151
|
Mikonranta L, Mappes J, Laakso J, Ketola T. Within-host evolution decreases virulence in an opportunistic bacterial pathogen. BMC Evol Biol 2015; 15:165. [PMID: 26282271 PMCID: PMC4539714 DOI: 10.1186/s12862-015-0447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022] Open
Abstract
Background Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. Results We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. Conclusions This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.
Collapse
Affiliation(s)
- Lauri Mikonranta
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Jouni Laakso
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland. .,Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Helsinki, University of Helsinki, P.O. Box 65, 00014, Helsinki, Finland.
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
152
|
Doumic M, Hoffmann M, Krell N, Robert L. Statistical estimation of a growth-fragmentation model observed on a genealogical tree. BERNOULLI 2015. [DOI: 10.3150/14-bej623] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
153
|
A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2015; 112:9442-7. [PMID: 26170289 DOI: 10.1073/pnas.1502966112] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.
Collapse
|
154
|
|
155
|
Kreibich S, Hardt WD. Experimental approaches to phenotypic diversity in infection. Curr Opin Microbiol 2015; 27:25-36. [PMID: 26143306 DOI: 10.1016/j.mib.2015.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022]
Abstract
Microbial infections are burdening human health, even after the advent of antibiotics, vaccines and hygiene. Thus, infection biology has aimed at the molecular understanding of the pathogen-host interaction. This has revealed key virulence factors, host cell signaling pathways and immune responses. However, our understanding of the infection process is still incomplete. Recent evidence suggests that phenotypic diversity can have important consequences for the infection process. Diversity arises from the formation of distinct subpopulations of pathogen cells (with distinct virulence factor expression patterns) and host cells (with distinct response capacities). For technical reasons, such phenotypic diversity has often been overlooked. We are highlighting several striking examples and discuss the experimental approaches available for analyzing the different subpopulations. Single cell reporters and approaches from systems biology do hold much promise.
Collapse
Affiliation(s)
- Saskia Kreibich
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
156
|
Young G, Ermentrout B, Rubin JE. A Boundary Value Approach to Optimization with an Application to Salmonella Competition. Bull Math Biol 2015; 77:1327-48. [PMID: 26122824 DOI: 10.1007/s11538-015-0087-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
We develop a novel optimization framework to study strategies in ecological competition processes. The optimization method uses theory from dynamical systems describing the asymptotic behavior of a bistable system based on initial conditions, which we implement using a numerical boundary value problem. As an application of our method, we develop a model of the competition between Salmonella Typhimurium and the host's native microflora, which constantly and densely inhabit the intestinal lining of most mammals. S. Typhimurium invades the gut in two distinct phenotypic populations, one virulent and one avirulent, though the avirulent bacteria have the ability to activate a virulence factor and thereby "switch" into the virulent population. Counterintuitively, some studies have found that the combined population of S. Typhimurium gains an environmental advantage over the commensal microbiota after the virulent subpopulation provokes the body's inflammatory defenses. Our model represents the competition between the commensal microbiota, the avirulent salmonella, and the virulent salmonella populations and incorporates a simple representation of the immune response. We use our model to predict optimal strategies that would favor salmonella in its competition with the commensal bacteria.
Collapse
Affiliation(s)
- Glenn Young
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA,
| | | | | |
Collapse
|
157
|
MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, Kröger C, Cameron ADS, Townsend HGG, Köster W, White AP. Bistable expression of CsgD in Salmonella enterica serovar Typhimurium connects virulence to persistence. Infect Immun 2015; 83:2312-26. [PMID: 25824832 PMCID: PMC4432751 DOI: 10.1128/iai.00137-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S. Typhimurium is grown under biofilm-inducing conditions. These cell types arise due to bistable expression of CsgD, the central biofilm regulator. Despite being exposed to the same stresses, the two cell subpopulations had 1,856 genes that were differentially expressed, as determined by transcriptome sequencing (RNA-seq). Aggregated cells displayed the characteristic gene expression of biofilms, whereas planktonic cells had enhanced expression of numerous virulence genes. Increased type three secretion synthesis in planktonic cells correlated with enhanced invasion of a human intestinal cell line and significantly increased virulence in mice compared to the aggregates. However, when the same groups of cells were exposed to desiccation, the aggregates survived better, and the competitive advantage of planktonic cells was lost. We hypothesize that CsgD-based differentiation is a form of bet hedging, with single cells primed for host cell invasion and aggregated cells adapted for persistence in the environment. This allows S. Typhimurium to spread the risks of transmission and ensures a smooth transition between the host and the environment.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Dylan J Shivak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia S Wong
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Leia J L Hoffman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Hugh G G Townsend
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
158
|
Virulence Gene Regulation by L-Arabinose in Salmonella enterica. Genetics 2015; 200:807-19. [PMID: 25991823 DOI: 10.1534/genetics.115.178103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by L-arabinose, and not by other pentoses. Transport of L-arabinose is necessary to repress SPI-1; however, repression is independent of L-arabinose metabolism and of the L-arabinose-responsive regulator AraC. SPI-1 repression by L-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of L-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal.
