/05/2011] [Indexed: 11/09/2022]
|
169
|
Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. EUKARYOTIC CELL 2011; 11:68-78. [PMID: 21724936 DOI: 10.1128/ec.05102-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is the most common and deadly pulmonary fungal infection worldwide. In the lung, the fungus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix. To identify candidate genes involved in this biofilm (BF) growth, we used RNA-Seq to compare the transcriptomes of BF and liquid plankton (PL) growth. Sequencing and mapping of tens of millions sequence reads against the A. fumigatus transcriptome identified 3,728 differentially regulated genes in the two conditions. Although many of these genes, including the ones coding for transcription factors, stress response, the ribosome, and the translation machinery, likely reflect the different growth demands in the two conditions, our experiment also identified hundreds of candidate genes for the observed differences in morphology and pathobiology between BF and PL. We found an overrepresentation of upregulated genes in transport, secondary metabolism, and cell wall and surface functions. Furthermore, upregulated genes showed significant spatial structure across the A. fumigatus genome; they were more likely to occur in subtelomeric regions and colocalized in 27 genomic neighborhoods, many of which overlapped with known or candidate secondary metabolism gene clusters. We also identified 1,164 genes that were downregulated. This gene set was not spatially structured across the genome and was overrepresented in genes participating in primary metabolic functions, including carbon and amino acid metabolism. These results add valuable insight into the genetics of biofilm formation in A. fumigatus and other filamentous fungi and identify many relevant, in the context of biofilm biology, candidate genes for downstream functional experiments.
Collapse
|
170
|
Watson DS, Feng X, Askew DS, Jambunathan K, Kodukula K, Galande AK. Substrate specifity profiling of the Aspergillus fumigatus proteolytic secretome reveals consensus motifs with predominance of Ile/Leu and Phe/Tyr. PLoS One 2011; 6:e21001. [PMID: 21695046 PMCID: PMC3117871 DOI: 10.1371/journal.pone.0021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/16/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers. METHODOLOGY AND PRINCIPAL FINDINGS As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures. CONCLUSIONS This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis.
Collapse
Affiliation(s)
- Douglas S. Watson
- Center for Advanced Drug Research, Biosciences Division, SRI International, Harrisonburg, Virginia, United States of America
| | - Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kalyani Jambunathan
- Center for Advanced Drug Research, Biosciences Division, SRI International, Harrisonburg, Virginia, United States of America
| | - Krishna Kodukula
- Center for Advanced Drug Research, Biosciences Division, SRI International, Harrisonburg, Virginia, United States of America
| | - Amit K. Galande
- Center for Advanced Drug Research, Biosciences Division, SRI International, Harrisonburg, Virginia, United States of America
| |
Collapse
|
171
|
Hartmann T, Sasse C, Schedler A, Hasenberg M, Gunzer M, Krappmann S. Shaping the fungal adaptome--stress responses of Aspergillus fumigatus. Int J Med Microbiol 2011; 301:408-16. [PMID: 21565548 DOI: 10.1016/j.ijmm.2011.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus as prime pathogen to cause aspergillosis has evolved as a saprophyte, but is also able to infect and colonise immunocompromised hosts. Based on the 'dual use' hypothesis of fungal pathogenicity, general characteristics have to be considered as unspecific virulence determinants, among them stress adaptation capacities. The susceptible, warm-blooded mammalian host represents a specific ecological niche that poses several kinds of stress conditions to the fungus during the course of infection. Detailed knowledge about the cellular pathways and adaptive traits that have evolved in A. fumigatus to counteract situations of stress and varying environmental conditions is crucial for the identification of novel and specific antifungal targets. Comprehensive profiling data accompanied by mutant analyses have shed light on such stressors, and nutritional deprivation, oxidative stress, hypoxia, elevated temperature, alkaline pH, extensive secretion, and, in particular during treatment with antifungals, cell membrane perturbations appear to represent the major hazards A. fumigatus has to cope with during infection. Further efforts employing innovative approaches and advanced technologies will have to be made to expand our knowledge about the scope of the A. fumigatus adaptome that is relevant for disease.
