151
|
Bernard D, Monte D, Vandenbunder B, Abbadie C. The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene 2002; 21:4392-402. [PMID: 12080470 DOI: 10.1038/sj.onc.1205536] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 03/11/2002] [Accepted: 03/27/2002] [Indexed: 12/24/2022]
Abstract
Rel/NF-kappaB transcription factors are involved in several physiological processes, including the regulation of apoptosis. These factors were shown to exhibit pro- or anti-apoptotic activities in different cellular models, but at present, the mechanisms underlying these opposite effects are poorly understood. In this study, we show that the constitutive expression of a transcriptionally active member of the Rel/NF-kappaB family, c-Rel, first induces a resistance against TNFalpha-induced apoptosis and later increases the level of spontaneous apoptosis of HeLa cells. Both the anti- and pro-apoptotic effects increase with the level of c-Rel overexpression. The up-regulation by c-Rel of the manganese superoxide dismutase (MnSOD) could explain both the rapid anti-apoptotic effect and the delayed pro-apoptotic one. Indeed, the enzymatic activity of MnSOD is to transform the toxic O(2)(*)(-) in H(2)O(2). Hence, on one hand, its induction helps cells to resist against the apoptogenic burst of O(2)(*)(-) produced upon TNFalpha stimulation, but on the other hand, it leads to a progressive H(2)O(2) accumulation that ultimately results in apoptosis. These results indicate that the anti- and pro-apoptotic effects of Rel/NF-kappaB factors are not necessarily alternative but can occur successively in the same cell, via the up-regulation of the same target gene.
Collapse
Affiliation(s)
- David Bernard
- FRE 2353 CNRS/Institut Pasteur de Lille/Université Lille 2, Institut de Biologie de Lille, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
152
|
Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, Spano P. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem 2002; 277:20717-23. [PMID: 11912207 DOI: 10.1074/jbc.m201014200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nuclear transcription factors NF-kappaB/Rel have been shown to function as key regulators of either cell death or survival in neuronal cells. Here, we investigated whether selective activation of diverse NF-kappaB/Rel family members might lead to distinct effects on neuron viability. In both cultured rat cerebellar granule cells and mouse hippocampal slices, we examined NF-kappaB/Rel activation induced by two opposing modulators of cell viability: 1) interleukin-1beta (IL-1beta), which promotes neuron survival and 2) glutamate, which can elicit toxicity. IL-1beta produced a prolonged stimulation of NF-kappaB/Rel factors by inducing both IkappaBalpha and IkappaBbeta degradation. Glutamate produced a delayed and transient activation of NF-kappaB/Rel, which was associated with a brief loss of IkappaBalpha. Moreover, IL-1beta activated the p50, p65, and c-Rel subunits of NF-kappaB/Rel, whereas glutamate activated only the p50 and p65 proteins. The inhibition of NF-kappaB/Rel protein expression by antisense oligonucleotides in cerebellar granule cells showed that p65 was involved in glutamate-mediated cell death, whereas c-Rel was essential for IL-1beta-preserved cell survival. Furthermore, the depletion of c-Rel in cultured neurons as well as in the hippocampus from the c-Rel(-/-) mouse converted the IL-1beta effect into toxicity. These findings suggest that, within a single neuron, the balance between cell death and survival in response to external stimuli may rely on the activation of distinct NF-kappaB/Rel proteins.
Collapse
Affiliation(s)
- Marina Pizzi
- Division of Pharmacology and Experimental Therapeutics, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
153
|
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi N, Treon SP, Anderson KC. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99:4079-86. [PMID: 12010810 DOI: 10.1182/blood.v99.11.4079] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) confers significant survival potential in a variety of tumors. Several established or novel anti-multiple myeloma (anti-MM) agents, such as dexamethasone, thalidomide, and proteasome inhibitors (PS-341), inhibit NF-kappaB activity as part of their diverse actions. However, studies to date have not delineated the effects of specific inhibition of NF-kappaB activity in MM. We therefore investigated the effect of SN50, a cell-permeable specific inhibitor of NF-kappaB nuclear translocation and activity, on MM cells. SN50 induced apoptosis in MM cell lines and patient cells; down-regulated expression of Bcl-2, A1, X-chromosome-linked inhibitor-of-apoptosis protein (XIAP), cellular inhibitor-of-apoptosis protein 1 (cIAP-1), cIAP-2, and survivin; up-regulated Bax; increased mitochondrial cytochrome c release into the cytoplasm; and activated caspase-9 and caspase-3, but not caspase-8. We have previously demonstrated that tumor necrosis factor-alpha (TNF-alpha) is present locally in the bone marrow microenvironment and induces NF-kappaB-dependent up-regulation of adhesion molecules on both MM cells and bone marrow stromal cells, with resultant increased adhesion. In this study, TNF-alpha alone induced NF-kappaB nuclear translocation, cIAP-1 and cIAP-2 up-regulation, and MM cell proliferation; in contrast, SN50 pretreatment sensitized MM cells to TNF-alpha-induced apoptosis and cleavage of caspase-8 and caspase-3, similar to our previous finding of SN50-induced sensitization to apoptosis induced by the TNF-alpha family member TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L. Moreover, SN50 inhibited TNF-alpha-induced expression of another NF-kappaB target gene, intercellular adhesion molecule-1. Although the p38 inhibitor PD169316 did not directly kill MM cells, it potentiated the apoptotic effect of SN50, suggesting an interaction between the p38 and NF-kappaB pathways. Our results therefore demonstrate that NF-kappaB activity in MM cells promotes tumor-cell survival and protects against apoptotic stimuli. These studies provide the framework for targeting NF-kappaB activity in novel biologically based therapies for MM.
Collapse
Affiliation(s)
- Nicholas Mitsiades
- Department of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Garg A, Aggarwal BB. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 2002; 16:1053-68. [PMID: 12040437 DOI: 10.1038/sj.leu.2402482] [Citation(s) in RCA: 352] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/21/2002] [Indexed: 11/09/2022]
Abstract
Nuclear factor kappa B (NF-kappaB) is a family of inducible transcription factors found virtually ubiquitously in all cells. Since its discovery by Sen and Baltimore in 1986, much has been discovered about its mechanisms of activation, its target genes, and its function in a variety of human diseases including those related to inflammation, asthma, atherosclerosis, AIDS, septic shock, arthritis, and cancer. Due to its role in a wide variety of diseases, NF-kappaB has become one of the major targets for drug development. Here, we review our current knowledge of NF-kappaB, the possible mechanisms of its activation, its potential role in cancer, and various strategies being employed to target the NF-kappaB signaling pathway for cancer drug development.