Collapse
|
159
|
Kamada N, Sakamoto K, Seo SU, Zeng MY, Kim YG, Cascalho M, Vallance BA, Puente JL, Núñez G. Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host Microbe 2015; 17:617-27. [PMID: 25936799 DOI: 10.1016/j.chom.2015.04.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/11/2015] [Accepted: 04/01/2015] [Indexed: 01/12/2023]
Abstract
Virulence factors expressed by enteric bacteria are pivotal for pathogen colonization and induction of intestinal disease, but the mechanisms by which host immunity regulates pathogen virulence are largely unknown. Here we show that specific antibody responses are required for downregulation of virulence gene expression in Citrobacter rodentium, an enteric pathogen that models human infections with attaching-and-effacing bacteria. In the absence of antibodies against the pathogen, phenotypically virulent C. rodentium, accumulated and infected the epithelium and subsequently invaded the lamina propia, causing host lethality. IgG induced after infection recognized virulence factors and bound virulent bacteria within the intestinal lumen, leading to their engulfment by neutrophils, while phenotypically avirulent pathogens remained in the intestinal lumen and were eventually outcompeted by the microbiota. Thus, the interplay of the innate and adaptive immune system selectively targets virulent C. rodentium in the intestinal lumen to promote pathogen eradication and host survival.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Kei Sakamoto
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marilia Cascalho
- Department of Surgery and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bruce A Vallance
- Division of Gastroenterology, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
160
|
Phenotypic heterogeneity enables uropathogenic Escherichia coli to evade killing by antibiotics and serum complement. Infect Immun 2015; 83:1056-67. [PMID: 25561706 DOI: 10.1128/iai.02725-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Uropathogenic strains of Escherichia coli (UPEC) are the major cause of bacteremic urinary tract infections. Survival in the bloodstream is associated with different mechanisms that help to resist serum complement-mediated killing. While the phenotypic heterogeneity of bacteria has been shown to influence antibiotic tolerance, the possibility that it makes cells refractory to killing by the immune system has not been experimentally tested. In the present study we sought to determine whether the heterogeneity of bacterial cultures is relevant to bacterial targeting by the serum complement system. We monitored cell divisions in the UPEC strain CFT073 with fluorescent reporter protein. Stationary-phase cells were incubated in active or heat-inactivated human serum in the presence or absence of different antibiotics (ampicillin, norfloxacin, and amikacin), and cell division and complement protein C3 binding were measured by flow cytometry and immunofluorescence microscopy. Heterogeneity in the doubling times of CFT073 cells in serum enabled three phenotypically different subpopulations to be distinguished, all of them being recognized by the C3 component of the complement system. The population of rapidly growing cells resists serum complement-mediated lysis. The dominant subpopulation of cells with intermediate growth rate is susceptible to serum. The third population, which does not resume growth upon dilution from stationary phase, is simultaneously protected from serum complement and antibiotics.
Collapse
|
161
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|
162
|
Guadarrama C, Villaseñor T, Calva E. The Subtleties and Contrasts of the LeuO Regulator in Salmonella Typhi: Implications in the Immune Response. Front Immunol 2014; 5:581. [PMID: 25566242 PMCID: PMC4264507 DOI: 10.3389/fimmu.2014.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 01/15/2023] Open
Abstract
Salmonella are facultative intracellular pathogens. Salmonella infection occurs mainly by expression of two Salmonella pathogenicity Islands (SPI-1 and SPI-2). SPI-1 encodes transcriptional factors that participate in the expression of virulence factors encoded in the island. However, there are transcriptional factors encoded outside the island that also participate in the expression of SPI-1-encoded genes. Upon infection, bacteria are capable of avoiding the host immune response with several strategies that involve several virulence factors under the control of transcriptional regulators. Interestingly, LeuO a transcriptional global regulator which is encoded outside of any SPI, is proposed to be part of a complex regulatory network that involves expression of several genes that help bacteria to survive stress conditions and, also, induces the expression of porins that have been shown to be immunogens and can thus be considered as antigenic candidates for acellular vaccines. Hence, the understanding of the LeuO regulon implies a role of bacterial genetic regulation in determining the host immune response.
Collapse
Affiliation(s)
- Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico
| |
Collapse
|
163
|
Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack. Cell Host Microbe 2014; 17:21-31. [PMID: 25500192 DOI: 10.1016/j.chom.2014.11.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/09/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Bacterial pathogens express virulence-specific transcriptional programs that allow tissue colonization. Although phenotypic variation has been noted in the context of antibiotic exposure, no direct evidence exists for heterogeneity in virulence-specific transcriptional programs within tissues. In a mouse model of Yersinia pseudotuberculosis infection, we show that at least three subpopulations of bacteria develop within a single tissue site in response to distinct host signals. Bacteria growing on the exterior of spleen microcolonies responded to soluble signals and induced the nitric oxide (NO)-detoxifying gene, hmp. Hmp effectively eliminated NO diffusion and protected the interior bacterial population from exposure to NO-derived inducing signals. A third subpopulation, constituting the most peripherally localized bacteria, directly contacted neutrophils and transcriptionally upregulated a virulence factor. These studies demonstrate that growth within tissues results in transcriptional specialization within a single focus of microbial replication, facilitating directed pathogen counterattack against the host response.
Collapse
|
164
|
Zhang J, Ketola T, Örmälä-Odegrip AM, Mappes J, Laakso J. Coincidental loss of bacterial virulence in multi-enemy microbial communities. PLoS One 2014; 9:e111871. [PMID: 25365586 PMCID: PMC4218854 DOI: 10.1371/journal.pone.0111871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surface-feeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combinations in a simulated pond water environment. After 8 weeks the virulence of the 384 evolved clones were quantified with fruit fly Drosophila melanogaster oral infection model, and several other life-history traits were measured. We found that in comparison to ancestor bacteria, evolutionary treatments reduced the virulence in most of the treatments, but this reduction was not clearly related to any changes in other life-history traits. This suggests that virulence traits do not evolve in close relation with these life-history traits, or that different traits might link to virulence in different selective environments, for example via resource allocation trade-offs.