Collapse
Affiliation(s)
- Thomas Hartmann
- Research Center for Infectious Diseases, Julius-Maximilians-University Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
172
|
Richie DL, Feng X, Krishnan K, Askew DS. Secretion stress and antifungal resistance: an Achilles' heel of Aspergillus fumigatus? Med Mycol 2011; 49 Suppl 1:S101-6. [PMID: 20608779 DOI: 10.3109/13693786.2010.497504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of Aspergillus fumigatus to establish and maintain an infection requires a continuous supply of nutrients to fuel energy production and growth. Like other filamentous fungi, A. fumigatus acquires nutrients by absorption, a mode of nutrition that depends upon the secretion of extracellular hydrolases to degrade the complex organic polymers in host tissues into reduced forms of carbon and nitrogen. If the folding capacity of the endoplasmic reticulum (ER) is exceeded during periods of high secretory activity, a signaling pathway known as the unfolded protein response (UPR) is activated to relieve the stress on the ER. Current evidence indicates that A. fumigatus relies upon this pathway to sustain the high rate of protease secretion needed to grow optimally in mammalian tissue. In addition, the UPR strengthens the ability of the secretory system to deliver cell wall and membrane components to the hyphal apex, which promotes the invasive growth of the expanding hyphae and protects the fungus from damage caused by antifungal drugs. The important contribution of UPR-dependent functions to the pathogenesis of invasive aspergillosis and antifungal susceptibility suggests that components of this pathway could be promising new targets for antifungal therapy.
Collapse
Affiliation(s)
- Daryl L Richie
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
173
|
Fuller KK, Richie DL, Feng X, Krishnan K, Stephens TJ, Wikenheiser-Brokamp KA, Askew DS, Rhodes JC. Divergent Protein Kinase A isoforms co-ordinately regulate conidial germination, carbohydrate metabolism and virulence in Aspergillus fumigatus. Mol Microbiol 2011; 79:1045-62. [PMID: 21210869 PMCID: PMC3065306 DOI: 10.1111/j.1365-2958.2010.07509.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of Aspergillus fumigatus encodes two isoforms of the catalytic subunit of the cAMP-dependent Protein Kinase (PKA). Although deletion of the class I isoform, pkaC1, leads to an attenuation of virulence, the function of the class II subunit, PkaC2, was previously uninvestigated. In this report, we demonstrate that both isoforms act in concert to support various physiologic processes that promote the virulence of this pathogen. Whereas pkaC1 and pkaC2 single-deletion mutants display wild-type conidial germination, a double-deletion mutant is delayed in germination in response to environmental nutrients. Furthermore, PkaC1 and PkaC2 interact to positively regulate flux through the carbohydrate catabolic pathway and, consequently, the ΔpkaC1ΔpkaC2 mutant is unable to grow on low glucose concentrations. Importantly, the reduced germinative capacity and inability to utilize glucose observed for the ΔpkaC1ΔpkaC2 strain correlated with an inability of the mutant to establish infection in a murine model. Conversely, overexpression of pkaC2 both promotes the in vitro growth on glucose, and restores the fungal burden and mortality associated with the ΔpkaC1 to that of the wild-type organism. Taken together, these data demonstrate the functional capacity of pkaC2 and emphasize the importance of PKA-mediated metabolic control in the pathogenic potential of A. fumigatus.
Collapse
Affiliation(s)
- Kevin K. Fuller
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Daryl L. Richie
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Xizhi Feng
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Karthik Krishnan
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Timothy J. Stephens
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
- Divisions of Pathology and Laboratory Medicine and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - David S. Askew
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Judith C. Rhodes
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
174
|
Morton CO, Varga JJ, Hornbach A, Mezger M, Sennefelder H, Kneitz S, Kurzai O, Krappmann S, Einsele H, Nierman WC, Rogers TR, Loeffler J. The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro. PLoS One 2011; 6:e16016. [PMID: 21264256 PMCID: PMC3021540 DOI: 10.1371/journal.pone.0016016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/03/2010] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; >80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes.
