151
|
Fernandez J, Wilson RA. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1286-93. [PMID: 22947213 DOI: 10.1094/mpmi-12-11-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnaporthe oryzae is a devastating pathogen of rice and wheat. It is a hemibiotroph that exhibits symptomless biotrophic growth for the first 4 to 5 days of infection of susceptible cultivars before becoming necrotrophic. Here, we review recent advances in our understanding of how M. oryzae is able to grow, acquire nutrients, and interact with the plant cell during infection. In particular, we describe direct mechanisms (such as the integration of carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1) and indirect mechanisms (such as the suppression of host responses) that allow M. oryzae to utilize available host nutrient. We contrast the ability of M. oryzae to voraciously metabolize a wide range of carbon and nitrogen sources in vitro with the carefully orchestrated development it displays during the biotrophic phase of in planta growth and ask how the two observations can be reconciled. We also look at how nutrient acquisition and effector biology might be linked in order to facilitate rapid colonization of the plant host.
Collapse
Affiliation(s)
- J Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
152
|
Zhou X, Zhang H, Li G, Shaw B, Xu JR. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002911. [PMID: 22969430 PMCID: PMC3435248 DOI: 10.1371/journal.ppat.1002911] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/02/2012] [Indexed: 12/03/2022] Open
Abstract
Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated. In Magnaporthe oryzae, cAMP signaling is known to play an important role in surface recognition and plant penetration. The Mac1 adenylate cyclase is essential for plant infection. To better understand Mac1 activation mechanisms, in this study we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting protein is the adenylate cyclase associated protein (CAP) encoded by the CAP1 gene. Results from our study indicated that Cap1 is important for Mac1 activation and plant infection in M. oryzae. The Δcap1 mutant was defective in germ tube growth and appressorium formation and failed to cause typical blast lesions. Like LifeAct, Cap1 localized to apical patches in vegetative hyphae but not in invasive hyphae. The P2 proline-rich region was important for Cap1 localization but the actin-binding domain played a role in feedback inhibition of Ras signaling. To our knowledge, functional characterization of CAP genes has not been reported in filamentous fungi. Our results indicate that CAP1 is important for regulating adenylate cyclase activities, appressorium morphogenesis, and plant infection. Further characterization of CAP1 will be important to better understand the interaction between cAMP signaling and the PMK1 pathway in M. oryzae.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Haifeng Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- * E-mail:
| |
Collapse
|
153
|
Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. PLoS One 2012; 7:e38324. [PMID: 22693618 PMCID: PMC3365026 DOI: 10.1371/journal.pone.0038324] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/03/2012] [Indexed: 01/11/2023] Open
Abstract
Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the Δamt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The Δamt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the Δamt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the Δamt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the Δamt1 Δamt2 double mutants. The Δamt1 single and Δamt1 Δamt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection.
Collapse
Affiliation(s)
- Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Hou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
154
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
155
|
Hamel LP, Nicole MC, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. THE PLANT CELL 2012; 24:1327-51. [PMID: 22517321 PMCID: PMC3398478 DOI: 10.1105/tpc.112.096156] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| | | | | | | |
Collapse
|
156
|
Zhang SR, Hao ZM, Wang LH, Shen S, Cao ZY, Xin YY, Hou ML, Gu SQ, Han JM, Dong JG. StRas2 regulates morphogenesis, conidiation and appressorium development in Setosphaeria turcica. Microbiol Res 2012; 167:478-86. [PMID: 22444434 DOI: 10.1016/j.micres.2012.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
The proteins of Ras family are a large group of monomeric GTPases and act as molecular switches transducing extracellular signals into the cell in higher eukaryotes. However, little is known about roles of Ras family in the foliar pathogens. In this research, we cloned the gene named StRas2 encoding Ras in Setosphaeria turcica and investigated its function by RNA interference technology. We found that the growth rate of RNAi transformants named as R1, R2, R3, R4, R5 and R6, in which the StRas2 silencing efficiency fell in turn. With the highest silencing efficiency, the transformant R1 showed anomalistic hyphae morphology, indicating its growth was significantly affected. The transformants with a middle-silencing efficiency, such as R3, R4, displayed a delay when forming appressoria and invasive hyphae. R1 could not form conidia and appressoria. However, the conidial formation in R5 and R6 was significantly reduced, and these two transformants could form appressoria and penetrate the artificial cellophane, only that its invasive hyphae were fascicular and rarely branched. The HT-toxin biological activity of all transformants showed no difference. All results suggested that StRas2 is involved in the morphogenesis, conidiation, and appressorium development and is not related to the biosynthesis of HT-toxin.