Collapse
Affiliation(s)
- Ji Zhang
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jouni Laakso
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
165
|
Ali SS, Soo J, Rao C, Leung AS, Ngai DHM, Ensminger AW, Navarre WW. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 2014; 10:e1004500. [PMID: 25375226 PMCID: PMC4223078 DOI: 10.1371/journal.ppat.1004500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022] Open
Abstract
The bacterial H-NS protein silences expression from sequences with higher AT-content than the host genome and is believed to buffer the fitness consequences associated with foreign gene acquisition. Loss of H-NS results in severe growth defects in Salmonella, but the underlying reasons were unclear. An experimental evolution approach was employed to determine which secondary mutations could compensate for the loss of H-NS in Salmonella. Six independently derived S. Typhimurium hns mutant strains were serially passaged for 300 generations prior to whole genome sequencing. Growth rates of all lineages dramatically improved during the course of the experiment. Each of the hns mutant lineages acquired missense mutations in the gene encoding the H-NS paralog StpA encoding a poorly understood H-NS paralog, while 5 of the mutant lineages acquired deletions in the genes encoding the Salmonella Pathogenicity Island-1 (SPI-1) Type 3 secretion system critical to invoke inflammation. We further demonstrate that SPI-1 misregulation is a primary contributor to the decreased fitness in Salmonella hns mutants. Three of the lineages acquired additional loss of function mutations in the PhoPQ virulence regulatory system. Similarly passaged wild type Salmonella lineages did not acquire these mutations. The stpA missense mutations arose in the oligomerization domain and generated proteins that could compensate for the loss of H-NS to varying degrees. StpA variants most able to functionally substitute for H-NS displayed altered DNA binding and oligomerization properties that resembled those of H-NS. These findings indicate that H-NS was central to the evolution of the Salmonellae by buffering the negative fitness consequences caused by the secretion system that is the defining characteristic of the species.
Collapse
Affiliation(s)
- Sabrina S. Ali
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy Soo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrea S. Leung
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hon-Man Ngai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
166
|
Stewart MK, Cookson BT. Mutually repressing repressor functions and multi-layered cellular heterogeneity regulate the bistable Salmonella fliC census. Mol Microbiol 2014; 94:1272-84. [PMID: 25315056 DOI: 10.1111/mmi.12828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Bistable flagellar and virulence gene expression generates specialized Salmonella subpopulations with distinct functions. Repressing flagellar genes allows Salmonella to evade caspase-1 mediated host defenses and enhances systemic colonization. By definition, bistability arises when intermediate states of gene expression are rendered unstable by the underlying genetic circuitry. We demonstrate sustained bistable fliC expression in virulent Salmonella 14028 and document dynamic control of the distribution, or single-cell census, of flagellar gene expression by the mutually repressing repressors YdiV and FliZ. YdiV partitions cells into the fliC-OFF subpopulation, while FliZ partitions cells into the fliC-HIGH subpopulation at late time points during growth. Bistability of ΔfliZ populations and ydiV-independent FliZ control of flagellar gene expression provide evidence that the YdiV-FliZ mutually repressing repressor circuit is not required for bistability. Repression and activation by YdiV and FliZ (respectively) can shape the census of fliC expression independently, and bistability collapses into a predominantly intermediate population in the absence of both regulators. Metered expression of YdiV and FliZ reveals variable sensitivity to these regulators and defines conditions where expression of FliZ enhances fliC expression and where FliZ does not alter the fliC census. Thus, this evolved genetic circuitry coordinates multiple layers of regulatory heterogeneity into a binary response.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
167
|
Malt LM, Perrett CA, Humphrey S, Jepson MA. Applications of microscopy in Salmonella research. Methods Mol Biol 2014; 1225:165-98. [PMID: 25253256 DOI: 10.1007/978-1-4939-1625-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.
Collapse
Affiliation(s)
- Layla M Malt
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
168
|
Srimani JK, Yao G, Neu J, Tanouchi Y, Lee TJ, You L. Linear population allocation by bistable switches in response to transient stimulation. PLoS One 2014; 9:e105408. [PMID: 25141235 PMCID: PMC4139379 DOI: 10.1371/journal.pone.0105408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.
Collapse
Affiliation(s)
- Jaydeep K. Srimani
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - John Neu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Yu Tanouchi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Tae Jun Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
169
|
Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol 2014; 12:e1001928. [PMID: 25136970 PMCID: PMC4138020 DOI: 10.1371/journal.pbio.1001928] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The bistable expression of virulence genes in Salmonella allows a clonal population to hedge its bets: one subpopulation suffers a growth cost, but is tolerant to antibiotics. Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment. Scientists have recently realized that nature and nurture are not the only determinants of an individual's traits; some organisms also use random molecular processes to generate phenotypic variation among genetically identical individuals. This raises the question of whether such phenotypic variation could be beneficial and what such possible benefits might be. Working with pathogenic Salmonella bacteria, we discovered that phenotypic variation in one single trait—the expression of virulence genes—provides this pathogen with two critical benefits. First, it leads to the division of labor between different phenotypic variants that allows for effective host colonization, and second, it provides tolerance to antibiotics through a “bet-hedging” mechanism. Our results provide a new perspective on how phenotypic differences between individuals can provide benefits to clonal groups of organisms. At the same time, this study contributes to explaining why some pathogens can evade treatment, and could help to find new and better ways for controlling infectious disease.
Collapse
|
170
|
HilD induces expression of Salmonella pathogenicity island 2 genes by displacing the global negative regulator H-NS from ssrAB. J Bacteriol 2014; 196:3746-55. [PMID: 25135218 DOI: 10.1128/jb.01799-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) have essential roles in the pathogenesis of Salmonella enterica. Previously, we reported transcriptional cross talk between SPI-1 and SPI-2 when the SPI-1 regulator HilD induces expression of the SsrA/B two-component system, the central positive regulator of SPI-2, during the growth of Salmonella to late stationary phase in LB rich medium. Here, we further define the mechanism of the HilD-mediated expression of ssrAB. Expression analysis of cat transcriptional fusions containing different regions of ssrAB revealed the presence of negative regulatory sequences located downstream of the ssrAB promoter. In the absence of these negative cis elements, ssrAB was expressed in a HilD-independent manner and was no longer repressed by the global regulator H-NS. Consistently, when the activity of H-NS was inactivated, the expression of ssrAB also became independent of HilD. Furthermore, electrophoretic mobility shift assays showed that both HilD and H-NS bind to the ssrAB region containing the repressing sequences. Moreover, HilD was able to displace H-NS bound to this region, whereas H-NS did not displace HilD. Our results support a model indicating that HilD displaces H-NS from a region downstream of the promoter of ssrAB by binding to sites overlapping or close to those sites bound by H-NS, which leads to the expression of ssrAB. Although the role of HilD as an antagonist of H-NS has been reported before for other genes, this is the first study showing that HilD is able to effectively displace H-NS from the promoter of one of its target genes.
