151
|
Vengadesan K, Narayana SVL. Structural biology of Gram-positive bacterial adhesins. Protein Sci 2011; 20:759-72. [PMID: 21404359 PMCID: PMC3125861 DOI: 10.1002/pro.613] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/16/2011] [Accepted: 02/21/2011] [Indexed: 11/08/2022]
Abstract
The structural biology of Gram-positive cell surface adhesins is an emerging field of research, whereas Gram-negative pilus assembly and anchoring have been extensively investigated and are well understood. Gram-positive surface proteins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and individual proteins that assemble into long, hair-like organelles known as pili have similar features at the primary sequence level as well as at the tertiary structural level. Some of these conserved features are essential for their transportation from the cytoplasm and for cell wall anchoring. More importantly, the MSCRAMMs and the individual pilins are assembled with building blocks that are variants of structural modules used for human immunoglobulins. MSCRAMMs target the host's extracellular matrix proteins, such as collagen, fibrinogen, and fibronectin, and they have received considerable attention from structural biologists in the last decade, who have primarily been interested in understanding their interactions with host tissue. The recent focus is on the newly discovered pili of Gram-positive bacteria, and in this review, we highlight the advances in understanding of the individual pilus constituents and their associations and stress the similarities between the individual pilins and surface proteins.
Collapse
Affiliation(s)
| | - Sthanam V L Narayana
- School of Optometry and Center for Biophysical Sciences and Engineering, University of Alabama at BirminghamBirmingham, Alabama
| |
Collapse
|
152
|
Senn BM, Visram Z, Meinke AL, Neubauer C, Gelbmann D, Sinzinger J, Hanner M, Lundberg U, Boisvert H, Reinscheid D, von Gabain A, Nagy E. Monoclonal antibodies targeting different cell wall antigens of group B streptococcus mediate protection in both Fc-dependent and independent manner. Vaccine 2011; 29:4116-24. [DOI: 10.1016/j.vaccine.2011.03.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 03/20/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
153
|
Hendrickx APA, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 2011; 9:166-76. [PMID: 21326273 DOI: 10.1038/nrmicro2520] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
154
|
Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 2011; 79:2901-10. [PMID: 21505082 DOI: 10.1128/iai.00038-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the ebp operon and the ace gene of Enterococcus faecalis, encoding endocarditis- and biofilm-associated pili and an adhesin to collagen of E. faecalis, respectively, are both important in experimental urinary tract infections (UTI) and endocarditis. We have also shown that growth of E. faecalis in brain heart infusion (BHI) serum enhances Ebp pilus and Ace production and increases adherence to several host extracellular matrix proteins. Here, we report that deletion of ebpABC almost eliminated serum-elicited adherence to fibrinogen (P < 0.0001), resulted in moderate reduction in adherence to collagen (P < 0.05), and had no effect on fibronectin adherence relative to that of wild-type OG1RF. An OG1RFΔaceΔebpABC double mutant showed further reduced collagen adherence versus that of the OG1RFΔace or OG1RFΔebpABC mutants (P < 0.001). These results were corroborated by complementation and/or studies with native pilus-enriched surface extracts and a collagen-secreting 3T6 fibroblast cell line, as well as antibody inhibition. In the UTI model, both the OG1RFΔace and OG1RFΔaceΔebpABC mutants were found to be significantly attenuated compared to the wild type; however, no significant differences were observed between individual ace or ebp mutants and the OG1RFΔaceΔebpABC mutant. In summary, these data implicate the Ebp pili as having some role in collagen adherence, albeit less than that of Ace, and a very major role in fibrinogen adherence, which may explain in part the importance of these pili in experimental endocarditis. The OG1RFΔaceΔebpABC mutant was attenuated in the UTI model, although not significantly more so than the Δace or ΔebpABC mutants, suggesting involvement of other E. faecalis factors in urinary tract colonization or infection.