Collapse
Affiliation(s)
- Shao-Ru Zhang
- Mycotoxins and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Fernández-Álvarez A, Marín-Menguiano M, Lanver D, Jiménez-Martín A, Elías-Villalobos A, Pérez-Pulido AJ, Kahmann R, Ibeas JI. Identification of O-mannosylated virulence factors in Ustilago maydis. PLoS Pathog 2012; 8:e1002563. [PMID: 22416226 PMCID: PMC3295589 DOI: 10.1371/journal.ppat.1002563] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 01/12/2023] Open
Abstract
The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis. The O-mannosyltransferase Pmt4 is essential for virulence of animal and plant pathogenic fungi. This protein attaches one mannose at serine/threonine residues of cell wall and secreted proteins modulating their location and function. Thus, the crucial role of Pmt4 in fungal pathogenic development is probably caused by a defective glycosylation of its target proteins altering host-fungus interaction. In this paper, we performed a screen for Pmt4 target proteins employing the fungus Ustilago maydis, which causes smut disease in maize plants. This allowed identifying novel Pmt4 target proteins having a crucial role on its virulence. One of these targets is the signalling mucin Msb2, a conserved protein which acts upstream of MAP kinase cascades in various fungi and regulates early pathogenic development in U. maydis. We propose that Pmt4-dependent glycosylation of the extracellular domain of Msb2 is required for Msb2 activity and hence pathogenic development of U. maydis. This is divergent to the situation in S. cerevisiae where the mannosylated extracellular region of Msb2p possesses a negative regulatory function. In addition, we demonstrate important roles of Pmt4 during later stages of plant infection and identified Pmt4 target proteins which could be responsible for the virulence defect of pmt4 mutants during tumor formation.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Daniel Lanver
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alberto Jiménez-Martín
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alberto Elías-Villalobos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Regine Kahmann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - José I. Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- * E-mail:
| |
Collapse
|
158
|
Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002514. [PMID: 22346750 PMCID: PMC3276559 DOI: 10.1371/journal.ppat.1002514] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput SuperSAGE analysis to compare the utility of these procedures for identifying differential gene expression in M. oryzae. We then analysed global patterns of gene expression during appressorium development. We show evidence for large-scale gene expression changes, highlighting the role of autophagy, lipid metabolism and melanin biosynthesis in appressorium differentiation. We reveal the role of the Pmk1 MAP kinase as a key global regulator of appressorium-associated gene expression. We also provide evidence for differential expression of transporter-encoding gene families and specific high level expression of genes involved in quinate uptake and utilization, consistent with pathogen-mediated perturbation of host metabolism during plant infection. When considered together, these data provide a comprehensive high-resolution analysis of gene expression changes associated with cellular differentiation that will provide a key resource for understanding the biology of rice blast disease.
Collapse
Affiliation(s)
- Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Apratim Chakrabarti
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Konrad H. Paszkiewicz
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Angus L. Dawe
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nicholas J. Talbot
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
159
|
Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, Pla J, Ernst JF. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog 2012; 8:e1002501. [PMID: 22319443 PMCID: PMC3271078 DOI: 10.1371/journal.ppat.1002501] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance. Microbial pathogens are attacked by antimicrobial peptides (AMPs) produced by the human host. AMPs kill pathogens and recruit immune cells to the site of infection. In defense, the human fungal pathogen Candida albicans continuously cleaves and secretes a glycoprotein fragment of the surface protein Msb2, which protects against AMPs. The results suggest that shed Msb2 allows fungal colonies to persist and avoid inflammatory responses caused by AMPs. Msb2 shedding and its additional role in stabilizing the fungal cell wall may be considered as novel diagnostic tools and targets for antifungal action.