Collapse
|
171
|
Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr Biol 2014; 24:2000-5. [PMID: 25131673 DOI: 10.1016/j.cub.2014.07.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 11/24/2022]
Abstract
Antibiotics are powerful therapeutics but are not equally effective against all cells in bacterial populations. Bacteria that express an antibiotic-tolerant phenotype ("persisters") can evade treatment [1]. Persisters can cause relapses of the infection after the end of the therapy [2]. It is still poorly understood whether persistence affects the evolution of bacterial virulence. During infections, persisters have been found preferentially at particular sites within the host [3, 4]. If bacterial virulence factors are required to reach such sites, treatment with antibiotics could impose selection on the expression of virulence genes, in addition to their well-established effects on bacterial resistance. Here, we report that treatment with antibiotics selects for virulence and fosters transmissibility of Salmonella Typhimurium. In a mouse model for Salmonella diarrhea, treatment with the broad-spectrum antibiotic ciprofloxacin reverses the outcome of competition between wild-type bacteria and avirulent mutants that can spontaneously arise during within-host evolution [5]. While avirulent mutants take over the gut lumen and abolish disease transmission in untreated mice, ciprofloxacin tilts the balance in favor of virulent, wild-type bacteria. This is explained by the need for virulence factors to invade gut tissues and form a persistent reservoir. Avirulent mutants remain in the gut lumen and are eradicated. Upon cessation of antibiotic treatment, tissue-lodged wild-type pathogens reseed the gut lumen and thereby facilitate disease transmissibility to new hosts. Our results suggest a general principle by which antibiotic treatment can promote cooperative virulence during within-host evolution, increase duration of transmissibility, and thereby enhance the spread of an infectious disease.
Collapse
|
172
|
Using transcriptional control to increase titers of secreted heterologous proteins by the type III secretion system. Appl Environ Microbiol 2014; 80:5927-34. [PMID: 25038096 DOI: 10.1128/aem.01330-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) encoded at the Salmonella pathogenicity island 1 (SPI-1) locus secretes protein directly from the cytosol to the culture media in a concerted, one-step process, bypassing the periplasm. While this approach is attractive for heterologous protein production, product titers are too low for many applications. In addition, the expression of the SPI-1 gene cluster is subject to native regulation, which requires culturing conditions that are not ideal for high-density growth. We used transcriptional control to increase the amount of protein that is secreted into the extracellular space by the T3SS of Salmonella enterica. The controlled expression of the gene encoding SPI-1 transcription factor HilA circumvents the requirement of endogenous induction conditions and allows for synthetic induction of the secretion system. This strategy increases the number of cells that express SPI-1 genes, as measured by promoter activity. In addition, protein secretion titer is sensitive to the time of addition and the concentration of inducer for the protein to be secreted and SPI-1 gene cluster. Overexpression of hilA increases secreted protein titer by >10-fold and enables recovery of up to 28±9 mg/liter of secreted protein from an 8-h culture. We also demonstrate that the protein beta-lactamase is able to adopt an active conformation after secretion, and the increase in secreted titer from hilA overexpression also correlates to increased enzyme activity in the culture supernatant.
Collapse
|
173
|
Zhang J, Laakso J, Mappes J, Laanto E, Ketola T, Bamford JK, Kunttu H, Sundberg LR. Association of colony morphotypes with virulence, growth and resistance against protozoan predation in the fish pathogenFlavobacterium columnare. FEMS Microbiol Ecol 2014; 89:553-62. [DOI: 10.1111/1574-6941.12356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/08/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ji Zhang
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
- Department of Biological and Environmental Science; University of Helsinki; Helsinki Finland
| | - Jouni Laakso
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
- Department of Biological and Environmental Science; University of Helsinki; Helsinki Finland
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Elina Laanto
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
- Department of Biological and Environmental Science and Nanoscience Centre; University of Jyväskylä; Jyväskylä Finland
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Jaana K.H. Bamford
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
- Department of Biological and Environmental Science and Nanoscience Centre; University of Jyväskylä; Jyväskylä Finland
| | - Heidi Kunttu
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Lotta-Riina Sundberg
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
174
|
López-Garrido J, Puerta-Fernández E, Casadesús J. A eukaryotic-like 3' untranslated region in Salmonella enterica hilD mRNA. Nucleic Acids Res 2014; 42:5894-906. [PMID: 24682814 PMCID: PMC4027200 DOI: 10.1093/nar/gku222] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long 3' untranslated regions (3'UTRs) are common in eukaryotic mRNAs. In contrast, long 3'UTRs are rare in bacteria, and have not been characterized in detail. We describe a 3'UTR of 310 nucleotides in hilD mRNA, a transcript that encodes a transcriptional activator of Salmonella enterica pathogenicity island 1 (SPI-1). Deletion of the hilD 3'UTR increases the hilD mRNA level, suggesting that the hilD 3'UTR may play a role in hilD mRNA turnover. Cloning of the hilD 3'UTR downstream of the green fluorescent protein (gfp) gene decreases green fluorescent protein (GFP) activity in both Escherichia coli and S. enterica, indicating that the hilD 3'UTR can act as an independent module. S. enterica mutants lacking either ribonuclease E or polynucleotide phosphorylase contain similar amounts of hilD and hilD Δ3'UTR mRNAs, suggesting that the hilD 3'UTR is a target for hilD mRNA degradation by the degradosome. The hilD 3'UTR is also necessary for modulation of hilD and SPI-1 expression by the RNA chaperone Hfq. Overexpression of SPI-1 in the absence of the hilD 3'UTR retards Salmonella growth and causes uncontrolled invasion of epithelial cells. Based on these observations, we propose that the S. enterica hilD 3'UTR is a cis-acting element that contributes to cellular homeostasis by promoting hilD mRNA turnover.