Collapse
Affiliation(s)
- Charles O. Morton
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - John J. Varga
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Anke Hornbach
- Medizinische Klinik and Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus Mezger
- Medizinische Klinik and Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Helga Sennefelder
- Medizinische Klinik and Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Susanne Kneitz
- Labor für Microarray Anwendungen, Interdisziplinäres Zentrum für Klinische Forschung, Würzburg, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich-Schiller-Universität Jena, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Sven Krappmann
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik and Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - William C. Nierman
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Thomas R. Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Juergen Loeffler
- Medizinische Klinik and Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
175
|
Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage AA, Kniemeyer O, Müller FMC. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 2010; 10:3097-107. [PMID: 20645385 DOI: 10.1002/pmic.201000129] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The opportunistic pathogenic mold Aspergillus fumigatus is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network encased in an extracellular matrix. Here, we describe the proteome and transcriptome of planktonic- and biofilm-grown A. fumigatus mycelium after 24 and 48 h. A biofilm- and time-dependent regulation of many proteins and genes of the primary metabolism indicates a developmental stage of the young biofilm at 24 h, which demands energy. At a matured biofilm phase, metabolic activity seems to be reduced. However, genes, which code for hydrophobins, and proteins involved in the biosynthesis of secondary metabolites were significantly upregulated. In particular, proteins of the gliotoxin secondary metabolite gene cluster were induced in biofilm cultures. This was confirmed by real-time PCR and by detection of this immunologically active mycotoxin in culture supernatants using HPLC analysis. The enhanced production of gliotoxin by in vitro formed biofilms reported here may also play a significant role under in vivo conditions. It may confer A. fumigatus protection from the host immune system and also enable its survival and persistence in chronic lung infections such as aspergilloma.
Collapse
Affiliation(s)
- Sandra Bruns
- Department of Molecular and Applied Microbiology, Hans-Knöll-Institute, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. EUKARYOTIC CELL 2010; 10:34-42. [PMID: 21076011 DOI: 10.1128/ec.00242-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.
Collapse
|
177
|
Fraczek MG, Rashid R, Denson M, Denning DW, Bowyer P. Aspergillus fumigatus allergen expression is coordinately regulated in response to hydrogen peroxide and cyclic AMP. Clin Mol Allergy 2010; 8:15. [PMID: 21047420 PMCID: PMC2988701 DOI: 10.1186/1476-7961-8-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/03/2010] [Indexed: 01/17/2023] Open
Abstract
Background A. fumigatus has been associated with a wide spectrum of allergic disorders such as ABPA or SAFS. It is poorly understood what allergens in particular are being expressed during fungal invasion and which are responsible for stimulation of immune responses. Study of the dynamics of allergen production by fungi may lead to insights into how allergens are presented to the immune system. Methods Expression of 17 A. fumigatus allergen genes was examined in response to various culture conditions and stimuli as well as in the presence of macrophages in order to mimic conditions encountered in the lung. Results Expression of 14/17 allergen genes was strongly induced by oxidative stress caused by hydrogen peroxide (Asp f 1, -2, -4, -5, -6, -7, -8, -10, -13, -17 and -18, all >10-fold and Asp f 11, -12, and -22, 5-10-fold) and 16/17 allergen genes were repressed in the presence of cAMP. The 4 protease allergen genes (Asp f -5, -10, -13 and -18) were expressed at very low levels compared to the comparator (β-tubulin) under all other conditions examined. Mild heat shock, anoxia, lipid and presence of macrophages did not result in coordinated changes in allergen gene expression. Growth on lipid as sole carbon source contributed to the moderate induction of most of the allergen genes. Heat shock (37°C > 42°C) caused moderate repression in 11/17 genes (Asp f 1, -2, -4, -5, -6, -9, -10, -13, -17, -18 and -23) (2- to 9-fold), which was mostly evident for Asp f 1 and -9 (~9-fold). Anaerobic stress led to moderate induction of 13/17 genes (1.1 to 4-fold) with one, Asp f 8 induced over 10-fold when grown under mineral oil. Complex changes were seen in gene expression during co-culture of A. fumigatus with macrophages. Conclusions Remarkable coordination of allergen gene expression in response to a specific condition (oxidative stress or the presence of cAMP) has been observed, implying that a single biological stimulus may play a role in allergen gene regulation. Interdiction of a putative allergen expression induction signalling pathway might provide a novel therapy for treatment of fungal allergy.