Collapse
Affiliation(s)
- A Garg
- Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
155
|
Shou Y, Li N, Li L, Borowitz JL, Isom GE. NF-kappaB-mediated up-regulation of Bcl-X(S) and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J Neurochem 2002; 81:842-52. [PMID: 12065643 DOI: 10.1046/j.1471-4159.2002.00880.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyanide induces apoptosis through cytochrome c activated caspase cascade in primary cultured cortical neurons. The underlying mechanism for cytochrome c release from mitochondria after cyanide treatment is still unclear. In this study, the roles of endogenous Bcl-2 proteins in cyanide-induced apoptosis were investigated. After cyanide (100-500 microm) treatment for 24 h, two pro-apoptotic Bcl-2 proteins, Bcl-X(S) and Bax were up-regulated as shown by western blot and RT-PCR analysis. The expression levels of two antiapoptotic Bcl-2 proteins, Bcl-2 and Bcl-X(L), remained unchanged after cyanide treatment, whereas the mRNA levels of Bcl-X(S) and Bax began to increase within 2 h and their protein levels increased 6 h after treatment. NF-kappaB, a redox-sensitive transcription factor activated after cyanide treatment, is responsible for the up-regulation of Bcl-X(S) and Bax. SN50, which is a synthetic peptide that blocks translocation of NF-kappaB from cytosol to nucleus, inhibited the up-regulation of Bcl-X(S) and Bax. Similar results were obtained using a specific kappaB decoy DNA. NMDA receptor activation and reactive oxygen species (ROS) generation are upstream events of NF-kappaB activation, as blockade of these two events by MK801, l-NAME or PBN inhibited cyanide-induced up-regulation of Bcl-X(S) and Bax. Up-regulation of pro-apoptotic Bcl-X(S) and Bax contributed to cyanide-induced cytochrome c release, because SN50 and a specific Bax antisense oligodeoxynucleotide significantly reduced release of cytochrome c from mitochondria as shown by western blot analysis. It was concluded that NF-kappaB-mediated up-regulation of Bcl-X(S) and Bax is involved in regulating cytochrome c release in cyanide-induced apoptosis.
Collapse
Affiliation(s)
- Yan Shou
- Neurotoxicology Laboratory, Department of Medicinal Chemistry and Molecular Pharmacology, Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-1333, USA
| | | | | | | | | |
Collapse
|
156
|
McInnis J, Wang C, Anastasio N, Hultman M, Ye Y, Salvemini D, Johnson KM. The role of superoxide and nuclear factor-kappaB signaling in N-methyl-D-aspartate-induced necrosis and apoptosis. J Pharmacol Exp Ther 2002; 301:478-87. [PMID: 11961046 DOI: 10.1124/jpet.301.2.478] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor-mediated cell death is complex, probably involving elements of necrosis and apoptosis. The mechanisms underlying this phenomenon are incompletely understood but have been suggested to involve reactive oxygen species such as nitric oxide and superoxide anion (O(2)) and nuclear factor-kappaB (NF-kappaB) signaling. In this study, we used a selective nonpeptidyl superoxide dismutase mimetic (M40403) and SN50, a peptide inhibitor of NF-kappaB translocation, to investigate the role of O(2) and the potential downstream signaling molecules in cell death induced by activation of the NMDA receptor. Application of NMDA to a mixed neuronal/glial forebrain culture resulted in an early increase in the release of cytoplasmic lactate dehydrogenase (LDH), which peaked at 4 h. This was followed by a reduction in mitochondrial metabolism of the dye MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] that continued to decrease throughout the 20-h exposure. A substantial increase in DNA fragmentation as measured by an enzyme-linked immunosorbent assay (ELISA) specific for DNA-associated histone proteins (nucleosomes) was observed at 7 and 20 h. M40403 and SN50 blocked NMDA-induced changes in LDH release at 2, 4, and 20 h, MTT metabolism at 4 and 20 h, and DNA fragmentation at 20 h as measured by the ELISA and by an increase in terminal dUTP-nick end labeling. M40403 also prevented NMDA-induced nuclear transport of NF-kappaB and increased expression of Bax relative to Bcl-X(L). SN50 was also able to block NMDA-induced cell death as well as the increased Bax/Bcl-X(L) ratio. Time course studies and experiments with SN50 and M40403 suggest that O(2) production and NF-kappaB translocation may be involved in necrosis and apoptosis, but the latter also requires an increased expression of Bax. The ability of M40403 to prevent NMDA-induced cell death relatively early in this cascade suggests its potential therapeutic utility in central nervous systems diseases such as stroke that are associated with increased NMDA receptor-mediated production of O(2).
Collapse
Affiliation(s)
- Justin McInnis
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
157
|
Svensson CI, Yaksh TL. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 2002; 42:553-83. [PMID: 11807183 DOI: 10.1146/annurev.pharmtox.42.092401.143905] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intrathecal phospholipase A2 (PLA2) and cyclooxygenase-2 (COX-2), but not COX-1, inhibitors attenuate facilitated pain states generated by peripheral injury/inflammation and by direct activation of spinal glutamate and substance P receptors. These results are consistent with the constitutive expression of PLA2 and COX-2 in spinal cord, the spinal release of prostaglandins by persistent afferent input, and the effects of prostaglandins on spinal excitability. Whereas the acute actions of COX-2 inhibitors are clearly mediated by constitutively expressed spinal COX-2, studies of spinal COX-2 expression indicate that it is upregulated by neural input and circulating cytokines. Given the intrathecal potency of COX-2 inhibitors, the comparable efficacy of intrathecal versus systemic COX-2 inhibitors in hyperalgesic states not associated with inflammation, and the onset of antihyperalgesic activity prior to COX-2 upregulation, it is argued that a principal antihyperalgesic mechanism of COX-2 inhibitors lies with modulation of constitutive COX-2 present at the spinal level.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0818, USA.
| | | |
Collapse
|
158
|
Chuang DM, Chen RW, Chalecka-Franaszek E, Ren M, Hashimoto R, Senatorov V, Kanai H, Hough C, Hiroi T, Leeds P. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 2002; 4:129-36. [PMID: 12071510 DOI: 10.1034/j.1399-5618.2002.01179.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lithium, the major drug used to treat manic depressive illness, robustly protects cultured rat brain neurons from glutamate excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors. The lithium neuroprotection against glutamate excitotoxiciy is long-lasting, requires long-term pretreatment and occurs at therapeutic concentrations of this drug. The neuroprotective mcchanisms involve inactivation of NMDA receptors, decreased expression of pro-apoptotic proteins, p53 and Bax, enhanced expression of the cytoprotective protein, Bcl-2, and activation of the cell survival kinase, Akt. In addition, lithium pretreatment suppresses glutamate-induced loss of the activities of Akt, cyclic AMP-response element binding protein (CREB), c-Jun - N-terminal kinase (JNK) and p38 kinase. Lithium also reduces brain damage in animal models of neurodegenerative diseases in which excitotoxicity has been implicated. In the rat model of stroke using middle cerebral artery occlusion, lithium markedly reduces neurologic deficits and decreases brain infarct volume even when administered after the onset of ischemia. In a rat Huntington's disease model, lithium significantly reduces brain lesions resulting from intrastriatal infusion of quinolinic acid, an excitotoxin. Our results suggest that lithium might have utility in the treatment of neurodegenerative disorders in addition to its common use for the treatment of bipolar depressive patients.