Collapse
Affiliation(s)
- Javier López-Garrido
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| |
Collapse
|
175
|
Spatial segregation of virulence gene expression during acute enteric infection with Salmonella enterica serovar Typhimurium. mBio 2014; 5:e00946-13. [PMID: 24496791 PMCID: PMC3950517 DOI: 10.1128/mbio.00946-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To establish a replicative niche during its infectious cycle between the intestinal lumen and tissue, the enteric pathogen Salmonella enterica serovar Typhimurium requires numerous virulence genes, including genes for two type III secretion systems (T3SS) and their cognate effectors. To better understand the host-pathogen relationship, including early infection dynamics and induction kinetics of the bacterial virulence program in the context of a natural host, we monitored the subcellular localization and temporal expression of T3SS-1 and T3SS-2 using fluorescent single-cell reporters in a bovine, ligated ileal loop model of infection. We observed that the majority of bacteria at 2 h postinfection are flagellated, express T3SS-1 but not T3SS-2, and are associated with the epithelium or with extruding enterocytes. In epithelial cells, S. Typhimurium cells were surrounded by intact vacuolar membranes or present within membrane-compromised vacuoles that typically contained numerous vesicular structures. By 8 h postinfection, T3SS-2-expressing bacteria were detected in the lamina propria and in the underlying mucosa, while T3SS-1-expressing bacteria were in the lumen. Our work identifies for the first time the temporal and spatial regulation of T3SS-1 and -2 expression during an enteric infection in a natural host and provides further support for the concept of cytosolic S. Typhimurium in extruding epithelium as a mechanism for reseeding the lumen. The pathogenic bacterium Salmonella enterica serovar Typhimurium invades and persists within host cells using distinct sets of virulence genes. Genes from Salmonella pathogenicity island 1 (SPI-1) are used to initiate contact and facilitate uptake into nonphagocytic host cells, while genes within SPI-2 allow the pathogen to colonize host cells. While many studies have identified bacterial virulence determinants in animal models of infection, very few have focused on virulence gene expression at the single-cell level during an in vivo infection. To better understand when and where bacterial virulence factors are expressed during an acute enteric infection of a natural host, we infected bovine jejunal-ileal loops with S. Typhimurium cells harboring fluorescent transcriptional reporters for SPI-1 and -2 (PinvF and PssaG, respectively). After a prescribed time of infection, tissue and luminal fluid were collected and analyzed by microscopy. During early infection (≤2 h), bacteria within both intact and compromised membrane-bound vacuoles were observed within the epithelium, with the majority expressing SPI-1. As the infection progressed, S. Typhimurium displayed differential expression of the SPI-1 and SPI-2 regulons, with the majority of tissue-associated bacteria expressing SPI-2 and the majority of lumen-associated bacteria expressing SPI-1. This underscores the finding that Salmonella virulence gene expression changes as the pathogen transitions from one anatomical location to the next.
Collapse
|
176
|
The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. J Bacteriol 2014; 196:1448-57. [PMID: 24488311 DOI: 10.1128/jb.01438-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infection of intestinal epithelial cells is dependent on the Salmonella enterica serovar Typhimurium pathogenicity island 1 (Spi1)-encoded type III injectisome system and flagellar motility. Thus, the expression of virulence and flagellar genes is subject to tight regulatory control mechanisms in order to ensure the correct spatiotemporal production of the respective gene products. In this work, we reveal a new level of cross-regulation between the Spi1 and flagellar regulatory systems. Transposon mutagenesis identified a class of mutants that prevented flhDC autorepression by overexpressing HilD. HilD, HilC, RtsA, and HilA comprise a positive regulatory circuit for the expression of the Spi1 genes. Here, we report a novel transcriptional cross talk between the Spi1 and flagellar regulons where HilD transcriptionally activates flhDC gene expression by binding to nucleotides -68 to -24 upstream from the P5 transcriptional start site. We additionally show that, in contrast to the results of a previous report, HilA does not affect flagellar gene expression. Finally, we discuss a model of the cross-regulation network between Spi1 and the flagellar system and propose a regulatory mechanism via the Spi1 master regulator HilD that would prime flagellar genes for rapid reactivation during host infection.
Collapse
|
177
|
Espinosa E, Casadesús J. Regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by the LysR-type regulator LeuO. Mol Microbiol 2014; 91:1057-69. [PMID: 24354910 DOI: 10.1111/mmi.12500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
LeuO is a quiescent LysR-type regulator belonging to the H-NS regulon. Activation of leuO transcription represses expression of pathogenicity island 1 (SPI-1) in Salmonella enterica serovar Typhimurium and inhibits invasion of epithelial cells. Loss of HilE suppresses LeuO-mediated downregulation of SPI-1. Activation of leuO transcription reduces the level of HilD protein, and loss of HilE restores the wild type HilD level. Hence, LeuO-mediated downregulation of SPI-1 may involve inhibition of HilD activity by HilE, a view consistent with the fact that HilE is a HilD inhibitor. In vivo analyses using β-galactosidase fusions indicate that LeuO activates hilE transcription. In vitro analyses by slot blotting, electrophoretic mobility shift analysis and DNase I footprinting show that LeuO binds the hilE promoter region. Although residual SPI-1 repression by LeuO is observed in the absence of HilE, the LeuO-HilE-HilD 'pathway' appears to be the major mechanism. Because both leuO and SPI-1 are repressed by H-NS, activation of leuO transcription may provide a backup mechanism for SPI-1 repression under conditions that impair H-NS-mediated silencing.