Collapse
Affiliation(s)
- Marcin G Fraczek
- School of Translational Medicine, Faculty of Medicine and Human Sciences, Education and Research Centre (2nd floor), The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, M23 9LT, UK.
| | | | | | | | | |
Collapse
|
178
|
Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latgé JP, Haas H. The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect 2010; 12:1035-41. [PMID: 20659583 PMCID: PMC2977081 DOI: 10.1016/j.micinf.2010.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/31/2010] [Accepted: 07/08/2010] [Indexed: 01/10/2023]
Abstract
Iron plays a central role in manifestation of infections for a variety of pathogens. To ensure an adequate supply with iron, Aspergillus fumigatus employs extra- and intracellular siderophores (low-molecular mass iron chelators), which are of importance for fungal growth in particular during iron starvation. Here we show that the lack of extracellular siderophores, and especially, the lack of the entire siderophore system cause in immunosuppressed mice in vivo (i) a reduced extracellular growth rate, (ii) a reduced intracellular growth rate in alveolar macrophages, and (iii) an increased susceptibility to conidial growth inhibition by alveolar macrophages. These data underline the crucial role of the fungal siderophore system not only for extracellular growth but also in the interaction with the host immune cells. Moreover, the hyphal growth rate within alveolar macrophages compared to extracellular lavage fluid was significantly decreased indicating that, besides elimination of fungal conidia, inhibition of pathogenic growth is a function of macrophages.
Collapse
Affiliation(s)
- Markus Schrettl
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | - Sabrina Droin
- Histopathology Unit, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Michel Huerre
- Histopathology Unit, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Jean-Paul Latgé
- Aspergillus Unit, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| |
Collapse
|
179
|
Garvey GS, Keller NP. Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. CURRENT FUNGAL INFECTION REPORTS 2010. [DOI: 10.1007/s12281-010-0032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
180
|
Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 2010; 47:736-41. [PMID: 20554054 PMCID: PMC2916752 DOI: 10.1016/j.fgb.2010.06.003] [Citation(s) in RCA: 546] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 01/07/2023]
Abstract
Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized clusters from six fungal species showed that SMURF accurately recovered all clusters and detected additional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs. Further genetics studies are needed to experimentally confirm these clusters.
Collapse
Affiliation(s)
- Nora Khaldi
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| | - Fayaz T. Seifuddin
- Department of Infectious Disease, The J. Craig Venter Institute, Rockville, MD, USA
| | - Geoff Turner
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel Haft
- Department of Infectious Disease, The J. Craig Venter Institute, Rockville, MD, USA
| | - William C. Nierman
- Department of Infectious Disease, The J. Craig Venter Institute, Rockville, MD, USA
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC, USA
| | - Kenneth H. Wolfe
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| | - Natalie D. Fedorova
- Department of Infectious Disease, The J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
181
|
Palmer JM, Keller NP. Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 2010; 13:431-6. [PMID: 20627806 PMCID: PMC2922032 DOI: 10.1016/j.mib.2010.04.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Filamentous fungi produce a vast array of small molecules called secondary metabolites, which include toxins as well as antibiotics. Coregulated gene clusters are the hallmark of fungal secondary metabolism, and there is a growing body of evidence that suggests regulation is at least, in part, epigenetic. Chromatin-level control is involved in several silencing phenomena observed in fungi including mating type switching, telomere position effect (TPE), silencing of ribosomal DNA, regulation of genes involved in nutrient acquisition, and as presented here, secondary metabolite cluster expression. These phenomena are tied together by the underlying theme of chromosomal location, often near centromeres and telomeres, where facultative heterochromatin plays a role in transcription. Secondary metabolite gene clusters are often located subtelomerically and recently it has been shown that proteins involved in chromatin remodeling, such as LaeA, ClrD, CclA, and HepA mediate cluster regulation.