Collapse
Affiliation(s)
- De-Maw Chuang
- Section on Molecular Neurobiology, Mood and Anxiety Disorder Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Castagné V, Lefèvre K, Clarke PG. Dual role of the NF-kappaB transcription factor in the death of immature neurons. Neuroscience 2002; 108:517-26. [PMID: 11738264 DOI: 10.1016/s0306-4522(01)00430-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that the extent of axotomy-induced death of retinal ganglion cells is reduced by cycloheximide, an inhibitor of protein synthesis, and that an earlier sublethal oxidative insult induced by buthionine sulfoximine, a glutathione synthesis inhibitor, enhances the protective effects of cycloheximide. Thus, axotomy-induced ganglion cell death seems to involve an interaction between the redox status and genetic expression. The redox-sensitive transcription factor nuclear factor-kappaB (NF-kappaB) is a logical candidate for providing this interaction. In the present study, we injected intraocularly selective inhibitors of NF-kappaB in chick embryos either unlesioned, or after a unilateral tectal lesion, which axotomizes ganglion cells. The number of dying cells in the retina contralateral to the lesion was reduced in embryos receiving NF-kappaB inhibitors as compared with vehicle-injected controls. In contrast, the same NF-kappaB inhibitors administered as pretreatment before intraocular injection of buthionine sulfoximine and cycloheximide drastically raised neuronal death and induced fulgurant degenerative changes in the retina. The most parsimonious interpretation of our results is that in axotomized retinal ganglion cells of chick embryos NF-kappaB may have either death-promoting or death-inhibiting effects. We propose a theoretical model to explain these dual effects assuming the existence of parallel death pathways differently affected by NF-kappaB. These results may have implications for future redox-based therapeutic strategies for neuroprotection.
Collapse
Affiliation(s)
- V Castagné
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| | | | | |
Collapse
|
160
|
Marco S, Pérez-Navarro E, Tolosa E, Arenas E, Alberch J. Striatopallidal neurons are selectively protected by neurturin in an excitotoxic model of Huntington's disease. JOURNAL OF NEUROBIOLOGY 2002; 50:323-32. [PMID: 11891666 DOI: 10.1002/neu.10033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxicity has been involved in the pathogenesis of several neurodegenerative disorders. Using intrastriatal quinolinic acid (QUIN) injection as an animal model of Huntington's disease, we attempt to identify the neurotransmitter phenotype of striatal projection neurons protected by neurturin (NRTN). Control or NRTN-secreting cell lines were grafted in the striatum before QUIN injection and striatal projection neurons were examined by retrograde Fluorogold labeling and in situ hybridization. Intrastriatal grafting of NRTN-secreting cell line selectively prevented the loss of striatopallidal neurons and also the decrease in the mRNA levels for their markers (glutamic acid decarboxylase 67 and preproenkephalin) induced by QUIN, without affecting striatonigral neurons. Thus, our findings show that NRTN is a selective neuroprotective factor for striatopallidal neurons, suggesting that it might be a candidate for the treatment of movement disorders in which this neuronal population is affected.
Collapse
Affiliation(s)
- Sònia Marco
- Departament de Biologia Celcenter dotlular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
161
|
Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The 'suicide hypothesis' revisited. Trends Pharmacol Sci 2002; 23:122-9. [PMID: 11879679 DOI: 10.1016/s0165-6147(00)01902-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is an abundant nuclear enzyme involved in DNA repair. The therapeutic efficacy of drugs that inhibit PARP-1 in various disorders underscores the active role of PARP-1 in cell death. Although it is well established that excessive DNA damage causes PARP-1 hyperactivation, which leads to cell death by energy failure, a new mechanistic perspective is emerging following the identification of various PARPs that exhibit different features and subcellular distributions. Studies demonstrating the significant role of PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs will be discussed with particular focus on the regulation of transcription factors such as nuclear factor kappaB and p53. (An animation depicting the involvement of PARP-1 in the 'suicide hypothesis' is available at http://archive.bmn.com/supp/tips/tips2303a.html)
Collapse
Affiliation(s)
- Alberto Chiarugi
- Dept of Neuroscience, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
162
|
Wei H, Qin ZH, Senatorov VV, Wei W, Wang Y, Qian Y, Chuang DM. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington's disease. Neuroscience 2002; 106:603-12. [PMID: 11591460 DOI: 10.1016/s0306-4522(01)00311-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Huntington's disease is a progressive, inherited neurodegenerative disorder characterized by the loss of subsets of neurons primarily in the striatum. In this study, we assessed the neuroprotective effect of lithium against striatal lesion formation in a rat model of Huntington's disease in which quinolinic acid was unilaterally infused into the striatum. For this purpose, we used a dopamine receptor autoradiography and glutamic acid decarboxylase mRNA in situ hybridization analysis, methods previously shown to be adequate for quantitative analysis of the excitotoxin-induced striatal lesion size. Here we demonstrated that subcutaneous injections of LiCl for 16 days prior to quinolinic acid infusion considerably reduced the size of quinolinic acid-induced striatal lesion. Furthermore, these lithium pre-treatments also decreased the number of striatal neurons labeled with the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Immunohistochemistry and western blotting demonstrated that lithium-elicited neuroprotection was associated with an increase in Bcl-2 protein levels. Our results raise the possibility that lithium may be considered as a neuroprotective agent in treatment of neurodegenerative diseases such as Huntington's disease.