Collapse
Affiliation(s)
- Elena Espinosa
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, E-41080, Spain
| | | |
Collapse
|
178
|
Bustamante VH, Calva E. LeuO, a dormant sentinel for SPI-1? Mol Microbiol 2014; 91:1054-6. [PMID: 24405400 DOI: 10.1111/mmi.12514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Abstract
A new mechanism for the turning-off of gene expression in Salmonella Pathogenicity Island 1 (SPI-1) is proposed by Espinosa and Casadesús, which involves the action of the LeuO quiescent regulator, by two different pathways. A major one through the activation of the hilE gene, where the HilE protein would in turn inactivate HilD, a major positive transcriptional regulator of SPI-1; and a minor HilE-HilD-independent pathway. This could constitute a back-up or an aid for the turn-off of SPI-1 genes mediated by the nucleoid protein H-NS.
Collapse
Affiliation(s)
- Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | | |
Collapse
|
179
|
|
180
|
Bañuls AL, Thomas F, Renaud F. Of parasites and men. INFECTION GENETICS AND EVOLUTION 2013; 20:61-70. [PMID: 23954419 DOI: 10.1016/j.meegid.2013.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 01/14/2023]
Abstract
The living world has evolved and is evolving through interspecific relationships between organisms. The diversity of these interactions is enormous going from mutualism to parasitism. Humans live with a multitude of microorganisms, essential for their biology. However, interactions are not always advantageous. Indeed, many organisms might become pathogens, such as the Plasmodium species, the causative agents of malaria. Like many other microorganisms, they are «Machiavellian» in their capacity to elaborate a range of reproduction strategies, giving them a huge advantage in terms of adaptation. Here, we discuss the role played by parasites in the ecology and evolution of living organisms and particularly of humans. In the study of infectious diseases, humans are legitimately the focal point, although they represent only one ecosystem among many others and not taking this into account certainly biases our global view of the system. Indeed, we know only a minimal fraction of the microorganisms we live with. However, parasites have shaped and are still shaping the human genome. Several genetic signatures are the proofs of the selection pressures by parasites that humankind has endured during its evolution. But, ultimately, what are the solutionsfor living with pathogens? Should we eradicate them or should we learn how to control and manage them?
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Laboratoire MIVEGEC (UMR CNRS 5290-IRD 224 - Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), PO Box 64501, 34394 Montpellier, France.
| | | | | |
Collapse
|
181
|
Fujimoto K, Sawai S. A design principle of group-level decision making in cell populations. PLoS Comput Biol 2013; 9:e1003110. [PMID: 23825937 PMCID: PMC3694814 DOI: 10.1371/journal.pcbi.1003110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
Populations of cells often switch states as a group to cope with environmental changes such as nutrient availability and cell density. Although the gene circuits that underlie the switches are well understood at the level of single cells, the ways in which such circuits work in concert among many cells to support group-level switches are not fully explored. Experimental studies of microbial quorum sensing show that group-level changes in cellular states occur in either a graded or an all-or-none fashion. Here, we show through numerical simulations and mathematical analysis that these behaviors generally originate from two distinct forms of bistability. The choice of bistability is uniquely determined by a dimensionless parameter that compares the synthesis and the transport of the inducing molecules. The role of the parameter is universal, such that it not only applies to the autoinducing circuits typically found in bacteria but also to the more complex gene circuits involved in transmembrane receptor signaling. Furthermore, in gene circuits with negative feedback, the same dimensionless parameter determines the coherence of group-level transitions from quiescence to a rhythmic state. The set of biochemical parameters in bacterial quorum-sensing circuits appear to be tuned so that the cells can use either type of transition. The design principle identified here serves as the basis for the analysis and control of cellular collective decision making. Although the genetic circuits underlying state switching at the single-cell level are well understood, how such circuits work in concert among many cells to support the population-level switching of cellular behaviors is not fully explored. Experiments using microbial signaling systems show that group-level changes in cellular state occur in either a graded or an all-or-none fashion. We show that the type of group-level decision making used by populations is uniquely determined by a single dimensionless parameter that compares the quorum-signaling molecules accumulated within the cells with those secreted by the population. Bacterial quorum-sensing circuits appear to be tuned so that the cells can convert between the two types of decision-making in response to slight biochemical variations. Furthermore, the role of the parameter is universal such that it not only applies to the autoinducing circuits typically found in bacteria but also to the more complex gene circuits involved in transmembrane receptor signaling and negative feedback. The design principle that we describe thus serves as the basis for the analysis and control of collective cellular decision making in general.
Collapse
Affiliation(s)
- Koichi Fujimoto
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
182
|
Ketola T, Mikonranta L, Zhang J, Saarinen K, Örmälä AM, Friman VP, Mappes J, Laakso J. FLUCTUATING TEMPERATURE LEADS TO EVOLUTION OF THERMAL GENERALISM AND PREADAPTATION TO NOVEL ENVIRONMENTS. Evolution 2013; 67:2936-44. [DOI: 10.1111/evo.12148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 04/11/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Tarmo Ketola
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; P.O. Box 35; Jyväskylä; FI-40014; Finland
| | - Lauri Mikonranta
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; P.O. Box 35; Jyväskylä; FI-40014; Finland
| | - Ji Zhang
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; P.O. Box 35; Jyväskylä; FI-40014; Finland
| | - Kati Saarinen
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; P.O. Box 35; Jyväskylä; FI-40014; Finland
| | | | - Ville-Petri Friman
- Biosciences; University of Exeter; Cornwall Campus; Penryn; TR10 9EZ; United Kingdom
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Science; University of Jyväskylä; P.O. Box 35; Jyväskylä; FI-40014; Finland
| | | |
Collapse
|
183
|
Choice of bacterial growth medium alters the transcriptome and phenotype of Salmonella enterica Serovar Typhimurium. PLoS One 2013; 8:e63912. [PMID: 23704954 PMCID: PMC3660369 DOI: 10.1371/journal.pone.0063912] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/07/2013] [Indexed: 11/20/2022] Open
Abstract
The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.