Collapse
Affiliation(s)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
182
|
Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M. Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 2010; 11:441. [PMID: 20642838 PMCID: PMC3091638 DOI: 10.1186/1471-2164-11-441] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background Trichoderma reesei is the main industrial producer of cellulases and hemicellulases that are used to depolymerize biomass in a variety of biotechnical applications. Many of the production strains currently in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization (aCGH). Our aim was to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general. Results We carried out an aCGH analysis of four high-producing strains (QM9123, QM9414, NG14 and Rut-C30) using the natural isolate QM6a as a reference. In QM9123 and QM9414 we detected a total of 44 previously undocumented mutation sites including deletions, chromosomal translocation breakpoints and single nucleotide mutations. In NG14 and Rut-C30 we detected 126 mutations of which 17 were new mutations not documented previously. Among these new mutations are the first chromosomal translocation breakpoints identified in NG14 and Rut-C30. We studied the effects of two deletions identified in Rut-C30 (a deletion of 85 kb in the scaffold 15 and a deletion in a gene encoding a transcription factor) on cellulase production by constructing knock-out strains in the QM6a background. Neither the 85 kb deletion nor the deletion of the transcription factor affected cellulase production. Conclusions aCGH analysis identified dozens of mutations in each strain analyzed. The resolution was at the level of single nucleotide mutation. High-density aCGH is a powerful tool for genome-wide analysis of organisms with small genomes e.g. fungi, especially in studies where a large set of interesting strains is analyzed.
Collapse
Affiliation(s)
- Marika Vitikainen
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | | | |
Collapse
|
183
|
Ben-Ami R, Lewis RE, Kontoyiannis DP. Enemy of the (immunosuppressed) state: an update on the pathogenesis of Aspergillus fumigatus infection. Br J Haematol 2010; 150:406-17. [PMID: 20618330 DOI: 10.1111/j.1365-2141.2010.08283.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspergillus fumigatus is an opportunistic filamentous fungus that is currently the most frequent cause of invasive fungal disease in immunosuppressed individuals. Recent advances in our understanding of the pathogenesis of invasive aspergillosis have highlighted the multifactorial nature of A. fumigatus virulence and the complex interplay between host and microbial factors. In this review, we outline current concepts of immune recognition and evasion, angioinvasion and angiogenesis, secondary metabolism and the fungal stress response, and their respective roles in this often lethal infection.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | |
Collapse
|
184
|
Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CMQ, Campoli P, Chabot J, Filler SG, Sheppard DC. Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 2010; 78:3007-18. [PMID: 20439478 PMCID: PMC2897364 DOI: 10.1128/iai.00813-09] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/12/2009] [Accepted: 04/21/2010] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The DeltatpsAB double mutant had delayed germination at 37 degrees C, suggesting a developmental defect. At 50 degrees C, the majority of DeltatpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. DeltatpsAB spores were also susceptible to oxidative stress. Surprisingly, the DeltatpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.
Collapse
Affiliation(s)
- Nadia Al-Bader
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ghyslaine Vanier
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hong Liu
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Fabrice N. Gravelat
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mirjam Urb
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christopher M.-Q. Hoareau
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Paolo Campoli
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseé Chabot
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Scott G. Filler
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
185
|
Abstract
The capture of pathogen gene expression signatures directly from the host niche promises to fuel our understanding of the highly complex nature of microbial virulence. However, obtaining and interpreting biological information from infected tissues presents multiple experimental and intellectual challenges, from difficulties in extracting pathogen RNA and appropriate choice of experimental design, to interpretation of the resulting infection transcriptome, itself a product of responses to multiple host-derived cues. The recent publication of several host-infecting fungal transcriptomes offers new opportunities to study the commonalities of animal and plant pathogeneses, which in turn might direct the rational design of new and broader spectrum antifungal agents. Here, we examine the transcriptional basis of modelled Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Ustilago maydis and Magneporthe infections, placing our analysis of the published findings within the context of the various modelling procedures used, and the relevant pathogen lifestyles, to facilitate the first cross-species comparison of fungal transcription during infectious growth. Significant concordance was identified among infecting transcriptomes of the inhaled fungal pathogens C. neoformans and A. fumigatus. The significance of gene clustering and subtelomeric gene repertoires is also discussed.