Collapse
Affiliation(s)
- H Wei
- Section on Molecular Neurobiology, Biological Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G. Neuronal survival and cell death signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 513:41-86. [PMID: 12575817 DOI: 10.1007/978-1-4615-0123-7_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal viability is maintained through a complex interacting network of signaling pathways that can be perturbed in response to a multitude of cellular stresses. A shift in the balance of signaling pathways after stress or in response to pathology can have drastic consequences for the function or the fate of a neuron. There is significant evidence that acutely injured and degenerating neurons may die by an active mechanism of cell death. This process involves the activation of discrete signaling pathways that ultimately compromise mitochondrial structure, energy metabolism and nuclear integrity. In this review we examine recent evidence pertaining to the presence and activation of anti- and pro-cell death regulatory pathways in nervous system injury and degeneration.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Glycogen synthase kinase-3beta (GSK3beta) is a fascinating enzyme with an astoundingly diverse number of actions in intracellular signaling systems. GSK3beta activity is regulated by serine (inhibitory) and tyrosine (stimulatory) phosphorylation, by protein complex formation, and by its intracellular localization. GSK3beta phosphorylates and thereby regulates the functions of many metabolic, signaling, and structural proteins. Notable among the signaling proteins regulated by GSK3beta are the many transcription factors, including activator protein-1, cyclic AMP response element binding protein, heat shock factor-1, nuclear factor of activated T cells, Myc, beta-catenin, CCAAT/enhancer binding protein, and NFkappaB. Lithium, the primary therapeutic agent for bipolar mood disorder, is a selective inhibitor of GSK3beta. This raises the possibility that dysregulation of GSK3beta and its inhibition by lithium may contribute to the disorder and its treatment, respectively. GSK3beta has been linked to all of the primary abnormalities associated with Alzheimer's disease. These include interactions between GSK3beta and components of the plaque-producing amyloid system, the participation of GSK3beta in phosphorylating the microtubule-binding protein tau that may contribute to the formation of neurofibrillary tangles, and interactions of GSK3beta with presenilin and other Alzheimer's disease-associated proteins. GSK3beta also regulates cell survival, as it facilitates a variety of apoptotic mechanisms, and lithium provides protection from many insults. Thus, GSK3beta has a central role regulating neuronal plasticity, gene expression, and cell survival, and may be a key component of certain psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- C A Grimes
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 1057, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
165
|
Cechetto DF. Role of nuclear factor kappa B in neuropathological mechanisms. PROGRESS IN BRAIN RESEARCH 2001; 132:391-404. [PMID: 11545005 DOI: 10.1016/s0079-6123(01)32090-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
166
|
Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 2001; 62:657-67. [PMID: 11556286 DOI: 10.1016/s0006-2952(01)00733-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The p53 tumor suppressor pathway is a key mediator of stress response that protects the organism from accumulating genetically altered and potentially cancerous cells by inducing growth arrest or apoptosis in damaged cells. However, under certain stressful conditions, p53 activity can result in massive apoptosis in sensitive tissues, leading to severe pathological consequences for the organism. One such situation is anticancer therapy that is often associated with general genotoxic stress, leading to p53-dependent apoptosis in the epithelia of the digestive tract and in the hematopoietic system. A chemical inhibitor of p53, capable of suppressing p53-mediated apoptosis, was shown to protect mice from lethal doses of gamma-radiation, making pharmacological suppression of p53 a perspective therapeutic approach to reduce the side-effects of cancer treatment. There are other situations, besides anti-cancer therapy, when humans are exposed to stressful conditions known to involve p53 activation, which, in extreme cases, could result in the development of life-threatening diseases. Here we review the experimental evidence on the role of p53 in tissue injuries associated with hypoxia (heart and brain ischemias) and hyperthermia (fever and burns), comparing these pathologies with the consequences of genotoxic stress of cancer treatment. The accumulated information points to the involvement of p53 in the generation of the pathological outcome of the above stresses, making them potential targets for the therapeutic application of p53 inhibitors.
Collapse
Affiliation(s)
- E A Komarova
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
167
|
Gratacòs E, Pérez-Navarro E, Tolosa E, Arenas E, Alberch J. Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. J Neurochem 2001; 78:1287-96. [PMID: 11579137 DOI: 10.1046/j.1471-4159.2001.00538.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotrophic factors are regarded as potential therapeutic tools in neurodegenerative disorders. Here, we analysed the protective effects of brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor and neurturin against the excitotoxic damage induced by kainate in striatal neurons in vitro and in vivo. Our results show that the decrease in the number of cultured striatal calbindin-positive neurons induced by kainate was prevented by treatment with any of these factors. To characterize their protective effects in vivo, cell lines overexpressing brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor or neurturin were grafted into the striatum. We found that the numbers of striatal projection neurons (calbindin-positive) and striatal interneurons (parvalbumin- or choline acetyltransferase-positive) were differentially decreased after kainate lesion. These neurotrophic factors prevented the loss of striatal projection neurons and interneurons with differing efficiency: brain-derived neurotrophic factor was the most efficient, whereas neurturin was the least. Our findings show that brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor and neurturin have specific neuroprotective profiles in striatal neurons and indicate that they are specific modulators of the survival of distinct subsets of striatal neurons in pathophysiological conditions.
Collapse
Affiliation(s)
- E Gratacòs
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | |
Collapse
|
168
|
Thiriet N, Jayanthi S, McCoy M, Ladenheim B, Cadet JL. Methamphetamine increases expression of the apoptotic c-myc and L-myc genes in the mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:202-4. [PMID: 11406298 DOI: 10.1016/s0169-328x(01)00093-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To clarify the possible mechanisms by which the recreational drug, methamphetamine (METH), induces apoptosis, we investigated its effects on the expression of Myc apoptotic genes. This paper presents the characterization of c-myc and L-myc gene transcription in the striatum and the cortex. In addition, the expression of the corresponding proteins was also evaluated. Our observations reveal that c-myc and L-myc were up-regulated by METH at both the mRNA and protein levels. Thus, myc transcription factors might be responsible for some aspects of METH-induced apoptotic processes.
Collapse
Affiliation(s)
- N Thiriet
- Molecular Neuropsychiatry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
169
|
Smirnov AS, Ruzov AS, Budanov AV, Prokhortchouk AV, Ivanov AV, Prokhortchouk EB. High constitutive level of NF-kappaB is crucial for viability of adenocarcinoma cells. Cell Death Differ 2001; 8:621-30. [PMID: 11536013 DOI: 10.1038/sj.cdd.4400853] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2000] [Revised: 12/11/2000] [Accepted: 02/01/2001] [Indexed: 11/09/2022] Open
Abstract
Most of cells exhibit low nuclear level of NF-kappaB. However, in some cell lines and tissues aberrantly activated NF-kappaB is playing an important role in cell motility, growth control and survival. Here we describe the result of decrease of constitutive NF-kappaB level in different adenocarcinoma cell lines. Treatment of mouse adenocarcinoma cell line CSML-100 with both synthetic (TPCK or PDTC) or natural (I(kappaB)-alpha) NF-kappaB inhibitors caused apoptotic death. Low doses of TPCK were harmless for CSML100 cells but sensitized them to TNF-induced apoptosis. Death of CSML100 cells in the presence of high concentration TPCK was not accompanied with significant changes in c-myc activity but strongly correlated with rapid decrease in p53 level. Thus, mutual behavior p53 and NF-kappaB represented a unique feature of TPCK-induced apoptosis in CSML-100 adenocarcinoma cells.