Collapse
|
184
|
Partial disruption of translational and posttranslational machinery reshapes growth rates of Bartonella birtlesii. mBio 2013; 4:e00115-13. [PMID: 23611908 PMCID: PMC3638310 DOI: 10.1128/mbio.00115-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Specialization of bacteria in a new niche is associated with genome repertoire changes, and speciation in bacterial specialists is associated with genome reduction. Here, we tested a signature-tagged mutant library of 3,456 Bartonella birtlesii clones to detect mutants that could grow rapidly in vitro. Overall, we found 124 mutants that grew faster than the parental wild-type strain in vitro. We sequenced the genomes of the four mutants with the most rapid growth (formed visible colonies in only 1 to 2 days compared with 5 days for the wild type) and compared them to the parental isolate genome. We found that the number of disrupted genes associated with translation in the 124 rapid-growth clones was significantly higher than the number of genes involved in translation in the full genome (P < 10−6). Analysis of transposon integration in the genome of the four most rapidly growing clones revealed that one clone lacked one of the two wild-type RNA ribosomal operons. Finally, one of the four clones did not induce bacteremia in our mouse model, whereas infection with the other three resulted in a significantly lower bacterial count in blood than that with the wild-type strain. Here, we show that specialization in a specific niche could be caused by the disruption of critical genes. Most of these genes were involved in translation, and we show that evolution of obligate parasitism bacteria was specifically associated with disruption of translation system-encoding genes.
Collapse
|
185
|
Helaine S, Holden DW. Heterogeneity of intracellular replication of bacterial pathogens. Curr Opin Microbiol 2013; 16:184-91. [DOI: 10.1016/j.mib.2012.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
186
|
Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285:115-32. [PMID: 23527566 DOI: 10.1111/nyas.12046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology (RV), the first application of genomic technologies in vaccine research, represented a major revolution in the process of discovering novel vaccines. By determining their entire antigenic repertoire, researchers could identify protective targets and design efficacious vaccines for pathogens where conventional approaches had failed. Bexsero, the first vaccine developed using RV, has recently received positive opinion from the European Medicines Agency. The use of RV initiated a cascade of changes that affected the entire vaccine development process, shifting the focus from the identification of a list of vaccine candidates to the definition of a set of high throughput screens to reduce the need for costly and labor intensive tests in animal models. It is now clear that a deep understanding of the epidemiology of vaccine candidates, and their regulation and role in host-pathogen interactions, must become an integral component of the screening workflow. Far from being outdated by technological advancements, RV still represents a paradigm of how high-throughput technologies and scientific insight can be integrated into biotechnology research.
Collapse
|
187
|
|
188
|
Diard M, Garcia V, Maier L, Remus-Emsermann MNP, Regoes RR, Ackermann M, Hardt WD. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 2013; 494:353-6. [PMID: 23426324 DOI: 10.1038/nature11913] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Pathogens often infect hosts through collective actions: they secrete growth-promoting compounds or virulence factors, or evoke host reactions that fuel the colonization of the host. Such behaviours are vulnerable to the rise of mutants that benefit from the collective action without contributing to it; how these behaviours can be evolutionarily stable is not well understood. We address this question using the intestinal pathogen Salmonella enterica serovar Typhimurium (hereafter termed S. typhimurium), which manipulates its host to induce inflammation, and thereby outcompetes the commensal microbiota. Notably, the virulence factors needed for host manipulation are expressed in a bistable fashion, leading to a slow-growing subpopulation that expresses virulence genes, and a fast-growing subpopulation that is phenotypically avirulent. Here we show that the expression of the genetically identical but phenotypically avirulent subpopulation is essential for the evolutionary stability of virulence in this pathogen. Using a combination of mathematical modelling, experimental evolution and competition experiments we found that within-host evolution leads to the emergence of mutants that are genetically avirulent and fast-growing. These mutants are defectors that exploit inflammation without contributing to it. In infection experiments initiated with wild-type S. typhimurium, defectors increase only slowly in frequency. In a genetically modified S. typhimurium strain in which the phenotypically avirulent subpopulation is reduced in size, defectors rise more rapidly, inflammation ceases prematurely, and S. typhimurium is quickly cleared from the gut. Our results establish that host manipulation by S. typhimurium is a cooperative trait that is vulnerable to the rise of avirulent defectors; the expression of a phenotypically avirulent subpopulation that grows as fast as defectors slows down this process, and thereby promotes the evolutionary stability of virulence. This points to a key role of bistable virulence gene expression in stabilizing cooperative virulence and may lead the way to new approaches for controlling pathogens.
Collapse
Affiliation(s)
- Médéric Diard
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Staphylococcus aureus is a human commensal that at times turns into a serious bacterial pathogen causing life-threatening infections. For the delicate control of virulence, S. aureus employs the agr quorum-sensing system that, via the intracellular effector molecule RNAIII, regulates virulence gene expression. We demonstrate that the presence of the agr locus imposes a fitness cost on S. aureus that is mediated by the expression of RNAIII. Further, we show that exposure to sublethal levels of the antibiotics ciprofloxacin, mupirocin, and rifampin, each targeting separate cellular functions, markedly increases the agr-mediated fitness cost by inducing the expression of RNAIII. Thus, the extensive use of antibiotics in hospitals may explain why agr-negative variants are frequently isolated from hospital-acquired S. aureus infections but rarely found among community-acquired S. aureus strains. Importantly, agr deficiency correlates with increased duration of and mortality due to bacteremia during antibiotic treatment and with a higher frequency of glycopeptide resistance than in agr-carrying strains. Our results provide an explanation for the frequent isolation of agr-defective strains from hospital-acquired S. aureus infections and suggest that the adaptability of S. aureus to antibiotics involves the agr locus. Staphylococcus aureus is the most frequently isolated pathogen in intensive care units and a common cause of nosocomial infections, resulting in a high degree of morbidity and mortality. Surprisingly, a large fraction (15 to 60%) of hospital-isolated S. aureus strains are agr defective and lack the main quorum-sensing-controlled virulence regulatory system. This is a problem, as agr-defective strains are associated with a mortality level in bacteremic infections and a probability of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression of the agr effector molecule RNAIII. These results offer an explanation of the frequent isolation of agr-defective S. aureus strains in hospitals and will influence how we treat S. aureus infections.