Collapse
|
155
|
Krishnan V, Xin M, Prabhat D, Hung TT, Sthanam NV. A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80. J Mol Biol 2011; 407:731-43. [PMID: 21333654 PMCID: PMC3102248 DOI: 10.1016/j.jmb.2011.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The Gram-positive pathogen Streptococcus agalactiae, known as group B Streptococcus (GBS), is the leading cause of bacterial septicemia, pneumonia, and meningitis among neonates. GBS assembles two types of pili-pilus islands (PIs) 1 and 2-on its surface to adhere to host cells and to initiate colonization for pathogenesis. The GBS PI-1 pilus is made of one major pilin, GBS80, which forms the pilus shaft, and two secondary pilins, GBS104 and GBS52, which are incorporated into the pilus at various places. We report here the crystal structure of the 35-kDa C-terminal fragment from GBS80, which is composed of two IgG-like domains (N2-N3). The structure was solved by single-wavelength anomalous dispersion using sodium-iodide-soaked crystals and diffraction data collected at the home source. The N2 domain exhibits a cnaA/DEv-IgG fold with two calcium-binding sites, while the N3 domain displays a cnaB/IgG-rev fold. We have built a model for full-length GBS80 (N1, N2, and N3) with the help of available homologous major pilin structures, and we propose a model for the GBS PI-1 pilus shaft. The N2 and N3 domains are arranged in tandem along the pilus shaft, whereas the respective N1 domain is tilted by approximately 20° away from the pilus axis. We have also identified a pilin-like motif in the minor pilin GBS52, which might aid its incorporation at the pilus base.
Collapse
Affiliation(s)
- Vengadesan Krishnan
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham AL 35294
| | - Ma Xin
- University of Texas Health Science Center, Houston, TX 77030
| | - Dwivedi Prabhat
- University of Texas Health Science Center, Houston, TX 77030
| | - Ton-That Hung
- University of Texas Health Science Center, Houston, TX 77030
| | - Narayana V.L Sthanam
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham AL 35294
| |
Collapse
|
156
|
Papasergi S, Brega S, Mistou MY, Firon A, Oxaran V, Dover R, Teti G, Shai Y, Trieu-Cuot P, Dramsi S. The GBS PI-2a pilus is required for virulence in mice neonates. PLoS One 2011; 6:e18747. [PMID: 21525979 PMCID: PMC3078112 DOI: 10.1371/journal.pone.0018747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (Group B Streptococcus) is a leading cause of sepsis and meningitis in newborns. Most bacterial pathogens, including gram-positive bacteria, have long filamentous structures known as pili extending from their surface. Although pili are described as adhesive organelles, they have been also implicated in many other functions including thwarting the host immune responses. We previously characterized the pilus-encoding operon PI-2a (gbs1479-1474) in strain NEM316. This pilus is composed of three structural subunit proteins: PilA (Gbs1478), PilB (Gbs1477), and PilC (Gbs1474), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component whereas PilA, the pilus associated adhesin, and PilC the pilus anchor are both accessory proteins incorporated into the pilus backbone. METHODOLOGY/PRINCIPAL FINDINGS In this study, the role of the major pilin subunit PilB was tested in systemic virulence using 6-weeks old and newborn mice. Notably, the non-piliated ΔpilB mutant was less virulent than its wild-type counterpart in the newborn mice model. Next, we investigated the possible role(s) of PilB in resistance to innate immune host defenses, i.e. resistance to macrophage killing and to antimicrobial peptides. Phagocytosis and survival of wild-type NEM316 and its isogenic ΔpilB mutant in immortalized RAW 264.7 murine macrophages were not significantly different whereas the isogenic ΔsodA mutant was more susceptible to killing. These results were confirmed using primary peritoneal macrophages. We also tested the activities of five cationic antimicrobial peptides (AMP-1D, LL-37, colistin, polymyxin B, and mCRAMP) and found no significant difference between WT and ΔpilB strains whereas the isogenic dltA mutant showed increased sensitivity. CONCLUSIONS/SIGNIFICANCE These results question the previously described role of PilB pilus in resistance to the host immune defenses. Interestingly, PilB was found to be important for virulence in the neonatal context.
Collapse
Affiliation(s)
- Salvatore Papasergi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
- The Elie Metchnikoff Deparment, University of Messina, Messina, Italy
| | - Sara Brega
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
| | - Michel-Yves Mistou
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
- INRA, MICALIS UMR 1319, Equipe Paroi, Jouy-en-Josas, France
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
| | - Virginie Oxaran
- INRA, MICALIS UMR1319, Equipe Protéines de Surface Utiles, Jouy-en-Josas, France
| | - Ron Dover
- Depatment of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppe Teti
- The Elie Metchnikoff Deparment, University of Messina, Messina, Italy
| | - Yechiel Shai
- Depatment of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- URA CNRS 2172, Paris, France
- * E-mail:
| |
Collapse
|
157
|
Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 2011; 79:2168-81. [PMID: 21422183 DOI: 10.1128/iai.01304-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation.