Collapse
Affiliation(s)
- A S Smirnov
- Group of Transcriptional Control and Oncogenesis, Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, 117334 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
It is often proposed that quinolinic acid (QUIN) contributes to the pathophysiology of neuroinflammation because this kynurenine pathway metabolite is a selective agonist of N-methyl-D-aspartate (NMDA) receptors, and both its brain tissue and cerebrospinal fluid concentrations increase markedly with inflammation. However, whether or not the extracellular levels of QUIN reached during neuroinflammation are high enough to promote excitotoxicity, remains unclear because QUIN is a weak NMDA receptor agonist. We have addressed this issue by evaluating the extracellular concentrations of QUIN that must be reached to initiate potentially excitotoxic changes in the cerebral cortex of rats, under normal conditions, and when superimposed on another insult. We have also examined the increase in extracellular lactate associated with the perfusion of increasing concentrations of QUIN through a microdialysis probe. The extracellular EC50 for induction of local depolarisation was 228 microM with QUIN alone; that is, about 30 times the levels of QUIN measured previously in immune activated brain. Furthermore, at least 20 microM extracellular QUIN needed to be reached to reduce K+ induced spreading depression, an unexpected effect since spreading depression is inhibited by NMDA receptor antagonists. Our data suggest that, although synthesis of QUIN from activated microglia and invading macrophages can increase its extracellular concentration 10-100-fold, the levels that are reached in these conditions remain far below the concentrations of QUIN that are necessary for excessive NMDA receptor activation. However, the possibility that QUIN accumulation may be a deleterious feature of neuroinflammation cannot be ruled out at this stage.
Collapse
Affiliation(s)
- T P Obrenovitch
- School of Pharmacy, University of Bradford, Bradford BD7 1DP, U.K.
| |
Collapse
|
171
|
Bitko V, Barik S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 2001; 80:441-54. [PMID: 11135374 DOI: 10.1002/1097-4644(20010301)80:3<441::aid-jcb170>3.0.co;2-c] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.
Collapse
Affiliation(s)
- V Bitko
- Department of Biochemistry and Molecular Biology, MSB 2370, University of South Alabama, College of Medicine, Mobile, AL 36688-0002, USA
| | | |
Collapse
|
172
|
Li L, Rao JN, Bass BL, Wang JY. NF-kappaB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G992-G1004. [PMID: 11292609 DOI: 10.1152/ajpgi.2001.280.5.g992] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The maintenance of intestinal mucosal integrity depends on a balance between cell renewal and cell death, including apoptosis. The natural polyamines, putrescine, spermidine, and spermine, are essential for mucosal growth, and decreasing polyamine levels cause G(1) phase growth arrest in intestinal epithelial (IEC-6) cells. The present study was done to determine changes in susceptibility of IEC-6 cells to apoptosis after depletion of cellular polyamines and to further elucidate the role of nuclear factor-kappaB (NF-kappaB) in this process. Although depletion of polyamines by alpha-difluoromethylornithine (DFMO) did not directly induce apoptosis, the susceptibility of polyamine-deficient cells to staurosporine (STS)-induced apoptosis increased significantly as measured by changes in morphological features and internucleosomal DNA fragmentation. In contrast, polyamine depletion by DFMO promoted resistance to apoptotic cell death induced by the combination of tumor necrosis factor-alpha (TNF-alpha) and cycloheximide. Depletion of cellular polyamines also increased the basal level of NF-kappaB proteins, induced NF-kappaB nuclear translocation, and activated the sequence-specific DNA binding activity. Inhibition of NF-kappaB binding activity by sulfasalazine or MG-132 not only prevented the increased susceptibility to STS-induced apoptosis but also blocked the resistance to cell death induced by TNF-alpha in combination with cycloheximide in polyamine-deficient cells. These results indicate that 1) polyamine depletion sensitizes intestinal epithelial cells to STS-induced apoptosis but promotes the resistance to TNF-alpha-induced cell death, 2) polyamine depletion induces NF-kappaB activation, and 3) disruption of NF-kappaB function is associated with altered susceptibility to apoptosis induced by STS or TNF-alpha. These findings suggest that increased NF-kappaB activity after polyamine depletion has a proapoptotic or antiapoptotic effect on intestinal epithelial cells determined by the nature of the death stimulus.
Collapse
Affiliation(s)
- L Li
- Department of Surgery, University of Maryland School of Medicine, 10 North Greene St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
173
|
Qin ZH, Wang Y, Kikly KK, Sapp E, Kegel KB, Aronin N, DiFiglia M. Pro-caspase-8 is predominantly localized in mitochondria and released into cytoplasm upon apoptotic stimulation. J Biol Chem 2001; 276:8079-86. [PMID: 11102441 DOI: 10.1074/jbc.m007028200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment and cleavage of pro-caspase-8 to produce the active form of caspase-8 is a critical biochemical event in death receptor-mediated apoptosis. However, the source of pro-caspase-8 available for activation by apoptotic triggers is unknown. In human fibroblasts and mouse clonal striatal cells, confocal microscopy revealed that pro-caspase-8 immunofluorescence was colocalized with cytochrome c in mitochondria and was also distributed diffusely in some nuclei. Biochemical analysis of subcellular fractions indicated that pro-caspase-8 was enriched in mitochondria and in nuclei. Pro-caspase-8 was found in the intermembrane space, inner membrane, and matrix of mitochondria after limited digestion of mitochondrial fractions, and this distribution was confirmed by immunogold electron microscopy. Pro-caspase-8 and cytochrome c were released from isolated mitochondria that were treated with an inhibitor of the ADP/ATP carrier atractyloside, which opens the mitochondria permeability transition pore. Release was blocked by the mitochondria permeability transition pore inhibitor cyclosporin A (CsA). After clonal striatal cells were exposed for 6 h to an apoptotic inducer tumor necrosis factor-alpha (TNF-alpha), mitochondria immunoreactive for cytochrome c and pro-caspase-8 became clustered at perinuclear sites. Pro-caspase-8 and cytochrome c levels decreased in mitochondrial fractions and increased, along with pro-caspase-8 cleavage products, in the cytoplasm of the TNF-alpha-treated striatal cells. CsA blocked the TNF-alpha-induced release of pro-caspase 8 but not cytochrome c. Internucleosomal DNA fragmentation started at 6 h and peaked 12 h after TNF-alpha treatment. These results suggest that pro-caspase-8 is predominantly localized in mitochondria and is released upon apoptotic stimulation through a CsA-sensitive mechanism.