Collapse
|
190
|
Abstract
Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.
Collapse
Affiliation(s)
- Teresa Nogueira
- Centro de Biologia Ambiental, Evolutionary Ecology of Microorganisms, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Vila Nova de Gaia, Portugal
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, UMR3525, Paris, France
| | - Eduardo P. C. Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, UMR3525, Paris, France
- * E-mail:
| |
Collapse
|
191
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|
192
|
Anetzberger C, Schell U, Jung K. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals. BMC Microbiol 2012; 12:209. [PMID: 22985329 PMCID: PMC3511230 DOI: 10.1186/1471-2180-12-209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/13/2012] [Indexed: 11/25/2022] Open
Abstract
Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter::gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.
Collapse
Affiliation(s)
- Claudia Anetzberger
- Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität Munich, Großhaderner Str, 2-4, 82152, Martinsried, Germany
| | | | | |
Collapse
|
193
|
Mikonranta L, Friman VP, Laakso J. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs. PLoS One 2012; 7:e43801. [PMID: 22937098 PMCID: PMC3427151 DOI: 10.1371/journal.pone.0043801] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022] Open
Abstract
Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm) caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.
Collapse
Affiliation(s)
- Lauri Mikonranta
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | |
Collapse
|
194
|
Schreiber KJ, Ye D, Fich E, Jian A, Lo T, Desveaux D. A high-throughput forward genetic screen identifies genes required for virulence of Pseudomonas syringae pv. maculicola ES4326 on Arabidopsis. PLoS One 2012; 7:e41461. [PMID: 22870224 PMCID: PMC3409859 DOI: 10.1371/journal.pone.0041461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 12/11/2022] Open
Abstract
Successful pathogenesis requires a number of coordinated processes whose genetic bases remain to be fully characterized. We utilized a high-throughput, liquid media-based assay to screen transposon disruptants of the phytopathogen Pseudomonas syringae pv. maculicola ES4326 to identify genes required for virulence on Arabidopsis. Many genes identified through this screen were involved in processes such as type III secretion, periplasmic glucan biosynthesis, flagellar motility, and amino acid biosynthesis. A small set of genes did not fall into any of these functional groups, and their disruption resulted in context-specific effects on in planta bacterial growth.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David Ye
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eric Fich
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Allen Jian
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy Lo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
195
|
Dandekar T, Astrid F, Jasmin P, Hensel M. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 2012; 3:164. [PMID: 22563326 PMCID: PMC3342586 DOI: 10.3389/fmicb.2012.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/15/2022] Open
Abstract
The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using 13C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
196
|
Gama JA, Abby SS, Vieira-Silva S, Dionisio F, Rocha EPC. Immune subversion and quorum-sensing shape the variation in infectious dose among bacterial pathogens. PLoS Pathog 2012; 8:e1002503. [PMID: 22319444 PMCID: PMC3271079 DOI: 10.1371/journal.ppat.1002503] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 12/22/2022] Open
Abstract
Many studies have been devoted to understand the mechanisms used by pathogenic bacteria to exploit human hosts. These mechanisms are very diverse in the detail, but share commonalities whose quantification should enlighten the evolution of virulence from both a molecular and an ecological perspective. We mined the literature for experimental data on infectious dose of bacterial pathogens in humans (ID50) and also for traits with which ID50 might be associated. These compilations were checked and complemented with genome analyses. We observed that ID50 varies in a continuous way by over 10 orders of magnitude. Low ID50 values are very strongly associated with the capacity of the bacteria to kill professional phagocytes or to survive in the intracellular milieu of these cells. Inversely, high ID50 values are associated with motile and fast-growing bacteria that use quorum-sensing based regulation of virulence factors expression. Infectious dose is not associated with genome size and shows insignificant phylogenetic inertia, in line with frequent virulence shifts associated with the horizontal gene transfer of a small number of virulence factors. Contrary to previous proposals, infectious dose shows little dependence on contact-dependent secretion systems and on the natural route of exposure. When all variables are combined, immune subversion and quorum-sensing are sufficient to explain two thirds of the variance in infectious dose. Our results show the key role of immune subversion in effective human infection by small bacterial populations. They also suggest that cooperative processes might be important for successful infection by bacteria with high ID50. Our results suggest that trade-offs between selection for population growth-related traits and selection for the ability to subvert the immune system shape bacterial infectiousness. Understanding these trade-offs provides guidelines to study the evolution of virulence and in particular the micro-evolutionary paths of emerging pathogens. Every pathogen is unique and uses distinctive combinations of specific mechanisms to exploit the human host. Yet, several common themes in the ways pathogens use these mechanisms can be found among distantly related bacteria. The understanding of these common themes provides useful concepts and uncovers important principles in pathogenesis. Here, we have made a cross-species analysis of traits thought to be relevant for virulence of bacterial pathogens. We have found that the infectious dose of pathogens is much lower when they are able to kill professional phagocytes of the immune system or to survive in the intracellular milieu of these cells. On the other hand, bacteria requiring higher infectious dose are more likely to be motile, fast-growing and regulate the expression of virulence factors when the population quorum is high enough to be effective in starting an infection. This suggests that infectious dose results from a trade-off between selection for fast coordinated growth and the ability to subvert the immune system. This trade-off may underlie other traits such as the ability of a pathogen to live outside the association from a host. Understanding the patterns shaping infectious dose will facilitate the prediction of evolutionary paths of emerging pathogens.
Collapse
Affiliation(s)
- João Alves Gama
- Centro de Biologia Ambiental and Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sophie S. Abby
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - Sara Vieira-Silva
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
| | - Francisco Dionisio
- Centro de Biologia Ambiental and Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eduardo P. C. Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France
- CNRS, URA2171, Paris, France
- * E-mail:
| |
Collapse
|
197
|
In Brief. Nat Rev Microbiol 2011. [DOI: 10.1038/nrmicro2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|