Collapse
Affiliation(s)
- Timothy Cairns
- Department of Microbiology, Imperial College London, London, UK
| | | | | |
Collapse
|
186
|
Shaaban M, Palmer J, EL-Naggar WA, EL-Sokkary MA, Habib ELSE, Keller NP. Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genet Biol 2010; 47:423-32. [PMID: 20219692 PMCID: PMC2863007 DOI: 10.1016/j.fgb.2010.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/16/2010] [Accepted: 02/19/2010] [Indexed: 11/29/2022]
Abstract
Subtelomeric secondary metabolite (SM) gene clusters are frequently surrounded by DNA repeats and transposon-like elements. The Aspergillus nidulans penicillin cluster, 30kb from the telomere of chromosome VI, is bordered by such elements. Deletions of penicillin telomere proximal and distal border regions resulted in decreased penicillin production. A 3.7kb distal region called PbIa, consisting of the putative transposable element DNA-2, was examined further where its replacement by a pyrG marker presented a similar phenotype as loss of the global SM regulator LaeA, resulting in a decrease in penicillin gene expression and product formation. In contrast, placement of the pyrG marker on either side of PbIa had no effect on penicillin synthesis. A requirement for PbIa in penicillin production was also apparent in a histone deacetylase mutant, DeltahdaA, enhanced for penicillin production. Trans-complementation of the PbIa element near and within the terrequinone A cluster on chromosome V did not restore penicillin biosynthesis or increase production of terrequinone A. Taken together, this data provides evidence for transposon involvement in SM cluster regulation.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Jonathan Palmer
- Plant Pathology Department, University of Wisconsin-Madison, WI
| | - Wael A. EL-Naggar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - M. A. EL-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - EL-Sayed E. Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI
- Department of Bacteriology, University of Wisconsin-Madison, WI
| |
Collapse
|
187
|
Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med 2010; 51:639-45. [PMID: 20351354 PMCID: PMC2992174 DOI: 10.2967/jnumed.109.072462] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The diagnosis of invasive pulmonary aspergillosis (IPA) is difficult and lacks specificity and sensitivity. In the pathophysiology of Aspergillus fumigatus, iron plays an essential role as a nutrient during infection. A. fumigatus uses a specific and highly efficient iron uptake mechanism based on iron-complexing ferric ion Fe(III) siderophores, which are a requirement for A. fumigatus virulence. We aimed to evaluate the potential of siderophores radiolabeled with (68)Ga, a positron emitter with complexing properties comparable to those of Fe(III), as a radiopharmaceutical for imaging IPA. METHODS (68)Ga radiolabeling of the A. fumigatus siderophores desferri-triacetylfusarinine C (TAFC) and desferri-ferricrocin (FC) was performed at high specific activity. Stability, protein binding, and log P values were determined. In vitro uptake in A. fumigatus cultures was tested under varying conditions. Biodistribution was studied in healthy noninfected BALB/c mice, and uptake was studied in a model of A. fumigatus infection using immunosuppressed Lewis rats. RESULTS High-specific-activity (68)Ga labeling could be achieved, and resulting complexes were stable in serum, toward diethylenetriaminepentaacetic acid and Fe(III) challenge. Both siderophores showed hydrophilic properties ((68)Ga-TAFC, log P = -2.59; (68)Ga-FC, log P = -3.17) with low values of protein binding for (68)Ga-TAFC (<2%). Uptake of both siderophores was highly dependent on the mycelial iron load and could be blocked with an excess (10 microM) of siderophore or NaN(3), indicating specific, energy-dependent uptake. In noninfected mice, (68)Ga-TAFC showed rapid renal excretion and low blood values (1.6 +/- 0.37 percentage injected dose per gram [%ID/g] at 30 min); in urine only intact (68)Ga-TAFC was detected. In contrast, (68)Ga-FC revealed high retention in blood (16.1 +/- 1.07 %ID/g at 90 min) and rapid metabolism. In the rat IPA model, lung uptake of (68)Ga-TAFC was dependent on the severity of infection, with less than 0.04 %ID/g in control rats (n = 5) and 0.29 +/- 0.11 %ID/g in mildly infected (n = 3) and 0.95 +/- 0.37 %ID/g in severely infected (n = 4) rats. PET showed focal accumulation in infected lung tissue. CONCLUSION Both siderophores bound (68)Ga with high affinity, and (68)Ga-TAFC, especially, showed high stability. (68)Ga-TAFC displayed highly selective accumulation by A. fumigatus subspecies in vitro and in vivo. The high and specific uptake by A. fumigatus proves the potential of (68)Ga-labeled siderophores for the specific detection of A. fumigatus during infection. They hold promise as new PET agents for IPA.