Collapse
Affiliation(s)
- Z H Qin
- Laboratory of Cellular Neurobiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Xiao CW, Ash K, Tsang BK. Nuclear factor-kappaB-mediated X-linked inhibitor of apoptosis protein expression prevents rat granulosa cells from tumor necrosis factor alpha-induced apoptosis. Endocrinology 2001; 142:557-63. [PMID: 11159825 DOI: 10.1210/endo.142.2.7957] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although X-linked inhibitor of apoptosis protein (Xiap) is an important intracellular suppressor of apoptosis in a variety of cell types and is present in ovary, its physiological role in follicular development remains unclear. The purpose of the present studies was to examine the modulatory role of Xiap in the proapoptotic action of tumor necrosis factor-alpha (TNFalpha) in rat granulosa cells. Granulosa cells from equine CG-primed immature rats were plated in RPMI 1640 medium containing 10% FCS and subsequently cultured in serum-free RPMI in the absence or presence of TNFalpha (20 ng/ml), the protein synthesis inhibitor cycloheximide (10 microM), and/or adenoviral Xiap sense or antisense complementary DNA. TNFalpha alone failed to induce granulosa cell death, but in the presence of cycloheximide, it markedly increased the number of apoptotic granulosa cells (as assessed by in situ terminal deoxynucleotidyl transferase-mediated deox-UTPbiotin end labeling and DNA fragmentation analysis). Western analysis indicated that TNFalpha alone increased the Xiap protein level, a response significantly reduced by adenoviral Xiap antisense expression. Down-regulation of Xiap expression by antisense complementary DNA induced granulosa cell apoptosis, which was potentiated by the cytokine. Inhibition of nuclear factor-kappaB activation by N-acetyl-cysteine and SN50 suppressed Xiap protein expression and enhanced apoptosis induced by TNFalpha. The latter phenomenon was readily attenuated by adenoviral Xiap sense expression. In conclusion, these findings suggest that Xiap is an important intracellular modulator of the TNFalpha death signaling pathway in granulosa cells. Its expression is regulated by the TNFalpha via a nuclear factor-kappaB-mediated mechanism.
Collapse
Affiliation(s)
- C W Xiao
- Reproductive Biology Unit and Division of Reproductive Medicine, Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Loeb Health Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|
175
|
Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21:163-73. [PMID: 11176282 DOI: 10.1097/00004647-200102000-00008] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) are implicated in reperfusion injury after focal cerebral ischemia (FCI). Reactive oxygen species regulate activity of transcription factors like NF-kappaB. The authors investigated the role of ROS in NF-kappaB activity after FCI using transgenic mice that overexpressed human copper/zinc-superoxide dismutase (SOD1) and that had reduced infarction volume after FCI. Superoxide dismutase transgenic and wild-type mice were subjected to 1 hour of middle cerebral artery occlusion (MCAO) and subsequent reperfusion. Immunohistochemistry showed SOD1 overexpression attenuated ischemia-induced NF-kappaB p65 immunoreactivity. Colocalization of NF-kappaB and the neuronal marker, microtubule-associated proteins (MAPs), showed that NF-kappaB was up-regulated in neurons after FCI. Electrophoretic mobility shift assays showed that SODI overexpression reduced ischemia-induced NF-kappaB DNA binding activity. Supershift assays showed that DNA-protein complexes contained p65 and p50 subunits. Immunoreactivity of c-myc, an NF-kappaB downstream gene, was increased in the ischemic cortex and colocalized with NF-kappaB. Western blotting showed that SOD1 overexpression reduced NF-kappaB and c-Myc protein levels in the ischemic brain. Colocalization of c-Myc and TUNEL staining was observed 24 hours after FCI. The current findings provide the first evidence that SOD1 overexpression attenuates activation of NF-kappaB after transient FCI in mice and that preventing this early activation may block expression of downstream deleterious genes like c-myc, thereby reducing ischemic damage.
Collapse
Affiliation(s)
- C Y Huang
- Department of Neurosurgery, Stanford University School of Medicine, California, USA
| | | | | | | | | |
Collapse
|
176
|
Denk A, Wirth T, Baumann B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev 2000; 11:303-20. [PMID: 10959078 DOI: 10.1016/s1359-6101(00)00009-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rel/NF-kappaB family of transcription factors has been implicated in the regulation of genes involved in immune and inflammatory responses, and of processes such as cell survival, apoptosis, development, differentiation, cell growth and neoplastic transformation. In this report we will summarize recent findings which highlight critical roles of NF-kappaB in different processes in hematopoietic and neuronal cells.
Collapse
Affiliation(s)
- A Denk
- Department of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | |
Collapse
|
177
|
Abstract
The p53 tumor suppressor gene is a sequence-specific transcription factor that activates the expression of genes engaged in promoting growth arrest or cell death in response to genotoxic stress. A possible role for p53-related modulation of neuronal viability has been suggested by the finding that p53 expression is elevated in damaged neurons in acute models of injury such as ischemia and epilepsy and in brain tissue samples derived from patients with chronic neurodegenerative diseases. Moreover, the absence of p53 has been shown to protect neurons from a wide variety of acute toxic insults. Signal transduction pathways associated with p53-induced cell death are being unraveled and suggest that intervention may prove fruitful in maintaining neuronal viability and restoring function following cytopathic insults.
Collapse
Affiliation(s)
- R S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | |
Collapse
|
178
|
Qin Z, Wang Y, Chasea TN. A caspase-3-like protease is involved in NF-kappaB activation induced by stimulation of N-methyl-D-aspartate receptors in rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:111-22. [PMID: 11038244 DOI: 10.1016/s0169-328x(00)00147-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glutamate receptor stimulation reportedly activates NF-kappaB in vitro and in vivo, although underlying mechanisms remain to be elucidated. Here we evaluated the role of proteases in mediating N-methyl-D-aspartate (NMDA) receptor agonist-induced NF-kappaB activation and apoptosis in rat striatum. The intrastriatal infusion of quinolinic acid (QA, 60 nmol) had no effect on levels of NF-kappaB family proteins, including p65, p50, p52, c-Rel and Rel B. In contrast, QA decreased IkappaB-alpha protein levels by 60% (P<0. 05); other members of the IkappaB family, including IkappaB-beta, IkappaB-gamma, IkappaB-epsilon and Bcl-3, were not altered. The QA-stimulated degradation of IkappaB-alpha was completely blocked by the NMDA receptor antagonist MK-801. QA-induced IkappaB-alpha degradation and NF-kappaB activation were not affected by the proteasome inhibitor MG-132 (1-4 microg). On the other hand, the caspase-3 inhibitor Ac-DEVD.CHO (2-8 microgram) blocked QA-induced IkappaB-alpha degradation in a dose-dependent manner (P<0.05). Ac-DEVD.CHO (4 microgram) also substantially reduced QA-induced NF-kappaB activation (P<0.05), but had no effect on QA-induced AP-1 activation. Furthermore, Ac-DEVD.CHO, but not MG-132, dose-dependently attenuated QA-induced internucleosomal DNA fragmentation. These findings suggest that NF-kappaB activation by NMDA receptor stimulation involves IkappaB-alpha degradation by a caspase-3-like cysteine protease dependent mechanism. Caspase-3 thus appears to contribute to the excitotoxin-induced apoptosis in rat striatal neurons occurring at least partially as a consequence of NF-kappaB activation.