Collapse
|
158
|
Kumar M, Balaji PV. Comparative genomics analysis of completely sequenced microbial genomes reveals the ubiquity of N-linked glycosylation in prokaryotes. MOLECULAR BIOSYSTEMS 2011; 7:1629-45. [PMID: 21387023 DOI: 10.1039/c0mb00259c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosylation of proteins in prokaryotes has been known for the last few decades. Glycan structures and/or the glycosylation pathways have been experimentally characterized in only a small number of prokaryotes. Even this has become possible only during the last decade or so, primarily due to technological and methodological developments. Glycosylated proteins are diverse in their function and localization. Glycosylation has been shown to be associated with a wide range of biological phenomena. Characterization of the various types of glycans and the glycosylation machinery is critical to understand such processes. Such studies can help in the identification of novel targets for designing drugs, diagnostics, and engineering of therapeutic proteins. In view of this, the experimentally characterized pgl system of Campylobacter jejuni, responsible for N-linked glycosylation, has been used in this study to identify glycosylation loci in 865 prokaryotes whose genomes have been completely sequenced. Results from the present study show that only a small number of organisms have homologs for all the pgl enzymes and a few others have homologs for none of the pgl enzymes. Most of the organisms have homologs for only a subset of the pgl enzymes. There is no specific pattern for the presence or absence of pgl homologs vis-à-vis the 16S rRNA sequence-based phylogenetic tree. This may be due to differences in the glycan structures, high sequence divergence, horizontal gene transfer or non-orthologous gene displacement. Overall, the presence of homologs for pgl enzymes in a large number of organisms irrespective of their habitat, pathogenicity, energy generation mechanism, etc., hints towards the ubiquity of N-linked glycosylation in prokaryotes.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
159
|
Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S, Ooshima T. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 2011; 50:148-54. [DOI: 10.1016/j.micpath.2011.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
160
|
Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2010; 13:186-97. [PMID: 21199258 DOI: 10.1111/j.1462-5822.2010.01560.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review we focus on three important families of LPxTG-anchored adhesins in the human pathogen Streptococcus pneumoniae, but also their homologues in related streptococci. We discuss the contribution of these streptococcal adhesins to host tropism, pathogenesis and their interactions with different host cell types. The first surface structures discussed are the heteropolymeric pili that have been found in important streptococcal pathogens such as S. pneumoniae, S. pyogenes, S. agalactiae and E. faecalis/faecium. Major and minor pilus subunit proteins are covalently joined and finally attached to the cell wall through the action of specific sortases. The role of pili and individual pilin subunits in adhesion and pathogenesis and their structure and assembly in different streptococcal species are being covered. Furthermore, we address recent findings regarding a family of large glycosylated serine-rich repeat (SRR) proteins that act as fibrillar adhesins for which homologues have been found in several streptococcal species including pneumococci. In the pneumococcal genome both pili and its giant SRR protein are encoded by accessory genes present in particular clonal lineages for which epidemiological information is available. Finally, we briefly discuss the role played by the pneumococcal neuraminidase NanA in adhesion and pathogenesis.
Collapse
Affiliation(s)
- J Löfling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
161
|
Puttamreddy S, Minion FC. Linkage between cellular adherence and biofilm formation in Escherichia coli O157:H7 EDL933. FEMS Microbiol Lett 2010; 315:46-53. [DOI: 10.1111/j.1574-6968.2010.02173.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
162
|
The minor pilin subunit Sgp2 is necessary for assembly of the pilus encoded by the srtG cluster of Streptococcus suis. J Bacteriol 2010; 193:822-31. [PMID: 21148736 DOI: 10.1128/jb.01555-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis. It consists of one sortase gene (srtG) and two putative pilin subunit genes (sgp1 and sgp2). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism.
Collapse
|
163
|
Abstract
Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.
Collapse
|
164
|
Abstract
Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping sortase in L. lactis IL1403.