Collapse
Affiliation(s)
| | - Marc Swidergall
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Fabien Cottier
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Denis Tielker
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Jesus Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
160
|
Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002526. [PMID: 22346755 PMCID: PMC3276572 DOI: 10.1371/journal.ppat.1002526] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022] Open
Abstract
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.
Collapse
Affiliation(s)
- Ling-An Kong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Guo-Tian Li
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lu Qi
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Yu-Jun Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Chen-Fang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
161
|
Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma JW, Kistler HC, Kang Z, Xu JR. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 2011; 7:e1002460. [PMID: 22216007 PMCID: PMC3245316 DOI: 10.1371/journal.ppat.1002460] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023] Open
Abstract
As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK) genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were identified in this study. Fusarium head blight caused by Fusarium graminearum is one of the most important diseases on wheat and barley. Although protein kinases are known to play major regulatory roles in fungi, systematic characterization of fungal kinomes has not been reported in plant pathogens. In this study we generated deletion mutants for 96 protein kinase genes. All of the resulting knockout mutants were assayed for changes in 17 phenotypes, including growth, reproduction, stress responses, and plant infection. Overall, deletion of 64 kinase genes resulted in at least one of the phenotypes examined. In total, 42 kinase mutants were significantly reduced in virulence or non-pathogenic. A number of these protein kinase genes, including two that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores are the primary inoculum for wheat scab. We identified 26 mutants blocked in ascospore. We also used the in silico approach to predict the kinase-kinase interactions and verified some of them by yeast two-hybrid or co-IP assays. Overall, in this study we functionally characterize the kinome of F. graminearum. Protein kinase genes that are important for various aspects of growth, developmental, and plant infection processes were identified.
Collapse
Affiliation(s)
- Chenfang Wang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Shijie Zhang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Rui Hou
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Zhongtao Zhao
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Qian Zheng
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Qijun Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Dawei Zheng
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Guanghui Wang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiquan Liu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Xuli Gao
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Ji-Wen Ma
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - H. Corby Kistler
- USDA ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhensheng Kang
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- * E-mail: (JRX); (ZK)
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (JRX); (ZK)
| |
Collapse
|
162
|
Yan X, Li Y, Yue X, Wang C, Que Y, Kong D, Ma Z, Talbot NJ, Wang Z. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2011; 7:e1002385. [PMID: 22144889 PMCID: PMC3228794 DOI: 10.1371/journal.ppat.1002385] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/02/2011] [Indexed: 11/24/2022] Open
Abstract
The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus. Magnaporthe oryzae, the causal agent of rice blast disease, is an important model fungal pathogen for understanding the molecular basis of plant-fungus interactions. In M. oryzae, the conserved cAMP/PKA signaling pathway has been demonstrated to be crucial for regulating infection-related morphogenesis and pathogenicity, including the control of sporulation and appressorium formation. In this study, we report the identification of two novel pathogenicity-related genes, MoSOM1 and MoCDTF1, by T-DNA insertional mutagenesis. Our results show that MoSOM1 or MoCDTF1 are essential for sporulation, appressorium formatiom and pathogenicity, and also play a key role in hyphal growth, melanin pigmentation and cell surface hydrophobicity. Nuclear localization sequences and conserved domains of the MoSom1 and MoCdtf1 proteins are crucial for their biological function. MoSom1 interacts physically with the transcription factors MoCdtf1 and MoStu1. We also show evidence that MoSom1 has the capacity to interact with CpkA, suggesting that MoSom1 may act downstream of the cAMP/PKA signaling pathway to regulate infection-related morphogenesis and pathogenicity in M. oryzae. Our studies extend the current understanding of downstream components of the conserved cAMP/PKA pathway and its precise role in regulating infection-related development and cellular differentiation by M. oryzae.