Collapse
Affiliation(s)
- Milos Petrik
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Hubertus Haas
- Department of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Georg Dobrozemsky
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Helbok
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Blatzer
- Department of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Hermann Dietrich
- Laboratory Animal Facilities, Innsbruck Medical University, Innsbruck, Austria
| | - Clemens Decristoforo
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
188
|
Gardiner DM, Kazan K, Manners JM. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1588-1600. [PMID: 19888824 DOI: 10.1094/mpmi-22-12-1588] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fusarium head blight of wheat, caused by Fusarium graminearum, is a serious disease resulting in both reduced yields and contamination of grain with trichothecene toxins, with severe consequences for mammalian health. Recently, we have identified several related amine compounds such as agmatine and putrescine that promote the production of high levels of trichothecene toxins, such as deoxynivalenol (DON), in culture by F. graminearum and F. sporotrichioides. Here, a global analysis of fungal gene expression using the Affymetrix Fusarium GeneChip during culture under DON-inducing conditions compared with noninducing conditions is reported. Agmatine differentially regulated a large number of fungal genes, including both known and previously uncharacterized putative secondary metabolite biosynthetic gene clusters. In silico prediction of binding sites for the transcriptional regulator (TRI6) controlling TRI gene expression and gene expression analysis in a TRI6 mutant of F. graminearum showed that three of the differentially regulated genes were under the control of TRI6. Gene knock-out mutations of two of these genes resulted in mutants with massively increased production of DON and increased aggressiveness toward wheat. Our results not only identify a novel mechanism of negative regulation of DON production and virulence in F. graminearum but also point out the potential of this pathogen to evolve with an ability to produce massively increased amounts of toxins and increased virulence.
Collapse
Affiliation(s)
- Donald M Gardiner
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, Queensland 4067, Australia.
| | | | | |
Collapse
|
189
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
190
|
Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 2009; 22:447-65. [PMID: 19597008 DOI: 10.1128/cmr.00055-08] [Citation(s) in RCA: 700] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus species are globally ubiquitous saprophytes found in a variety of ecological niches. Almost 200 species of aspergilli have been identified, less than 20 of which are known to cause human disease. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis (IA) in the immunocompromised patient population. IA is a devastating illness, with mortality rates in some patient groups reaching as high as 90%. Studies identifying and assessing the roles of specific factors of A. fumigatus that contribute to the pathogenesis of IA have traditionally focused on single-gene deletion and mutant characterization. In combination with recent large-scale approaches analyzing global fungal responses to distinct environmental or host conditions, these studies have identified many factors that contribute to the overall pathogenic potential of A. fumigatus. Here, we provide an overview of the significant findings regarding A. fumigatus pathogenesis as it pertains to invasive disease.
Collapse
|
191
|
Yasmin S, Abt B, Schrettl M, Moussa TAA, Werner ER, Haas H. The interplay between iron and zinc metabolism in Aspergillus fumigatus. Fungal Genet Biol 2009; 46:707-13. [PMID: 19460452 DOI: 10.1016/j.fgb.2009.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Zinc plays a critical role in a diverse array of biochemical processes. However, excess of zinc is deleterious to cells. Therefore, cells require finely tuned homeostatic mechanisms to balance uptake and storage of zinc. Here we show that iron starvation affects zinc metabolism by downregulating expression of the plasma membrane zinc importer encoding zrfB and upregulating the putative vacuolar zinc transporter-encoding zrcA in Aspergillus fumigatus. Nevertheless, the zinc content of iron-starved mycelia exceeded that of iron replete mycelia, possibly due to unspecific metal uptake induced by iron starvation. In agreement with increased zinc excess and zinc toxicity during iron starvation, deficiency in siderophore-mediated high-affinity iron uptake caused hypersensitivity to zinc. Moreover, an increase of zinc uptake by conditional overexpression of zrfB was more toxic under iron depleted compared to iron replete conditions. This deregulated zinc uptake under iron starvation caused a decrease in heme production and an increase in protoporphyrin IX accumulation. Furthermore, zinc excess impaired production of the extracellular siderophore triacetylfusarinine C but not the intracellular siderophore ferricrocin. Taken together, these data demonstrate a fine tuned coordination of zinc and iron metabolism in A. fumigatus.