Collapse
Affiliation(s)
- Z Qin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bldg 10, Rm 5C 103, 10 Center Dr. MSC 1406, 20892-1406, Bethesda, MD, USA
| | | | | |
Collapse
|
179
|
A high constitutive level of NF-κB is necessary for the viability of mouse adenocarcinoma cells: A possible role of p53. Mol Biol 2000. [DOI: 10.1007/bf02759603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
180
|
Seegers H, Grillon E, Trioullier Y, Väth A, Verna JM, Blum D. Nuclear factor-kappa B activation in permanent intraluminal focal cerebral ischemia in the rat. Neurosci Lett 2000; 288:241-5. [PMID: 10889352 DOI: 10.1016/s0304-3940(00)01245-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear factor-kappa B (NF-kappa B) is an oxidative stress responsive transcription factor known to be activated in response to transient middle cerebral artery intraluminal occlusion. Since oxidative stress activation may largely occur during reperfusion, the aim of this study was to determine if permanent middle cerebral artery intraluminal occlusion without reperfusion induces NF-kappa B activation and the relationship of NF-kappa B activation to HSP70 expression and neuronal cell death. Our results suggest that permanent intraluminal occlusion is sufficient to induce NF-kappa B activation 7 h after the onset of occlusion. Interestingly, this activation seems to occur specifically in dying neurons of the penumbra area devoid of any HSP70 neuronal immunoreactivity. These findings are consistent with the suggested protective role of HSP70 expression and suggest that NF-kappa B activation observed in the penumbra area has a role in neuronal cell death after permanent intraluminal cerebral ischemia.
Collapse
Affiliation(s)
- H Seegers
- INSERM U438, RMN Bioclinique, CHU Michallon, Pavillon B, BP 217, 38043 Cedex 9, Grenoble, France
| | | | | | | | | | | |
Collapse
|
181
|
Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 2000; 4:199-220. [PMID: 10731095 DOI: 10.1179/135100099101534927] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
182
|
Abstract
A large number of gene products appear after an ischemic insult making it difficult to decipher which genes are involved in tissue injury. Reactive oxygen species (ROS) can influence gene expression and have a role in the events that lead to neuronal death. In global cerebral ischemia the oxidative responsive transcription factor, NF-kappa B, is persistently activated in neurons that are destined to die. There are several potential routes through which NF-kappa B can act to induce neuronal death, including production of death proteins and an aborted attempt to reenter the cell cycle. NF-kappa B is only transiently activated in neurons that survive. Persistent NF-kappa B activation can be blocked by antioxidants, which suggests that the neuroprotective effect of antioxidants may be due to inhibiting activation of NF-kappa B.
Collapse
Affiliation(s)
- J A Clemens
- Neuroscience Research, The Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| |
Collapse
|
183
|
Ferrer I, Blanco R. N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:270-6. [PMID: 10837922 DOI: 10.1016/s0169-328x(00)00062-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study examines N-myc and c-myc protein expression with Western blotting and single and double-labeling immunohistochemistry in the hippocampus in Alzheimer disease (AD), the striatum in Huntington disease (HD) and the substantia nigra in Parkinson disease (PD). No modifications in the N-myc and c-myc expression are found in hippocampal neurons in AD, striatal neurons in HD, and pigmented neurons of the substantia nigra in PD. Yet punctate synaptic-like N-myc immunoreactivity, matching enhanced synaptophysin expression, occurs in diffuse plaques, but not in dystrophic neurites of neuritic plaques. In contrast, c-myc immunoreactivity is found in dystrophic neurites, but not in aberrant sproutings of neuritic plaques, as shown by double-labeling immunohistochemistry to c-myc and phosphorylated tau or phosphorylated neurofilament epitopes, and to c-myc and GAP-43, respectively. Strong N-myc and c-myc are observed in reactive astrocytes in AD, HD and PD, as revealed by double-labeling with N-myc or c-myc and GFAP. Finally, no relationship is found between nuclear DNA fragmentation and increased N-myc or c-myc expression in individual cells. These results demonstrate that neuron death in AD, HD and PD is not associated with modifications in the steady-state expression of N-myc and c-myc in individual neurons, and that neurofibrillary degeneration and Lewy body formation are not accompanied by increased immunoreactivity to these transcription factors. Increased N-myc and c-myc expression in reactive astrocytes probably plays a role in reactive astrocytosis in human neurodegenerative disorders.
Collapse
Affiliation(s)
- I Ferrer
- Unitat de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, i Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Hospitalet de Llobregat, Llobregat, Spain.
| | | |
Collapse
|
184
|
Nakai M, Qin Z, Wang Y, Chase TN. NMDA and non-NMDA receptor-stimulated IkappaB-alpha degradation: differential effects of the caspase-3 inhibitor DEVD.CHO, ethanol and free radical scavenger OPC-14117. Brain Res 2000; 859:207-16. [PMID: 10719066 DOI: 10.1016/s0006-8993(00)01959-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The excitotoxic response of striatal neurons to NMDA and non-NMDA receptor agonists involves the nuclear translocation of transcription factor nuclear factor-kappa B (NF-kappaB) due to IkappaB-alpha degradation. Resultant augmentation in c-Myc, p53 and cyclin D1 expression presages the apoptotic-like destruction of these cells in vivo. To differentiate molecular events triggered by intrastriatally injected quinolinic acid (QA, 60 nmol) and kainic acid (KA, 2.5 nmol), we compared the effects of a caspase-3 inhibitor (DEVD.CHO, 8 microgram intrastriatally), a free radical scavenger (OPC-14117; 600 mg/kg, orally) and ethanol (2.14-8.6 micromol, intrastriatally or 25-100 mmol/kg, orally) on changes induced by these glutamatergic agonists on NF-kappaB cascade components and the apoptotic death of rat striatal neurons in vivo. The results indicated that the QA-induced degradation of IkappaB-alpha is almost totally mediated by a caspase-3-dependent mechanism, while KA-induced IkappaB-alpha degradation is only partially dependent on caspase-3. OPC-14117 attenuated the effects of QA but not KA on IkappaB-alpha degradation, suggesting that oxidative stress contributes to the QA- but not the KA-induced degradation of IkappaB-alpha. In contrast, ethanol inhibited the KA- but not the QA-induced degradation of IkappaB-alpha and the ensuing DNA fragmentation and loss of striatal GABAergic neurons. It would now appear that NF-kappaB activation in striatal neurons induced by NMDA or KA receptor stimulation involves different biochemical mechanisms. Since excitotoxicity associated with NF-kappaB activation may contribute to neuronal degenerative disorders such as Huntington's disease, a more detailed understanding of biochemical events underlying ionotrophic glutamate receptor-stimulated cell death may assist in the discovery of alternative approaches to interdicting the deleterious consequences of excitotoxic insult.