Collapse
|
165
|
Smith WD, Pointon JA, Abbot E, Kang HJ, Baker EN, Hirst BH, Wilson JA, Banfield MJ, Kehoe MA. Roles of minor pilin subunits Spy0125 and Spy0130 in the serotype M1 Streptococcus pyogenes strain SF370. J Bacteriol 2010; 192:4651-9. [PMID: 20639332 PMCID: PMC2937429 DOI: 10.1128/jb.00071-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/05/2010] [Indexed: 02/04/2023] Open
Abstract
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal approximately 1/3 and C-terminal approximately 2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.
Collapse
Affiliation(s)
- Wendy D. Smith
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jonathan A. Pointon
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Emily Abbot
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Hae Joo Kang
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Edward N. Baker
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Barry H. Hirst
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Janet A. Wilson
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Mark J. Banfield
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Michael A. Kehoe
- Institute for Cell and Molecular Biosciences, Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom, Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand, Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
166
|
Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, Hermans PWM, Orihuela CJ. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 2010; 6:e1001044. [PMID: 20714350 PMCID: PMC2920850 DOI: 10.1371/journal.ppat.1001044] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/14/2010] [Indexed: 12/16/2022] Open
Abstract
The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR) domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (r)BR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs) of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae) may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Amino Acid Motifs
- Animals
- Bacterial Adhesion/physiology
- Biofilms/growth & development
- Blotting, Western
- Female
- Immunoprecipitation
- Mice
- Mice, Inbred BALB C
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Protein Structure, Tertiary/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Streptococcus pneumoniae/metabolism
- Streptococcus pneumoniae/pathogenicity
- Streptococcus pneumoniae/physiology
Collapse
Affiliation(s)
- Carlos J. Sanchez
- Department of Microbiology and Immunology, The University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Pooja Shivshankar
- Department of Microbiology and Immunology, The University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Kim Stol
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Samuel Trakhtenbroit
- Department of Microbiology and Immunology, The University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Paul M. Sullam
- Division of Infectious Diseases, San Francisco VA Medical Center and the University of California, San Francisco, California, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Carlos J. Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
167
|
Soriani M, Telford JL. Relevance of pili in pathogenic streptococci pathogenesis and vaccine development. Future Microbiol 2010; 5:735-47. [PMID: 20441546 DOI: 10.2217/fmb.10.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A common mechanism used by bacteria to initiate adhesion to host tissues during colonization is the expression of long filamentous structures extending from their surface. These structures, known as pili or fimbriae, were initially identified in Gram-negative bacteria, and are typically formed by noncovalent interactions between pilin subunits. Pili have only recently been described in Gram-positive bacteria. In particular, in pathogenic streptococci the proteinaceous components of pili are covalently polymerized by the action of sortase enzymes similar to those involved in the covalent attachment of Gram-positive surface proteins to the peptidoglycan cell wall. With great relevance to the development of strategies to combat Gram-positive-associated infections, pilus components from pathogenic streptococci have been shown to induce protective immunity in mouse models of streptococcal disease. In addition, recent papers have created new perspectives on the role of such organelles in streptococcal pathogenesis, from the involvement in colonization and biofilm formation to translocation of tissue barriers. All this information makes the characterization of pili a hot scientific issue that we believe will lead to important future developments in understanding bacterial dynamics that lead to successful occupation of microbial niches.
Collapse
Affiliation(s)
- Marco Soriani
- Microbial Molecular Biology Department, Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
168
|
Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniae pilus. PLoS One 2010; 5:e10919. [PMID: 20559564 PMCID: PMC2886109 DOI: 10.1371/journal.pone.0010919] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 05/04/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.
Collapse
|
169
|
Zähner D, Gudlavalleti A, Stephens DS. Increase in pilus islet 2-encoded pili among Streptococcus pneumoniae isolates, Atlanta, Georgia, USA. Emerg Infect Dis 2010; 16:955-62. [PMID: 20507746 PMCID: PMC3086225 DOI: 10.3201/eid1606.091820] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To define the prevalence of pilus islet 2 (PI-2)-encoded pili in Streptococcus pneumoniae in a geographically defined area, we examined 590 S. pneumoniae isolates from population-based surveillance of invasive pneumococcal disease in Atlanta, Georgia, USA, 1994-2006. In 2006, PI-2 was present in 21% of all invasive isolates, including serotypes 1 (100%), 7F (89%), 11A (21%), 19A (40%), and 19F (75%). Only serotype 19F is included in the 7-valent pneumococcal conjugate vaccine that is in use worldwide. In 1999, PI-2-containing isolates were of the same serotypes but accounted for only 3.6% of all invasive isolates. The increase of PI-2 in 2006 resulted predominantly from the emergence of serotype 19A isolates of sequence type 320 and the expansion of serotype 7F isolates. The increase in PI-2-containing isolates and the finding that isolates of all identified serotypes expressed highly conserved PI-2 pili supports their potential as a vaccine candidate.