Collapse
Affiliation(s)
- Sabiha Yasmin
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
192
|
Ryan RP, Romeo T, De Keersmaecker SCJ, Coulthurst SJ. Nurturing scientific mutualism: a report from the 'Young Microbiologists Mini-Symposium on microbe signalling, organisation and pathogenesis'. Mol Microbiol 2009; 73:760-74. [PMID: 19656292 DOI: 10.1111/j.1365-2958.2009.06822.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In April 2009, over one hundred microbiologists, primarily early career scientists, from 17 different countries met to discuss their work, under the broad heading of 'Microbe signalling, organization and pathogenesis'. The meeting took place at University College Cork, Ireland and was supported by the British Council, Society for General Microbiology, American Society for Microbiology, EMBO and others. The key and relatively unusual feature of this meeting was that it was specifically aimed to provide a platform for junior scientists to present their work to a broad audience. In this review, we have tried to summarize and highlight a number of particular areas covered during the meeting, including bacterial intracellular signalling and regulation; microbe-microbe communication; biogenesis; structure and transport of the bacterial cell envelope; and pathogenic versus probiotic microbe-host interactions. We draw attention to new findings, highlight unanswered questions and reveal the anticipated future directions of a variety of areas, as described in both oral and poster presentations. Overall, this meeting provided high-quality science, with many intriguing findings being eloquently reported, in a setting that fostered interactions between diverse young and talented microbiologists.
Collapse
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, University College Cork, Ireland.
| | | | | | | |
Collapse
|
193
|
Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun 2009; 77:4051-60. [PMID: 19564385 DOI: 10.1128/iai.00426-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of secreted proteases in the virulence of the pathogenic fungus Aspergillus fumigatus remains controversial. Recently, the Aspergillus niger transcription factor PrtT was shown to control the expression of multiple secreted proteases. In this work, the gene which encodes the PrtT homolog in A. fumigatus was cloned and its function analyzed using a deletion mutant strain. Deletion of A. fumigatus prtT resulted in the loss of secreted protease activity. The expression of six secreted proteases (ALP, MEP, Dpp4, CpdS, AFUA_2G17330, and AFUA_7G06220) was markedly reduced. Culture filtrates from the prtT deletion strain exhibited reduced killing of lung epithelial cells and lysis of erythrocytes. However, the prtT deletion strain did not exhibit altered virulence in lung-infected mice. These results suggest that PrtT is not a significant virulence factor in A. fumigatus.
Collapse
|
194
|
Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B. Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 2009; 9:688-700. [PMID: 19473261 DOI: 10.1111/j.1567-1364.2009.00524.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human pathogenic yeast Candida albicans can cause an unusually broad range of infections reflecting a remarkable potential to adapt to various microniches within the human host. The exceptional adaptability of C. albicans is mediated by rapid alterations in gene expression in response to various environmental stimuli and this transcriptional flexibility can be monitored with tools such as microarrays. Using such technology it is possible to (1) capture a genome-wide portrait of the transcriptome that mirrors the environmental conditions, (2) identify known genes, signalling pathways and transcription factors involved in pathogenesis, (3) identify new patterns of gene expression and (4) identify previously uncharacterized genes that may be associated with infection. In this review, we describe the molecular dissection of three distinct stages of infections, covering both superficial and invasive disease, using in vitro, ex vivo and in vivo infection models and microarrays.
Collapse
Affiliation(s)
- Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Beutenbergstrasse 11a, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Lodeiro S, Xiong Q, Wilson WK, Ivanova Y, Smith ML, May GS, Matsuda SPT. Protostadienol biosynthesis and metabolism in the pathogenic fungus Aspergillus fumigatus. Org Lett 2009; 11:1241-4. [PMID: 19216560 DOI: 10.1021/ol802696a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Details of the fungal biosynthetic pathway to helvolic acid and other fusidane antibiotics remain obscure. During product characterization of oxidosqualene cyclases in Aspergillus fumigatus, we found the long-sought cyclase that makes (17Z)-protosta-17(20),24-dien-3beta-ol, the precursor of helvolic acid. We then identified a gene cluster encoding the pathway to helvolic acid, which is controlled by a transcription regulator (LaeA) associated with fungal virulence. Evidence regarding the evolutionary origin and taxonomic distribution of fusidane biosynthesis is also presented.
Collapse
Affiliation(s)
- Silvia Lodeiro
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Molecular toolkit unlocks life cycle of the panzootic amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 2008; 105:17209-10. [PMID: 18997006 DOI: 10.1073/pnas.0809801105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|