Collapse
Affiliation(s)
- Xia Yan
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Guo J, Dai X, Xu JR, Wang Y, Bai P, Liu F, Duan Y, Zhang H, Huang L, Kang Z. Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS One 2011; 6:e21895. [PMID: 21779350 PMCID: PMC3136484 DOI: 10.1371/journal.pone.0021895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 06/08/2011] [Indexed: 11/21/2022] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiwei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pengfei Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Furong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
164
|
A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. EUKARYOTIC CELL 2011; 10:1062-70. [PMID: 21642506 DOI: 10.1128/ec.00007-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rice blast fungus Magnaporthe oryzae, the PMK1 mitogen-activated protein (MAP) kinase gene regulates appressorium formation and infectious growth. Its homologs in many other fungi also play critical roles in fungal development and pathogenicity. However, the targets of this important MAP kinase and its interacting genes are not well characterized. In this study, we constructed two yeast two-hybrid libraries of M. oryzae and screened for Pmk1-interacting proteins. Among the nine Pmk1-interacting clones (PICs) identified, two of them, PIC1 and PIC5, were selected for further characterization. Pic1 has one putative nuclear localization signal and one putative MAP kinase phosphorylation site. Pic5 contains one transmembrane domain and two functionally unknown CTNS (cystinosin/ERS1p repeat) motifs. The interaction of Pmk1 with Pic1 or Pic5 was confirmed by coimmunoprecipitation assays. Targeted gene deletion of PIC1 had no apparent effects on vegetative growth and pathogenicity but resulted in a significant reduction in conidiation and abnormal germ tube differentiation on onion epidermal cells. Deletion of PIC5 led to a reduction in conidiation and hyphal growth. Autolysis of aerial hyphae became visible in cultures older than 4 days. The pic5 mutant was defective in germ tube growth and appressorium differentiation. It was reduced in appressorial penetration and virulence on the plant. Both PIC1 and PIC5 are conserved in filamentous ascomycetes, but none of their orthologs have been functionally characterized. Our data indicate that PIC5 is a novel virulence factor involved in appressorium differentiation and pathogenesis in M. oryzae.
Collapse
|
165
|
Li G, Zhou X, Kong L, Wang Y, Zhang H, Zhu H, Mitchell TK, Dean RA, Xu JR. MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS One 2011; 6:e19951. [PMID: 21625508 PMCID: PMC3098271 DOI: 10.1371/journal.pone.0019951] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/07/2011] [Indexed: 12/30/2022] Open
Abstract
The formation of appressoria, specialized plant penetration structures of Magnaporthe oryzae, is regulated by the MST11-MST7-PMK1 MAP kinase cascade. One of its downstream transcription factor, MST12, is important for penetration and invasive growth but dispensable for appressorium formation. To identify additional downstream targets that are regulated by Pmk1, in this study we performed phosphorylation assays with a protein microarray composed of 573 M. oryzae transcription factor (TF) genes. Three of the TF genes phosphorylated by Pmk1 in vitro were further analyzed by coimmunoprecipitation assays. One of them, MoSFL1, was found to interact with Pmk1 in vivo. Like other Sfl1 orthologs, the MoSfl1 protein has the HSF-like domain. When expressed in yeast, MoSFL1 functionally complemented the flocculation defects of the sfl1 mutant. In M. oryzae, deletion of MoSFl1 resulted in a significant reduction in virulence on rice and barley seedlings. Consistent with this observation, the Mosfl1 mutant was defective in invasive growth in penetration assays with rice leaf sheaths. In comparison with that of vegetative hyphae, the expression level of MoSFL1 was increased in appressoria and infected rice leaves. The Mosfl1 mutant also had increased sensitivity to elevated temperatures. In CM cultures of the Mosfl1 and pmk1 mutants grown at 30°C, the production of aerial hyphae and melanization were reduced but their growth rate was not altered. When assayed by qRT-PCR, the transcription levels of the MoHSP30 and MoHSP98 genes were reduced 10- and 3-fold, respectively, in the Mosfl1 mutant. SFL1 orthologs are conserved in filamentous ascomycetes but none of them have been functionally characterized in non-Saccharomycetales fungi. MoSfl1 has one putative MAPK docking site and three putative MAPK phosphorylation sites. Therefore, it may be functionally related to Pmk1 in the regulation of invasive growth and stress responses in M. oryzae.