Collapse
Affiliation(s)
- Dorothea Zähner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
170
|
Linke C, Young PG, Kang HJ, Bunker RD, Middleditch MJ, Caradoc-Davies TT, Proft T, Baker EN. Crystal structure of the minor pilin FctB reveals determinants of Group A streptococcal pilus anchoring. J Biol Chem 2010; 285:20381-9. [PMID: 20427291 DOI: 10.1074/jbc.m109.089680] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface pili are polymeric protein assemblies that enable bacteria to adhere to surfaces and to specific host tissues. The pili expressed by Gram-positive bacteria constitute a unique paradigm in which sortase-mediated covalent linkages join successive pilin subunits like beads on a string. These pili are formed from two or three distinct types of pilin subunit, typically encoded in small gene clusters, often with their cognate sortases. In Group A streptococci (GAS), a major pilin forms the polymeric backbone, whereas two minor pilins are located at the tip and the base. Here, we report the 1.9-A resolution crystal structure of the GAS basal pilin FctB, revealing an immunoglobulin (Ig)-like N-terminal domain with an extended proline-rich tail. Unexpected structural homology between the FctB Ig-like domain and the N-terminal domain of the GAS shaft pilin helps explain the use of the same sortase for polymerization of the shaft and its attachment to FctB. It also enabled the identification, from mass spectral data, of the lysine residue involved in the covalent linkage of FctB to the shaft. The proline-rich tail forms a polyproline-II helix that appears to be a common feature of the basal (cell wall-anchoring) pilins. Together, our results indicate distinct structural elements in the pilin proteins that play a role in selecting for the appropriate sortases and thereby help orchestrate the ordered assembly of the pilus.
Collapse
Affiliation(s)
- Christian Linke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 2010; 192:2950-64. [PMID: 20233936 DOI: 10.1128/jb.01642-09] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the Delta bifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the Delta bifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the Delta bifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the Delta bifA Delta pilY1 mutant relative to the Delta bifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.
Collapse
|
172
|
Rinaudo CD, Rosini R, Galeotti CL, Berti F, Necchi F, Reguzzi V, Ghezzo C, Telford JL, Grandi G, Maione D. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One 2010; 5:e9216. [PMID: 20169161 PMCID: PMC2821406 DOI: 10.1371/journal.pone.0009216] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/23/2010] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells.
Collapse
|
173
|
Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 2010; 76:2049-57. [PMID: 20118368 DOI: 10.1128/aem.01958-09] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus rhamnosus GG is a well-established Gram-positive probiotic strain, whose health-benefiting properties are dependent in part on prolonged residence in the gastrointestinal tract and are likely dictated by adherence to the intestinal mucosa. Previously, we identified two pilus gene clusters (spaCBA and spaFED) in the genome of this probiotic bacterium, each of which contained the predicted genes for three pilin subunits and a single sortase. We also confirmed the presence of SpaCBA pili on the cell surface and attributed an intestinal mucus-binding capacity to one of the pilin subunits (SpaC). Here, we report cloning of the remaining pilin genes (spaA, spaB, spaD, spaE, and spaF) in Escherichia coli, production and purification of the recombinant proteins, and assessment of the adherence of these proteins to human intestinal mucus. Our findings indicate that the SpaB and SpaF pilin subunits also exhibit substantial binding to mucus, which can be inhibited competitively in a dose-related manner. Moreover, the binding between the SpaB pilin subunit and the mucosal substrate appears to operate through electrostatic contacts and is not related to a recognized mucus-binding domain. We conclude from these results that it is conceivable that two pilin subunits (SpaB and SpaC) in the SpaCBA pilus fiber play a role in binding to intestinal mucus, but for the uncharacterized and putative SpaFED pilus fiber only a single pilin subunit (SpaF) is potentially responsible for adhesion to mucus.