Collapse
Affiliation(s)
- M Nakai
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bldg. 10, Rm. 5C103, 10 Center Drive, MSC 1406, Bethesda, MD, USA
| | | | | | | |
Collapse
|
185
|
Nakai M, Qin ZH, Chen JF, Wang Y, Chase TN. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-kappaB activation. J Neurochem 2000; 74:647-58. [PMID: 10646516 DOI: 10.1046/j.1471-4159.2000.740647.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in 67-kDa glutamic acid decarboxylase (p<0.05). KA (1.25-5.0 nmol) elicited internucleosomal DNA fragmentation that was inhibited by the AMPA/KA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dibenzo[f]quinoxaline-7-sulfonamide) but not by the NMDA receptor antagonist MK-801. A decrease in IkappaB-alpha protein levels, which was accompanied by an increase in NF-kappaB binding activity, was found from 6 to 72 h after KA (2.5 nmol) infusion. NF-kappaB was composed mainly of p65 and c-Rel as revealed by supershift assay. In addition, c-Myc and p53 increased from five- to sevenfold from 24 to 72 h after KA (2.5 nmol) administration. Immunohistochemistry revealed high levels of c-Myc and p53 immunoreactivity, mainly in medium-sized striatal neurons. Pretreatment with the cell-permeable recombinant peptide NF-kappaB SN50 (5-20 microg) blocked NF-kappaB nuclear translocation, but had no effect on AP-1 binding. NF-kappaB SN50 also inhibited the KA-induced up-regulation of c-Myc and p53, as well as internucleosomal DNA fragmentation. The apoptotic-like destruction of rat striatal neurons induced by KA receptor stimulation thus appears to involve biochemical mechanisms similar to those mediating the excitotoxic response to NMDA receptor stimulation. The present results provide additional support for the view that NF-kappaB activation contributes to c-Myc and p53 induction and subsequent apoptosis in an excitotoxic model of Huntington's disease.
Collapse
Affiliation(s)
- M Nakai
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892-1406, USA
| | | | | | | | | |
Collapse
|
186
|
Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74:443-56. [PMID: 10646495 DOI: 10.1046/j.1471-4159.2000.740443.x] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcription factor nuclear factor kappaB (NF-kappaB) is moving to the forefront of the fields of apoptosis and neuronal plasticity because of recent findings showing that activation of NF-kappaB prevents neuronal apoptosis in various cell culture and in vivo models and because NF-kappaB is activated in association with synaptic plasticity. Activation of NF-kappaB was first shown to mediate antiapoptotic actions of tumor necrosis factor in cultured neurons and was subsequently shown to prevent death of various nonneuronal cells. NF-kappaB is activated by several cytokines and neurotrophic factors and in response to various cell stressors. Oxidative stress and elevation of intracellular calcium levels are particularly important inducers of NF-kappaB activation. Activation of NF-kappaB can interrupt apoptotic biochemical cascades at relatively early steps, before mitochondrial dysfunction and oxyradical production. Gene targets for NF-kappaB that may mediate its antiapoptotic actions include the antioxidant enzyme manganese superoxide dismutase, members of the inhibitor of apoptosis family of proteins, and the calcium-binding protein calbindin D28k. NF-kappaB is activated by synaptic activity and may play important roles in the process of learning and memory. The available data identify NF-kappaB as an important regulator of evolutionarily conserved biochemical and molecular cascades designed to prevent cell death and promote neuronal plasticity. Because NF-kappaB may play roles in a range of neurological disorders that involve neuronal degeneration and/or perturbed synaptic function, pharmacological and genetic manipulations of NF-kappaB signaling are being developed that may prove valuable in treating disorders ranging from Alzheimer's disease to schizophrenia.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
187
|
Abstract
Apoptosis is a physiological process critical for organ development, tissue homeostasis, and elimination of defective or potentially dangerous cells in complex organisms. Apoptosis can be initiated by a wide variety of stimuli, which activate a cell suicide program that is constitutively present in most vertebrate cells. In diverse cell types, Rel/NF-kappaB transcription factors have been shown to have a role in regulating the apoptotic program, either as essential for the induction of apoptosis or, perhaps more commonly, as blockers of apoptosis. Whether Rel/NF-kappaB promotes or inhibits apoptosis appears to depend on the specific cell type and the type of inducer. An understanding of the role of Rel/NF-kappaB transcription factors in controlling apoptosis may lead to the development of therapeutics for a wide variety of human diseases, including neurodegenerative and immune diseases, and cancer.
Collapse
Affiliation(s)
- M Barkett
- Boston University, Biology Department, 5 Cummington Street, Boston, Massachusetts, MA 02215, USA
| | | |
Collapse
|
188
|
Nakai M, Qin ZH, Wang Y, Chase TN. Free radical scavenger OPC-14117 attenuates quinolinic acid-induced NF-kappaB activation and apoptosis in rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 64:59-68. [PMID: 9889320 DOI: 10.1016/s0169-328x(98)00310-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidative stress has long been implicated in the pathogenesis of both the acute and chronic neurotoxic effects of glutamate acting through ionotrophic receptors of the N-methyl-d-aspartate (NMDA) subtype. To evaluate the contribution of oxidative stress to the NMDA receptor-mediated apoptotic death of rat striatal neurons in vivo, the effects of a novel, orally administered free radical scavenger, OPC-14117, was studied following intrastriatal infusion of the NMDA receptor agonist quinolinic acid (QA). Receptor autoradiography and in situ hybridization histochemistry showed that pretreatment with OPC-14117 (600 mg/kg) reduced the QA (120 nmol)-induced loss of striatal D1 dopamine receptors by about 20% (p<0.01) and NMDA receptors by 15% (p<0.01) as well as 67 kDa glutamic acid decarboxylase mRNA (34%; p<0.01) and proenkephalin mRNA (36%; p<0.01). OPC-14117 also decreased the apomorphine-induced ipsilateral rotational response in unilaterally QA-lesioned animals by about 70% (p<0.05). In addition, OPC-14117 pretreatment inhibited QA-induced internucleosomal DNA fragmentation. Western blot analysis and electrophoresis mobility shift assay further revealed that the free radical scavenger (300 and 600 mg/kg) blunted the QA-induced degradation of IkappaBalpha (increased IkappaBalpha levels from about 15% to 33 and 62% of control, respectively; p<0.01) as well as the ensuing activation of NF-kappaB by 25 to 34%, respectively (p<0. 01) and the augmentation in c-Myc (35 to 70%, respectively) and p53 expression by 50-80%, respectively (both p<0.01). In contrast, OPC-14117 had no significant effect on the QA-induced increase in AP-1 binding activity. These results suggest that the NMDA receptor-mediated generation of reactive oxygen species contributes to the QA-induced activation of NF-kappaB and further that orally administered OPC-14117 partially protects against excitotoxin-induced apoptosis of striatal neurons through inhibition of the NF-kappaB apoptotic cascade.
Collapse
Affiliation(s)
- M Nakai
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bldg 10, Rm. 5C103, 10 Center Drive, MSC 1406, Bethesda, MD 20892-1406, USA
| | | | | | | |
Collapse
|