Collapse
Affiliation(s)
- Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Lingan Kong
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yuling Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Haifeng Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas K. Mitchell
- Department of Plant Pathology, Ohio State University, Columbia, Ohio, United States of America
| | - Ralph A. Dean
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
166
|
Li Y, Wang C, Liu W, Wang G, Kang Z, Kistler HC, Xu JR. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:487-96. [PMID: 21138346 DOI: 10.1094/mpmi-10-10-0233] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Head blight caused by Fusarium graminearum is an important disease of wheat and barley. Its genome contains chromosomal regions with higher genetic variation and enriched for genes expressed in planta, suggesting a role of chromatin modification in the regulation of infection-related genes. In a previous study, the FTL1 gene was characterized as a novel virulence factor in the head blight fungus. FTL1 is homologous to yeast SIF2, which is a component of the Set3 complex. Many members of the yeast Set3 complex, including Hos2 histone deacetylase (HDAC), are conserved in F. graminearum. In this study, we characterized the HDF1 gene that is orthologous to HOS2. HDF1 physically interacted with FTL1 in yeast two-hybrid assays. Deletion of HDF1 resulted in a significant reduction in virulence and deoxynivalenol (DON) production. The Δhdf1 mutant failed to spread from the inoculation site to other parts of wheat heads or corn stalks. It was defective in sexual reproduction and significantly reduced in conidiation. Expression of HDF1 was highest in conidia in comparison with germlings and hyphae. Deletion of HDF1 also resulted in a 60% reduction in HDAC activity. Microarray analysis revealed that 149 and 253 genes were down- and upregulated, respectively, over fivefold in the Δhdf1 mutant. Consistent with upregulation of putative catalase and peroxidase genes, the Δhdf1 mutant was more tolerant to H(2)O(2) than the wild type. Deletion of the other two class II HDAC genes had no obvious effect on vegetative growth and resulted in only a minor reduction in conidiation and virulence in the Δhdf2 mutant. Overall, our results indicate that HDF1 is the major class II HDAC gene in F. graminearum. It may interact with FTL1 and function as a component in a well-conserved HDAC complex in the regulation of conidiation, DON production, and pathogenesis.
Collapse
Affiliation(s)
- Yimin Li
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
167
|
Pérez-Nadales E, Di Pietro A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. THE PLANT CELL 2011; 23:1171-85. [PMID: 21441438 PMCID: PMC3082261 DOI: 10.1105/tpc.110.075093] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 02/18/2011] [Accepted: 03/08/2011] [Indexed: 05/20/2023]
Abstract
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway.
Collapse
|
168
|
Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, Xu JR. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol 2011; 80:33-53. [PMID: 21276092 DOI: 10.1111/j.1365-2958.2011.07556.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Appressorium formation is a key step in the infection cycle of Magnaporthe oryzae. Mst12 is a transcription factor essential for appressorium penetration and invasive growth. In this study we used the affinity purification approach to identify proteins that physically associate with Mst12. One of the Mst12-interacting genes identified was MoMCM1, which encodes a MADS-box protein orthologous to yeast Mcm1. MoMcm1 interacted with both Mst12 and Mata-1 in yeast two-hybrid assays. Deletion of MoMCM1 resulted in the loss of male fertility and microconidium production. The Momcm1 mutant was defective in appressorium penetration and formed narrower invasive hyphae, which may be responsible for its reduced virulence. In transformants expressing MoMCM1-eGFP fusion, GFP signals were observed in the nucleus. We also generated the Momcm1 mst12 double mutant, which was defective in penetration and non-pathogenic. On hydrophilic surfaces, germ tubes produced by the double mutant were severely curved, and 20% of them formed appressoria. In contrast, the Momcm1 or mst12 mutant did not form appressoria on hydrophilic surfaces. These results suggest that MoMCM1 and MST12 have overlapping functions to suppress appressorium formation under non-conducive conditions. MoMcm1 may interact with Mst12 and MatA-1 to regulate germ tube identity and male fertility respectively.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Purdue-NWAFU Joint Research Center, Department Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|