Collapse
|
174
|
Fittipaldi N, Takamatsu D, Domínguez-Punaro MDLC, Lecours MP, Montpetit D, Osaki M, Sekizaki T, Gottschalk M. Mutations in the gene encoding the ancillary pilin subunit of the Streptococcus suis srtF cluster result in pili formed by the major subunit only. PLoS One 2010; 5:e8426. [PMID: 20052283 PMCID: PMC2797073 DOI: 10.1371/journal.pone.0008426] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/01/2009] [Indexed: 01/03/2023] Open
Abstract
Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - María de la Cruz Domínguez-Punaro
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Marie-Pier Lecours
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Diane Montpetit
- Centre de Recherche et de Développement sur les Aliments, Agriculture et Agroalimentaire Canada, St-Hyacinthe, Canada
| | - Makoto Osaki
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
- * E-mail:
| |
Collapse
|
175
|
M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. J Mol Med (Berl) 2009; 88:371-81. [PMID: 19960175 PMCID: PMC2843839 DOI: 10.1007/s00109-009-0566-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/22/2009] [Accepted: 11/10/2009] [Indexed: 11/03/2022]
Abstract
Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections. We confirm that pilus expression promotes GAS adherence to pharyngeal cells, keratinocytes, and skin. However, in contrast to findings reported for group B streptococcal and pneumococcal pili, we observe that pilus expression reduces GAS virulence in murine models of necrotizing fasciitis, pneumonia and sepsis, while decreasing GAS survival in human blood. Further analysis indicated the systemic virulence attenuation associated with pilus expression was not related to differences in phagocytic uptake, complement deposition or cathelicidin antimicrobial peptide sensitivity. Rather, GAS pili were found to induce neutrophil IL-8 production, promote neutrophil transcytosis of endothelial cells, and increase neutrophil release of DNA-based extracellular traps, ultimately promoting GAS entrapment and killing within these structures.
Collapse
|
176
|
Sillanpää J, Nallapareddy SR, Qin X, Singh KV, Muzny DM, Kovar CL, Nazareth LV, Gibbs RA, Ferraro MJ, Steckelberg JM, Weinstock GM, Murray BE. A collagen-binding adhesin, Acb, and ten other putative MSCRAMM and pilus family proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, biotype I). J Bacteriol 2009; 191:6643-53. [PMID: 19717590 PMCID: PMC2795296 DOI: 10.1128/jb.00909-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/24/2009] [Indexed: 11/20/2022] Open
Abstract
Members of the Streptococcus bovis group are important causes of endocarditis. However, factors associated with their pathogenicity, such as adhesins, remain uncharacterized. We recently demonstrated that endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates frequently adhere to extracellular matrix (ECM) proteins. Here, we generated a draft genome sequence of an ECM protein-adherent S. gallolyticus subsp. gallolyticus strain and found, by genome-wide analyses, 11 predicted LPXTG-type cell wall-anchored proteins with characteristics of MSCRAMMs, including a modular architecture of domains predicted to adopt immunoglobulin (Ig)-like folding. A recombinant segment of one of these, Acb, showed high-affinity binding to immobilized collagen, and cell surface expression of Acb correlated with the presence of acb and collagen adherence of isolates. Three of the 11 proteins have similarities to major pilus subunits and are organized in separate clusters, each including a second Ig-fold-containing MSCRAMM and a class C sortase, suggesting that the sequenced strain encodes three distinct types of pili. Reverse transcription-PCR demonstrated that all three genes of one cluster, acb-sbs7-srtC1, are cotranscribed, consistent with pilus operons of other gram-positive bacteria. Further analysis detected expression of all 11 genes in cells grown to mid to late exponential growth phases. Wide distribution of 9 of the 11 genes was observed among S. gallolyticus subsp. gallolyticus isolates with fewer genes present in other S. bovis group species/subspecies. The high prevalence of genes encoding putative MSCRAMMs and pili, including a collagen-binding MSCRAMM, among S. gallolyticus subsp. gallolyticus isolates may play an important role in the predominance of this subspecies in S. bovis endocarditis.
Collapse
Affiliation(s)
- Jouko Sillanpää
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sreedhar R. Nallapareddy
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Xiang Qin
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Donna M. Muzny
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Christie L. Kovar
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Lynne V. Nazareth
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Richard A. Gibbs
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Mary J. Ferraro
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - James M. Steckelberg
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - George M. Weinstock
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
177
|
Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A 2009; 106:17193-8. [PMID: 19805152 DOI: 10.1073/pnas.0908876106] [Citation(s) in RCA: 538] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.
Collapse
|